
Package ‘BiocNeighbors’
April 15, 2024

Version 1.20.2

Date 2024-01-05

Title Nearest Neighbor Detection for Bioconductor Packages

Imports Rcpp, S4Vectors, BiocParallel, stats, methods, Matrix

Suggests testthat, BiocStyle, knitr, rmarkdown, FNN, RcppAnnoy,
RcppHNSW

biocViews Clustering, Classification

Description Implements exact and approximate methods for nearest neighbor
detection, in a framework that allows them to be easily switched within
Bioconductor packages or workflows. Exact searches can be performed using
the k-means for k-nearest neighbors algorithm or with vantage point trees.
Approximate searches can be performed using the Annoy or HNSW libraries.
Searching on either Euclidean or Manhattan distances is supported.
Parallelization is achieved for all methods by using BiocParallel. Functions
are also provided to search for all neighbors within a given distance.

License GPL-3

LinkingTo Rcpp, RcppHNSW

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/BiocNeighbors

git_branch RELEASE_3_18

git_last_commit f792bee

git_last_commit_date 2023-12-18

Repository Bioconductor 3.18

Date/Publication 2024-04-15

Author Aaron Lun [aut, cre, cph]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2 BiocNeighbors-package

R topics documented:
BiocNeighbors-package . 2
AnnoyIndex . 3
AnnoyParam . 4
BiocNeighborIndex . 5
BiocNeighborParam . 6
BiocNeighbors-algorithms . 7
BiocNeighbors-raw-index . 9
BiocNeighbors-ties . 10
buildAnnoy . 11
buildExhaustive . 13
buildHnsw . 14
buildIndex . 15
buildKmknn . 16
buildVptree . 18
ExhaustiveIndex . 19
ExhaustiveParam . 20
findKNN . 21
findKNN-functions . 22
findMutualNN . 26
findNeighbors . 27
findNeighbors-functions . 29
HnswIndex . 31
HnswParam . 32
KmknnIndex . 34
KmknnParam . 35
queryKNN . 36
queryKNN-functions . 37
queryNeighbors . 41
queryNeighbors-functions . 43
VptreeIndex . 46
VptreeParam . 47

Index 48

BiocNeighbors-package BiocNeighbors: Nearest Neighbor Detection for Bioconductor Pack-
ages

Description

Implements exact and approximate methods for nearest neighbor detection, in a framework that
allows them to be easily switched within Bioconductor packages or workflows. Exact searches
can be performed using the k-means for k-nearest neighbors algorithm or with vantage point trees.
Approximate searches can be performed using the Annoy or HNSW libraries. Searching on either
Euclidean or Manhattan distances is supported. Parallelization is achieved for all methods by using
BiocParallel. Functions are also provided to search for all neighbors within a given distance.

AnnoyIndex 3

Author(s)

Maintainer: Aaron Lun <infinite.monkeys.with.keyboards@gmail.com> [copyright holder]

AnnoyIndex The AnnoyIndex class

Description

A class to hold indexing structures for the Annoy algorithm for approximate nearest neighbor iden-
tification.

Usage

AnnoyIndex(data, path, search.mult = 50, NAMES = NULL, distance = "Euclidean")

Arguments

data A numeric matrix with data points in columns and dimensions in rows.

path A string specifying the path to the index file.

search.mult Numeric scalar, multiplier for the number of points to search.

NAMES A character vector of sample names or NULL.

distance A string specifying the distance metric to use.

Details

The AnnoyIndex class holds the indexing structure required to run the Annoy algorithm. Users
should never need to call the constructor explicitly, but should generate instances of AnnoyIndex
classes with buildAnnoy.

Users can get values from an AnnoyIndex object with the usual [[syntax. All parameters listed in
the constructor can be extracted in this manner.

Value

An instance of the AnnoyIndex class.

Author(s)

Aaron Lun

See Also

buildAnnoy, for the index construction.

BiocNeighborIndex, for the parent class and its available methods.

4 AnnoyParam

Examples

example(buildAnnoy)
out[['path']]
bndistance(out)
str(bndata(out))

AnnoyParam The AnnoyParam class

Description

A class to hold parameters for the Annoy algorithm for approximate nearest neighbor identification.

Usage

AnnoyParam(
ntrees = 50,
directory = tempdir(),
search.mult = ntrees,
distance = "Euclidean"

)

Arguments

ntrees Integer scalar, number of trees to use for index generation.

directory String containing the path to the directory in which to save the index.

search.mult Numeric scalar, multiplier for the number of points to search.

distance String, the distance metric to use.

Details

The AnnoyParam class holds all parameters associated with running the Annoy algorithm. Most of
these parameters are used to build the index - see buildAnnoy for details.

Users can get or set values with the usual [[syntax. All parameters listed in the constructor can be
manipulated in this manner.

Value

An instance of the AnnoyParam class.

Author(s)

Aaron Lun

BiocNeighborIndex 5

See Also

buildAnnoy, for the index construction.

findAnnoy and related functions, for the actual search.

BiocNeighborParam, for the parent class and its available methods.

Examples

(out <- AnnoyParam())
out[['ntrees']]

out[['ntrees']] <- 20L
out

BiocNeighborIndex The BiocNeighborIndex class

Description

A virtual class for indexing structures of different nearest-neighbor search algorithms.

Details

The BiocNeighborIndex class is a virtual base class on which other index objects are built. There
are 4 concrete subclasses:

KmknnIndex: exact nearest-neighbor search with the KMKNN algorithm.

VptreeIndex: exact nearest-neighbor search with a VP tree.

AnnoyIndex: approximate nearest-neighbor search with the Annoy algorithm.

HnswIndex: approximate nearest-neighbor search with the HNSW algorithm.

These objects hold indexing structures for a given data set - see the associated documentation pages
for more details. It also retains information about the input data as well as the sample names.

Methods

In the following code snippets, x and object are BiocNeighborIndex objects.

The main user-accessible methods are:

show(object): Display the class and dimensions of object.

dim(x): Return the dimensions of x, in terms of the matrix used to construct it.

dimnames(x): Return the dimension names of x. Only the row names of the input matrix are
stored, in the same order.

x[[i]]: Return the value of slot i, as used in the constructor for x.

More advanced methods (intended for developers of other packages) are:

6 BiocNeighborParam

bndata(object): Return a numeric matrix containing the data used to construct object. Each
column should represent a data point and each row should represent a variable (i.e., it is trans-
posed compared to the usual input, for efficient column-major access in C++ code). Columns
may be reordered from the input matrix according to bnorder(object).

bnorder(object): Return an integer vector specifying the new ordering of columns in bndata(object).
This generally only needs to be considered if raw.index=TRUE, see ?"BiocNeighbors-raw-index".

bndistance(object): Return a string specifying the distance metric to be used for searching.
This should be one of "Euclidean", "Manhattan" or "Cosine". Obviously, this should be
the same as the distance metric used for constructing the index.

Author(s)

Aaron Lun

See Also

KmknnIndex, VptreeIndex, AnnoyIndex, and HnswIndex for direct constructors.

buildIndex for construction on an actual data set.

findKNN and queryKNN for dispatch.

BiocNeighborParam The BiocNeighborParam class

Description

A virtual class for specifying the type of nearest-neighbor search algorithm and associated parame-
ters.

Details

The BiocNeighborParam class is a virtual base class on which other parameter objects are built.
There are currently 4 concrete subclasses:

KmknnParam: exact nearest-neighbor search with the KMKNN algorithm.

VptreeParam: exact nearest-neighbor search with the VP tree algorithm.

AnnoyParam: approximate nearest-neighbor search with the Annoy algorithm.

HnswParam: approximate nearest-neighbor search with the HNSW algorithm.

These objects hold parameters specifying how each algorithm should be run on an arbitrary data
set. See the associated documentation pages for more details.

BiocNeighbors-algorithms 7

Methods

In the following code snippets, x and object are BiocNeighborParam objects.

show(object): Display the class and arguments of object.

bndistance(object): Return a string specifying the distance metric to be used for searching.
This should be one of "Euclidean", "Manhattan" or "Cosine".

x[[i]]: Return the value of slot i, as used in the constructor for x.

x[[i]] <- value: Set slot i to the specified value.

Author(s)

Aaron Lun

See Also

KmknnParam, VptreeParam, AnnoyParam, and HnswParam for constructors.

buildIndex, findKNN and queryKNN for dispatch.

BiocNeighbors-algorithms

Neighbor search algorithms

Description

This page provides an overview of the neighbor search algorithms available in BiocNeighbors.

K-means with k-nearest neighbors (KMKNN)

In the KMKNN algorithm (Wang, 2012), k-means clustering is first applied to the data points using
the square root of the number of points as the number of cluster centers. The cluster assignment and
distance to the assigned cluster center for each point represent the KMKNN indexing information.
This speeds up the nearest neighbor search by exploiting the triangle inequality between cluster
centers, the query point and each point in the cluster to narrow the search space. The advantage of
the KMKNN approach is its simplicity and minimal overhead, resulting in performance improve-
ments over conventional tree-based methods for high-dimensional data where most points need to
be searched anyway. It is also trivially extended to find all neighbors within a threshold distance
from a query point.

Vantage point (VP) trees

In a VP tree (Yianilos, 1993), each node contains a subset of points that is split into two further
partitions. The split is determined by picking an arbitrary point inside that subset as the node center,
computing the distance to all other points from the center, and taking the median as the “radius”.
The left child of this node contains all points within the median distance from the radius, while
the right child contains the remaining points. This is applied recursively until all points resolve to
individual nodes. The nearest neighbor search traverses the tree and exploits the triangle inequality

8 BiocNeighbors-algorithms

between query points, node centers and thresholds to narrow the search space. VP trees are often
faster than more conventional KD-trees or ball trees as the former uses the points themselves as
the nodes of the tree, avoiding the need to create many intermediate nodes and reducing the total
number of distance calculations. Like KMKNN, it is also trivially extended to find all neighbors
within a threshold distance from a query point.

Exhaustive search

The exhaustive search computes all pairwise distances between data and query points to identify
nearest neighbors of the latter. It has quadratic complexity and is theoretically the worst-performing
method; however, it has effectively no overhead from constructing or querying indexing structures,
making it faster for in situations where indexing provides little benefit. This includes queries against
datasets with few data points or very high dimensionality.

Approximate nearest neighbors Oh Yeah (Annoy)

The Annoy algorithm was developed by Erik Bernhardsson to identify approximate k-nearest neigh-
bors in high-dimensional data. Briefly, a tree is constructed where a random hyperplane splits the
points into two subsets at each internal node. Leaf nodes are defined when the number of points in a
subset falls below a threshold (close to twice the number of dimensions for the settings used here).
Multiple trees are constructed in this manner, each of which is different due to the random choice
of hyperplanes. For a given query point, each tree is searched to identify the subset of all points in
the same leaf node as the query point. The union of these subsets across all trees is exhaustively
searched to identify the actual nearest neighbors to the query.

Hierarchical navigable small worlds (HNSW)

In the HNSW algorithm (Malkov and Yashunin, 2016), each point is a node in a “nagivable small
world” graph. The nearest neighbor search proceeds by starting at a node and walking through the
graph to obtain closer neighbors to a given query point. Nagivable small world graphs are used
to maintain connectivity across the data set by creating links between distant points. This speeds
up the search by ensuring that the algorithm does not need to take many small steps to move from
one cluster to another. The HNSW algorithm extends this idea by using a hierarchy of such graphs
containing links of different lengths, which avoids wasting time on small steps in the early stages
of the search where the current node position is far from the query.

Distance metrics

All algorithms support neighbor searching by Euclidean, Manhattan and cosine distances. Cosine
distances are implemented as the Euclidean distance between L2-normalized vectors. Note that
KMKNN operates much more naturally with Euclidean distances, so your mileage may vary when
using it with Manhattan distances.

Author(s)

Aaron Lun, using code from the cydar package for the KMKNN implementation; from Steve
Hanov, for the VP tree implementation; RcppAnnoy, for the Annoy implementation; and Rcp-
pHNSW, for the HNSW implementation.

BiocNeighbors-raw-index 9

References

Wang X (2012). A fast exact k-nearest neighbors algorithm for high dimensional search using
k-means clustering and triangle inequality. Proc Int Jt Conf Neural Netw, 43, 6:2351-2358.

Hanov S (2011). VP trees: A data structure for finding stuff fast. http://stevehanov.ca/blog/
index.php?id=130

Yianilos PN (1993). Data structures and algorithms for nearest neighbor search in general metric
spaces. Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 311-321.

Bernhardsson E (2018). Annoy. https://github.com/spotify/annoy

Malkov YA, Yashunin DA (2016). Efficient and robust approximate nearest neighbor search using
Hierarchical Navigable Small World graphs. arXiv. https://arxiv.org/abs/1603.09320

BiocNeighbors-raw-index

Reporting raw indices

Description

An overview of what raw indices mean for neighbor-search implementations that contain a rear-
ranged matrix in the BiocNeighborIndex object.

What are raw indices?

Consider the following call:

index <- buildKmknn(vals)
out <- findKmknn(precomputed=index, k=k, raw.index=TRUE)

This yields the same output as:

PRE <- bndata(index)
out2 <- findKmknn(X=t(PRE), k=k)

When raw.index=TRUE in the first call, the indices in out$index matrix can be imagined to refer
to columns of PRE in the second call. Moreover, all function arguments that previously referred to
rows of X (e.g., subset) are now considered to refer to columns of PRE.

The same reasoning applies to all functions where precomputed can be specified in place of X. This
includes query-based searches (e.g., queryKmknn) and range searches (rangeFindKmknn).

Motivation

Setting raw.index=TRUE is intended for scenarios where the reordered data in precomputed is
used elsewhere. By returning indices to the reordered data, the user does not need to hold onto the
original data and/or switch between the original ordering and that in precomputed. This simplifies
downstream code and provides a slight speed boost by avoiding the need for re-indexing.

http://stevehanov.ca/blog/index.php?id=130
http://stevehanov.ca/blog/index.php?id=130
https://github.com/spotify/annoy
https://arxiv.org/abs/1603.09320

10 BiocNeighbors-ties

Neighbor search implementations can only return raw indices if their index construction involves
transposing X and reordering its columns. This tends to be the case for most implementations
as transposition allows efficient column-major distance calculations and reordering improves data
locality. Both the KMKNN and VP tree implementations fulfill these requirements and thus have
the raw.index option.

Note that setting raw.index=TRUE makes little sense when precomputed is not specified. When
precomputed=NULL, a temporary index will be constructed that is not visible in the calling scope.
As index construction may be stochastic, the raw indices will not refer to anything that is meaningful
to the end-user.

Author(s)

Aaron Lun

See Also

findKmknn and findVptree for examples where raw indices are used.

Examples

vals <- matrix(rnorm(100000), ncol=20)
index <- buildKmknn(vals)
out <- findKmknn(precomputed=index, raw.index=TRUE, k=5)
alt <- findKmknn(t(bndata(index)), k=5)
head(out$index)
head(alt$index)

BiocNeighbors-ties Handling tied distances

Description

Interpreting the warnings when distances are tied in an exact nearest neighbor (NN) search.

The problem of ties

The most obvious problem with ties is that it may affect the identity of the reported neighbors. The
various NN search functions will return a constant number of neighbors for each data point. If the
kth neighbor is tied with the k+1th neighbor, this requires an arbitrary decision about which data
point to retain in the NN set. A milder issue is that the order of the neighbors within the set is
arbitrary, which may be important for certain algorithms.

As such, a warning will be raised if tied distances are detected among the k+1 NNs for any of the
exact NN search methods. We only consider exact ties at double precision - previous versions of
this package would account for numerical imprecision, but this is no longer the case. No warning is
given for the approximate methods as their use already implies that a certain degree of inaccuracy
is acceptable.

buildAnnoy 11

Interaction with random seeds

In general, the exact NN search algorithms in this package are fully deterministic despite the use of
stochastic steps during index construction. The only exception occurs when there are tied distances
to neighbors, at which point the order and/or identity of the k-nearest neighboring points is not
well-defined. This is because, in the presence of ties, the output will depend on the ordering of
points in the constructed index from buildKmknn or buildVptree.

Users should set the seed to guarantee consistent (albeit arbitrary) results across different runs of the
function. However, note that the exact selection of tied points depends on the numerical precision of
the system. Thus, even after setting a seed, there is no guarantee that the results will be reproducible
across machines (especially Windows)!

Turning off the warnings

It may ocassionally be appropriate to disable the warnings by setting warn.ties=FALSE. The most
obvious scenario is when get.index=FALSE, i.e., we are only interested in the distances to the
neighbors. In such cases, the presence of ties does not matter as changes to the identity of tied
neighbors do not affect the returned distances (which, for ties, are equal by definition). Similarly, if
the seed is set prior to the search, the warnings are unnecessary as the output is fully deterministic.

Author(s)

Aaron Lun

See Also

findKmknn and findVptree for examples where tie warnings are produced.

Examples

vals <- matrix(0, nrow=10, ncol=20)
out <- findKmknn(vals, k=5)

buildAnnoy Build an Annoy index

Description

Build an Annoy index and save it to file in preparation for a nearest-neighbors search.

Usage

buildAnnoy(
X,
transposed = FALSE,
ntrees = 50,
directory = tempdir(),

12 buildAnnoy

search.mult = ntrees,
fname = tempfile(tmpdir = directory, fileext = ".idx"),
distance = c("Euclidean", "Manhattan", "Cosine")

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

transposed Logical scalar indicating whether X is transposed, i.e., rows are variables and
columns are data points.

ntrees Integer scalar specifying the number of trees to build in the index.

directory String containing the path to the directory in which to save the index file.

search.mult Numeric scalar specifying the multiplier for the number of points to search.

fname String containing the path to the index file.

distance String specifying the type of distance to use.

Details

This function is automatically called by findAnnoy and related functions. However, it can be called
directly by the user to save time if multiple queries are to be performed to the same X.

It is advisable to change directory to a location that is amenable to parallel read operations on
HPC file systems. Of course, if index files are manually constructed, the user is also responsible for
their clean-up after all calculations are completed.

The ntrees parameter controls the trade-off between accuracy and computational work. More trees
provide greater accuracy at the cost of more computational work (both in terms of the indexing time
and search speed in downstream functions).

The search.mult controls the parameter known as search_k in the original Annoy documentation.
Specifically, search_k is defined as k * search.mult where k is the number of nearest neighbors to
identify in downstream functions. This represents the number of points to search exhaustively and
determines the run-time balance between speed and accuracy. The default search.mult=ntrees
is based on the Annoy library defaults. Note that this parameter is not actually used in the index
construction itself, and is only included here so that the output index fully parametrizes the search.

Technically, the index construction algorithm is stochastic but, for various logistical reasons, the
seed is hard-coded into the C++ code. This means that the results of the Annoy neighbor searches
will be fully deterministic for the same inputs, even though the theory provides no such guarantees.

Value

An AnnoyIndex object containing a path to the index file, plus additional parameters for the search.

Author(s)

Aaron Lun

buildExhaustive 13

See Also

AnnoyIndex, for details on the output class.

findAnnoy and queryAnnoy, for dependent functions.

Examples

Y <- matrix(rnorm(100000), ncol=20)
out <- buildAnnoy(Y)
out

buildExhaustive Prepare data for an exhaustive search

Description

Transform data in preparation for an exhaustive (i.e., brute-force) search.

Usage

buildExhaustive(
X,
transposed = FALSE,
distance = c("Euclidean", "Manhattan", "Cosine")

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

transposed Logical scalar indicating whether X is transposed, i.e., rows are variables and
columns are data points.

distance String specifying the type of distance to use.

Details

This algorithm is largely provided as a baseline for comparing against the other algorithms. On rare
occasions, it may actually be useful in, e.g., very high-dimensional data where the indexing step of
other algorithms adds computational overhead for no benefit.

Value

An ExhaustiveIndex object containing indexed data.

Author(s)

Allison Vuong

14 buildHnsw

See Also

ExhaustiveIndex, for details on the output class.

findExhaustive and queryExhaustive, for dependent functions.

Examples

Y <- matrix(rnorm(100000), ncol=20)
out <- buildExhaustive(Y)
out

buildHnsw Build a HNSW index

Description

Build a HNSW index and save it to file in preparation for a nearest-neighbors search.

Usage

buildHnsw(
X,
transposed = FALSE,
nlinks = 16,
ef.construction = 200,
directory = tempdir(),
ef.search = 10,
fname = tempfile(tmpdir = directory, fileext = ".idx"),
distance = c("Euclidean", "Manhattan", "Cosine")

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

transposed Logical scalar indicating whether X is transposed, i.e., rows are variables and
columns are data points.

nlinks Integer scalar specifying the number of bi-directional links for each element.
ef.construction

Integer scalar specifying the size of the dynamic list during index construction.

directory String containing the path to the directory in which to save the index file.

ef.search Integer scalar specifying the size of the dynamic list to use during neighbor
searching.

fname String containing the path to the index file.

distance String specifying the type of distance to use.

buildIndex 15

Details

This function is automatically called by findHnsw and related functions. However, it can be called
directly by the user to save time if multiple queries are to be performed to the same X.

It is advisable to change directory to a location that is amenable to parallel read operations on
HPC file systems. Of course, if index files are manually constructed, the user is also responsible for
their clean-up after all calculations are completed.

Larger values of nlinks improve accuracy at the expense of speed and memory usage. Larger
values of ef.construction improve index quality at the expense of indexing time.

The value of ef.search controls the accuracy of the neighbor search at run time. Larger values
improve accuracy at the expense of a slower search. In findHnsw and queryHnsw, this is always
lower-bounded at k, the number of nearest neighbors to identify. Note that this parameter is not
actually used in the index construction itself, and is only included here so that the output index fully
parametrizes the search.

Technically, the index construction algorithm is stochastic but, for various logistical reasons, the
seed is hard-coded into the C++ code. This means that the results of the HNSW neighbor searches
will be fully deterministic for the same inputs, even though the theory provides no such guarantees.

Value

An AnnoyIndex object containing a path to the index file, plus additional parameters for the search.

Author(s)

Aaron Lun

See Also

HnswIndex, for details on the output class.

findHnsw and queryHnsw, for dependent functions.

Examples

Y <- matrix(rnorm(100000), ncol=20)
out <- buildHnsw(Y)
out

buildIndex Build a nearest-neighbor index

Description

Build indices for nearest-neighbor searching with different algorithms.

Usage

buildIndex(X, ..., BNPARAM)

16 buildKmknn

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

... Further arguments to be passed to individual methods. This is guaranteed to
include transposed.

BNPARAM A BiocNeighborParam object specifying the type of index to be constructed.
This defaults to a KmknnParam object if no argument is supplied.

Details

Supplying a KmknnParam object as BNPARAM will dispatch to buildKmknn.

Supplying a VptreeParam object as BNPARAM will dispatch to buildVptree.

Supplying an AnnoyParam object as BNPARAM will dispatch to buildAnnoy.

Supplying an HnswParam object as BNPARAM will dispatch to buildHnsw.

Value

An instance of a BiocNeighborIndex subclass, containing indexing structures for the specified al-
gorithm.

Author(s)

Aaron Lun

See Also

buildKmknn, buildVptree, buildAnnoy and buildHnsw for specific methods.

Examples

Y <- matrix(rnorm(100000), ncol=20)
(k.out <- buildIndex(Y))
(a.out <- buildIndex(Y, BNPARAM=AnnoyParam()))

buildKmknn Pre-cluster points with k-means

Description

Perform k-means clustering in preparation for a KMKNN nearest-neighbors search.

buildKmknn 17

Usage

buildKmknn(
X,
transposed = FALSE,
distance = c("Euclidean", "Manhattan", "Cosine"),
...

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

transposed Logical scalar indicating whether X is transposed, i.e., rows are variables and
columns are data points.

distance String specifying the type of distance to use.

... Further arguments to pass to kmeans.

Details

This function is automatically called by findKmknn and related functions. However, it can be called
directly by the user to save time if multiple queries are to be performed to the same X.

Points in X are reordered to improve data locality during the nearest-neighbor search. Specifically,
points in the same cluster are contiguous and ordered by increasing distance from the cluster center.

After k-means clustering, the function will store the coordinates of the cluster center in the output
object. In addition, it records a list of extra information of length equal to the number of clusters.
Each entry corresponds a cluster (let’s say cluster j) and is a list of length 2. The first element
is an integer scalar containing the zero-index of the first point in the reordered data matrix that is
assigned to j. The second element is a numeric vector containing the distance of each point in the
cluster from the cluster center.

Value

A KmknnIndex object containing indexing structures for the KMKNN search.

Author(s)

Aaron Lun

See Also

kmeans, for optional arguments.

KmknnIndex for details on the output class.

findKmknn, queryKmknn and findNeighbors, for dependent functions.

18 buildVptree

Examples

Y <- matrix(rnorm(100000), ncol=20)
out <- buildKmknn(Y)
out

buildVptree Build a VP tree

Description

Build a vantage point tree in preparation for a nearest-neighbors search.

Usage

buildVptree(
X,
transposed = FALSE,
distance = c("Euclidean", "Manhattan", "Cosine")

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

transposed Logical scalar indicating whether X is transposed, i.e., rows are variables and
columns are data points.

distance String specifying the type of distance to use.

Details

This function is automatically called by findVptree and related functions. However, it can be
called directly by the user to save time if multiple queries are to be performed to the same X.

Points in X are reordered to improve data locality during the nearest-neighbor search. Specifically,
points in the same cluster are contiguous and ordered by increasing distance from the cluster center.

The function also reports a list containing four vectors of equal length describing the structure of
the VP tree. Each parallel element specifies a node:

• The first integer vector specifies the column index of data of the current node.

• The second integer vector specifies the column index of the left child of the current node,

• The third integer vector specifies the column index of the right child of the current node.

• The fourth numeric vector specifies the radius of the current node.

All indices here are zero-based, with child values set to -1 for leaf nodes.

ExhaustiveIndex 19

Value

A VptreeIndex object containing indexing structures for the VP-tree search.

Author(s)

Aaron Lun

See Also

VptreeIndex, for details on the output class.

findVptree and queryVptree, for dependent functions.

Examples

Y <- matrix(rnorm(100000), ncol=20)
out <- buildVptree(Y)
out

ExhaustiveIndex The ExhaustiveIndex class

Description

A class to hold the data for exact nearest neighbor identification.

Usage

ExhaustiveIndex(data, NAMES = NULL, distance = "Euclidean")

Arguments

data A numeric matrix with data points in columns and dimensions in rows.

NAMES A character vector of sample names or NULL.

distance A string specifying the distance metric to use.

Details

Users should never need to call the constructor explicitly, but should generate instances of Exhaus-
tiveIndex classes with buildExhaustive.

Users can get values from an ExhaustiveIndex object with the usual [[syntax. All parameters listed
in the constructor can be extracted in this manner.

Value

An ExhaustiveIndex object.

20 ExhaustiveParam

See Also

buildExhaustive, for the index construction.

BiocNeighborIndex, for the parent class and its available methods.

Examples

example(buildExhaustive)
out[['distance']]
bndistance(out)

ExhaustiveParam The ExhaustiveParam class

Description

A class to hold parameters for the exhaustive algorithm for exact nearest neighbor identification.

Usage

ExhaustiveParam(distance = "Euclidean")

Arguments

distance A string specifying the distance metric to use.

Value

An instance of the ExhaustiveParam class.

Author(s)

Allison Vuong

See Also

buildExhaustive, for the index construction.

findExhaustive and related functions, for the actual search.

BiocNeighborParam, for the parent class and its available methods.

Examples

(out <- ExhaustiveParam())

findKNN 21

findKNN Find k-nearest neighbors

Description

Find the k-nearest neighbors for each point in a data set, using exact or approximate algorithms.

Usage

findKNN(X, k, ..., BNINDEX, BNPARAM)

Arguments

X A numeric data matrix where rows are points and columns are dimensions. This
can be missing if BNINDEX is supplied.

k An integer scalar specifying the number of nearest neighbors to search for.
... Further arguments to pass to individual methods. This is guaranteed to in-

clude subset, get.index, get.distance, last, warn.ties, raw.index and
BPPARAM. See ?"findKNN-functions" for more details.

BNINDEX A BiocNeighborIndex object containing precomputed index information. This
can be missing if X and BNPARAM is supplied, see Details.

BNPARAM A BiocNeighborParam object specifying the algorithm to use. This can be miss-
ing if BNINDEX is supplied, see Details.

Details

The class of BNINDEX and BNPARAM will determine dispatch to specific methods. Only one of these
arguments needs to be defined to resolve dispatch. However, if both are defined, they cannot specify
different algorithms.

If BNINDEX is supplied, X does not need to be specified. In fact, any value of X will be ignored as
all necessary information for the search is already present in BNINDEX. Similarly, any parameters in
BNPARAM will be ignored.

If both BNINDEX and BNPARAM are missing, the function will default to the KMKNN algorithm by
setting BNPARAM=KmknnParam().

Value

A list is returned containing index, an integer matrix of neighbor identities; and distance, a nu-
meric matrix of distances to those neighbors. See ?"findKNN-functions" for more details.

Author(s)

Aaron Lun

See Also

findExhaustive, findKmknn, findVptree, findAnnoy and findHnsw for specific methods.

22 findKNN-functions

Examples

Y <- matrix(rnorm(100000), ncol=20)
str(k.out <- findKNN(Y, k=10))
str(a.out <- findKNN(Y, k=10, BNPARAM=AnnoyParam()))

e.dex <- buildExhaustive(Y)
str(k.out2 <- findKNN(Y, k=10, BNINDEX=e.dex))
str(k.out3 <- findKNN(Y, k=10, BNINDEX=e.dex, BNPARAM=ExhaustiveParam()))

k.dex <- buildKmknn(Y)
str(k.out2 <- findKNN(Y, k=10, BNINDEX=k.dex))
str(k.out3 <- findKNN(Y, k=10, BNINDEX=k.dex, BNPARAM=KmknnParam()))

a.dex <- buildAnnoy(Y)
str(a.out2 <- findKNN(Y, k=10, BNINDEX=a.dex))
str(a.out3 <- findKNN(Y, k=10, BNINDEX=a.dex, BNPARAM=AnnoyParam()))

findKNN-functions Find nearest neighbors

Description

Find the nearest neighbors of each point in a dataset, using a variety of algorithms.

Usage

findAnnoy(
X,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
subset = NULL,
raw.index = NA,
warn.ties = NA,
...

)

findHnsw(
X,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),

findKNN-functions 23

precomputed = NULL,
subset = NULL,
raw.index = NA,
warn.ties = NA,
...

)

findKmknn(
X,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
subset = NULL,
raw.index = FALSE,
warn.ties = TRUE,
...

)

findVptree(
X,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
subset = NULL,
raw.index = FALSE,
warn.ties = TRUE,
...

)

findExhaustive(
X,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
subset = NULL,
raw.index = FALSE,
warn.ties = TRUE,
...

)

24 findKNN-functions

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

k A positive integer scalar specifying the number of nearest neighbors to retrieve.

get.index A logical scalar indicating whether the indices of the nearest neighbors should
be recorded.

get.distance A logical scalar indicating whether distances to the nearest neighbors should be
recorded.

last An integer scalar specifying the number of furthest neighbors for which statistics
should be returned.

BPPARAM A BiocParallelParam object indicating how the search should be parallelized.

precomputed A BiocNeighborIndex object of the appropriate class, generated from X. For
findExhaustive, this should be a ExhaustiveIndex from buildExhaustive;
For findKmknn, this should be a KmknnIndex from buildKmknn; for findVptree,
this should be a VptreeIndex from buildVptree; for findAnnoy, this should be
a AnnoyIndex from buildAnnoy; and for findHnsw, this should be a HnswIndex
from buildHnsw.

subset A vector indicating the rows of X for which the nearest neighbors should be
identified.

raw.index A logial scalar indicating whether raw column indices should be returned, see
?"BiocNeighbors-raw-index". This argument is ignored for findAnnoy and
findHnsw.

warn.ties Logical scalar indicating whether a warning should be raised if any of the k+1
neighbors have tied distances. This argument is ignored for findAnnoy and
findHnsw.

... Further arguments to pass to the respective build* function for each algorithm.
This includes distance, a string specifying whether "Euclidean", "Manhattan"
or "Cosine" distances are to be used.

Details

All of these functions identify points in X that are the k nearest neighbors of each other point.
findAnnoy and findHnsw perform an approximate search, while findKmknn and findVptree are
exact. The upper bound for k is set at the number of points in X minus 1.

By default, nearest neighbors are identified for all data points within X. If subset is specified,
nearest neighbors are only detected for the points in the subset. This yields the same result as (but
is more efficient than) subsetting the output matrices after running findKmknn with subset=NULL.

Turning off get.index or get.distance will not return the corresponding matrices in the output.
This may provide a slight speed boost when these returned values are not of interest. Using BPPARAM
will also split the search across multiple workers, which should increase speed proportionally (in
theory) to the number of cores.

Setting last will return indices and/or distances for the k - last + 1-th closest neighbor to the k-th
neighbor. This can be used to improve memory efficiency, e.g., by only returning statistics for the
k-th nearest neighbor by setting last=1. Note that this is entirely orthogonal to subset.

findKNN-functions 25

If multiple queries are to be performed to the same X, it may be beneficial to build the index from X
(e.g., with buildKmknn). The resulting BiocNeighborIndex object can be supplied as precomputed
to multiple function calls, avoiding the need to repeat index construction in each call. Note that
when precomputed is supplied, the value of X is completely ignored.

For exact methods, see comments in ?"BiocNeighbors-ties" regarding the warnings when tied
distances are observed. For approximate methods, see comments in buildAnnoy and buildHnsw
about the (lack of) randomness in the search results.

Value

A list is returned containing:

• index, if get.index=TRUE. This is an integer matrix where each row corresponds to a point
(denoted here as i) in X. The row for i contains the row indices of X that are the nearest
neighbors to point i, sorted by increasing distance from i.

• distance, if get.distance=TRUE. This is a numeric matrix where each row corresponds to a
point (as above) and contains the sorted distances of the neighbors from i.

Each matrix contains last columns. If subset is not NULL, each row of the above matrices refers
to a point in the subset, in the same order as supplied in subset.

See ?"BiocNeighbors-raw-index" for an explanation of the output when raw.index=TRUE for
the functions that support it.

Author(s)

Aaron Lun

See Also

buildExhaustive, buildKmknn, buildVptree, buildAnnoy, or buildHnsw to build an index ahead
of time.

See ?"BiocNeighbors-algorithms" for an overview of the available algorithms.

Examples

Y <- matrix(rnorm(100000), ncol=20)

out <- findExhaustive(Y, k=8)
head(out$index)
head(out$distance)

out1 <- findKmknn(Y, k=8)
head(out1$index)
head(out1$distance)

out2 <- findVptree(Y, k=8)
head(out2$index)
head(out2$distance)

out3 <- findAnnoy(Y, k=8)

26 findMutualNN

head(out3$index)
head(out3$distance)

out4 <- findHnsw(Y, k=8)
head(out4$index)
head(out4$distance)

findMutualNN Find mutual nearest neighbors

Description

Find mutual nearest neighbors (MNN) across two data sets.

Usage

findMutualNN(
data1,
data2,
k1,
k2 = k1,
BNINDEX1 = NULL,
BNINDEX2 = NULL,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

data1 A numeric matrix containing points in the rows and variables/dimensions in the
columns.

data2 A numeric matrix like data1 for another dataset with the same variables/dimensions.

k1 Integer scalar specifying the number of neighbors to search for in data1.

k2 Integer scalar specifying the number of neighbors to search for in data2.

BNINDEX1 A BiocNeighborIndex object containing a pre-built index for data1.

BNINDEX2 A BiocNeighborIndex object containing a pre-built index for data2.

BNPARAM A BiocNeighborParam object specifying the neighbour search algorithm to use.
This should be consistent with the class of BNINDEX1 and BNINDEX2, if either are
specified.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed.

findNeighbors 27

Details

For each point in dataset 1, the set of k2 nearest points in dataset 2 is identified. For each point
in dataset 2, the set of k1 nearest points in dataset 1 is similarly identified. Two points in different
datasets are considered to be part of an MNN pair if each point lies in the other’s set of neighbors.
This concept allows us to identify matching points across datasets, which is useful for, e.g., batch
correction.

Any values for the BNINDEX1 and BNINDEX2 arguments should be equal to the output of buildIndex
for the respective matrices, using the algorithm specified with BNPARAM. These arguments are only
provided to improve efficiency during repeated searches on the same datasets (e.g., for comparisons
between all pairs). The specification of these arguments should not, generally speaking, alter the
output of the function.

Value

A list containing the integer vectors first and second, containing row indices from data1 and
data2 respectively. Corresponding entries in first and second specify a MNN pair consisting of
the specified rows from each matrix.

Author(s)

Aaron Lun

See Also

queryKNN for the underlying neighbor search code.

fastMNN and related functions from the batchelor package, from which this code was originally
derived.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- findMutualNN(B1, B2, k1=20)
head(out$first)
head(out$second)

findNeighbors Find all neighbors in range

Description

Find all neighbors within a given distance for each point in a data set.

Usage

findNeighbors(X, threshold, ..., BNINDEX, BNPARAM)

28 findNeighbors

Arguments

X A numeric data matrix where rows are points and columns are dimensions. This
can be missing if BNINDEX is supplied.

threshold A numeric scalar or vector specifying the maximum distance for considering
neighbors.

... Further arguments to pass to specific methods. This is guaranteed to include
subset, get.index, get.distance BPPARAM and raw.index. See ?"findNeighbors-functions"
for more details.

BNINDEX A BiocNeighborIndex object containing precomputed index information. This
can be missing if X and BNPARAM is supplied, see Details.

BNPARAM A BiocNeighborParam object specifying the algorithm to use. This can be miss-
ing if BNINDEX is supplied, see Details.

Details

The class of BNINDEX and BNPARAM will determine the dispatch to specific functions. Only one of
these arguments needs to be defined to resolve dispatch. However, if both are defined, they cannot
specify different algorithms.

If BNINDEX is supplied, X does not need to be specified. In fact, any value of X will be ignored as
all necessary information for the search is already present in BNINDEX. Similarly, any parameters in
BNPARAM will be ignored.

If both BNINDEX and BNPARAM are missing, the function will default to the KMKNN algorithm by
setting BNPARAM=KmknnParam().

Value

A list is returned containing index, a list of integer vectors specifying the identities of the neighbors
of each point; and distance, a list of numeric vectors containing the distances to those neighbors.
See ?"findNeighbors-functions" for more details.

Author(s)

Aaron Lun

See Also

rangeFindKmknn and rangeFindVptree for specific methods.

Examples

Y <- matrix(rnorm(100000), ncol=20)
k.out <- findNeighbors(Y, threshold=3)
a.out <- findNeighbors(Y, threshold=3, BNPARAM=VptreeParam())

k.dex <- buildKmknn(Y)
k.out2 <- findNeighbors(Y, threshold=3, BNINDEX=k.dex)
k.out3 <- findNeighbors(Y, threshold=3, BNINDEX=k.dex, BNPARAM=KmknnParam())

findNeighbors-functions 29

v.dex <- buildVptree(Y)
v.out2 <- findNeighbors(Y, threshold=3, BNINDEX=v.dex)
v.out3 <- findNeighbors(Y, threshold=3, BNINDEX=v.dex, BNPARAM=VptreeParam())

findNeighbors-functions

Find all neighbors in range

Description

Find all neighboring data points within a certain distance of each point.

Usage

rangeFindExhaustive(
X,
threshold,
get.index = TRUE,
get.distance = TRUE,
BPPARAM = SerialParam(),
precomputed = NULL,
subset = NULL,
raw.index = FALSE,
...

)

rangeFindKmknn(
X,
threshold,
get.index = TRUE,
get.distance = TRUE,
BPPARAM = SerialParam(),
precomputed = NULL,
subset = NULL,
raw.index = FALSE,
...

)

rangeFindVptree(
X,
threshold,
get.index = TRUE,
get.distance = TRUE,
BPPARAM = SerialParam(),
precomputed = NULL,
subset = NULL,

30 findNeighbors-functions

raw.index = FALSE,
...

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

threshold A positive numeric scalar specifying the maximum distance at which a point
is considered a neighbor. Alternatively, a vector containing a different distance
threshold for each point.

get.index A logical scalar indicating whether the indices of the neighbors should be recorded.

get.distance A logical scalar indicating whether distances to the neighbors should be recorded.

BPPARAM A BiocParallelParam object indicating how the search should be parallelized.

precomputed A BiocNeighborIndex object of the appropriate class, generated from X. For
rangeFindExhaustive, this should be a ExhaustiveIndex from rangeFindExhaustive.
For rangeFindKmknn, this should be a KmknnIndex from rangeFindKmknn. For
rangeFindVptree, this should be a VptreeIndex from rangeFindVptree.

subset A vector indicating the rows of X for which the nearest neighbors should be
identified.

raw.index A logial scalar indicating whether raw column indices should be returned, see
?"BiocNeighbors-raw-index".

... Further arguments to pass to the respective build* function for each algorithm.
This includes distance, a string specifying whether "Euclidean", "Manhattan"
or "Cosine" distances are to be used.

Details

This function identifies all points in X that within threshold of each point in X. For Euclidean
distances, this is equivalent to identifying all points in a hypersphere centered around the point of
interest. The exact implementation can either use the KMKNNN approach or a VP tree.

By default, a search is performed for each data point in X, but it can be limited to a specified subset
of points with subset. This yields the same result as (but is more efficient than) subsetting the
output matrices after running findNeighbors with subset=NULL.

If threshold is a vector, each entry is assumed to specify a (possibly different) threshold for each
point in X. If subset is also specified, each entry is assumed to specify a threshold for each point in
subset. An error will be raised if threshold is a vector of incorrect length.

Turning off get.index or get.distance will provide a slight speed boost and reduce memory us-
age when these returned values are not of interest. If both get.index=FALSE and get.distance=FALSE,
an integer vector containing the number of neighbors to each point is returned instead. This is more
memory efficient when the identities of/distances to the neighbors are not required.

Using BPPARAM will parallelize the search across points, which usually provides a linear increase in
speed.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from X
(e.g., with buildKmknn). The resulting BiocNeighborIndex object can be supplied as precomputed

HnswIndex 31

to multiple function calls, avoiding the need to repeat index construction in each call. Note that
when precomputed is supplied, the value of X is ignored.

Value

A list is returned containing:

• index, if get.index=TRUE. This is a list of integer vectors where each entry corresponds to a
point (denoted here as i) in X. The vector for i contains the set of row indices of all points in X
that lie within threshold of point i. Points in each vector are not ordered, and i will always
be included in its own set.

• distance, if get.distance=TRUE. This is a list of numeric vectors where each entry corre-
sponds to a point (as above) and contains the distances of the neighbors from i. Elements of
each vector in distance match to elements of the corresponding vector in index.

If get.index=FALSE and get.distance=FALSE, an integer vector is returned instead containing
the number of neighbors to i.

If subset is not NULL, each entry of the above lists corresponds to a point in the subset, in the same
order as supplied in subset.

See ?"BiocNeighbors-raw-index" for an explanation of the output when raw.index=TRUE.

Author(s)

Aaron Lun

See Also

buildExhaustive, buildKmknn or buildVptree to build an index ahead of time.

See ?"BiocNeighbors-algorithms" for an overview of the available algorithms.

Examples

Y <- matrix(runif(100000), ncol=20)
out <- rangeFindKmknn(Y, threshold=3)
out2 <- rangeFindVptree(Y, threshold=3)
out3 <- rangeFindExhaustive(Y, threshold=3)

HnswIndex The HnswIndex class

Description

A class to hold indexing structures for the HNSW algorithm for approximate nearest neighbor
identification.

Usage

HnswIndex(data, path, ef.search = 10, NAMES = NULL, distance = "Euclidean")

32 HnswParam

Arguments

data A numeric matrix with data points in columns and dimensions in rows.

path A string specifying the path to the index file.

ef.search Integer scalar specifying the size of the dynamic list at run time.

NAMES A character vector of sample names or NULL.

distance A string specifying the distance metric to use.

Details

The HnswIndex class holds the indexing structure required to run the HNSW algorithm. Users
should never need to call the constructor explicitly, but should generate instances of HnswIndex
classes with buildHnsw.

Users can get values from an HnswIndex object with the usual [[syntax. All parameters listed in
the constructor can be extracted in this manner.

Value

An instance of the HnswIndex class.

Author(s)

Aaron Lun

See Also

buildHnsw, to build the index.

BiocNeighborIndex, for the parent class and its available methods.

Examples

example(buildHnsw)
out[['path']]

HnswParam The HnswParam class

Description

A class to hold parameters for the Hnsw algorithm for approximate nearest neighbor identification.

HnswParam 33

Usage

HnswParam(
nlinks = 16,
ef.construction = 200,
directory = tempdir(),
ef.search = 10,
distance = "Euclidean"

)

Arguments

nlinks Integer scalar, number of bi-directional links per element for index generation.
ef.construction

Integer scalar, size of the dynamic list for index generation.

directory String specifying the directory in which to save the index.

ef.search Integer scalar, size of the dynamic list for neighbor searching.

distance A string specifying the distance metric to use.

Details

The HnswParam class holds any parameters associated with running the HNSW algorithm. This
generally relates to building of the index - see buildHnsw for details.

Users can get or set values with the usual [[syntax. All parameters listed in the constructor can be
manipulated in this manner.

Value

An instance of the HnswParam class.

Author(s)

Aaron Lun

See Also

buildHnsw, for the index construction.

findHnsw and related functions, for the actual search.

BiocNeighborParam, for the parent class and its available methods.

Examples

(out <- HnswParam())
out[['nlinks']]

out[['nlinks']] <- 20L
out

34 KmknnIndex

KmknnIndex The KmknnIndex class

Description

A class to hold indexing structures for the KMKNN algorithm for exact nearest neighbor identifi-
cation.

Usage

KmknnIndex(data, centers, info, order, NAMES = NULL, distance = "Euclidean")

Arguments

data A numeric matrix where columns correspond to data points and rows correspond
to dimensions.

centers A numeric matrix containing coordinates for cluster centroids, with clusters in
columns and dimensions in rows.

info A list containing additional information for each cluster, see buildKmknn for
details.

order An integer vector of length equal to ncol(data), specifying the order of points
in x relative to the original data matrix.

NAMES A character vector of sample names or NULL.

distance A string specifying the distance metric to use.

Details

The KmknnIndex class holds the indexing structure required to run the KMKNN algorithm. Users
should never need to call the constructor explicitly, but should generate instances of KmknnIndex
classes with buildKmknn.

Users can get values from an HnswIndex object with the usual [[syntax. All parameters listed in
the constructor can be extracted in this manner.

Value

An instance of the KmknnIndex class.

Author(s)

Aaron Lun

See Also

buildKmknn, to build the index.

BiocNeighborIndex, for the parent class and its available methods.

KmknnParam 35

Examples

example(buildKmknn)
out[['centers']]
out[['info']]

KmknnParam The KmknnParam class

Description

A class to hold parameters for the KMKNN algorithm for exact nearest neighbor identification.

Usage

KmknnParam(..., distance = "Euclidean")

Arguments

... Arguments to be passed to kmeans.
distance A string specifying the distance metric to use.

Details

The KmknnParam class holds any parameters associated with running the KMKNN algorithm.
Currently, this relates to tuning of the k-means step - see buildKmknn for details.

Users can get or set values from an KmknnParam object with the usual [[syntax. All parameters
listed in ... are available via x[['kmeans.args']].

Value

An instance of the KmknnParam class.

Author(s)

Aaron Lun

See Also

buildKmknn, for the index construction.

findKmknn and related functions, for the actual search.

BiocNeighborParam, for the parent class and its available methods.

Examples

(out <- KmknnParam(iter.max=100))
out[['kmeans.args']]

36 queryKNN

queryKNN Query k-nearest neighbors

Description

Find the k-nearest neighbors in one data set for each point in another query data set, using exact or
approximate algorithms.

Usage

queryKNN(X, query, k, ..., BNINDEX, BNPARAM)

Arguments

X A numeric data matrix where rows are points and columns are dimensions. This
can be missing if BNINDEX is supplied.

query A numeric query matrix where rows are points and columns are dimensions.

k An integer scalar specifying the number of nearest neighbors to search for.

... Further arguments to pass to specific methods. This is guaranteed to include
subset, get.index, get.distance, last, transposed, warn.ties, raw.index
and BPPARAM. See ?"queryKNN-functions" for more details.

BNINDEX A BiocNeighborIndex object containing precomputed index information. This
can be missing if X and BNPARAM is supplied, see Details.

BNPARAM A BiocNeighborParam object specifying the algorithm to use. This can be miss-
ing if BNINDEX is supplied, see Details.

Details

The class of BNINDEX and BNPARAM will determine dispatch to specific methods. Only one of these
arguments needs to be defined to resolve dispatch. However, if both are defined, they cannot specify
different algorithms.

If BNINDEX is supplied, X does not need to be specified. In fact, any value of X will be ignored as
all necessary information for the search is already present in BNINDEX. Similarly, any parameters in
BNPARAM will be ignored.

If both BNINDEX and BNPARAM are missing, the function will default to the KMKNN algorithm by
setting BNPARAM=KmknnParam().

Value

A list is returned containing index, an integer matrix of neighbor identities; and distance, a nu-
meric matrix of distances to those neighbors. See ?"queryKNN-functions" for more details.

Author(s)

Aaron Lun

queryKNN-functions 37

See Also

queryExhaustive, queryKmknn, queryVptree, queryAnnoy and queryHnsw for specific methods.

Examples

Y <- matrix(rnorm(100000), ncol=20)
Z <- matrix(rnorm(10000), ncol=20)
str(k.out <- queryKNN(Y, Z, k=10))
str(a.out <- queryKNN(Y, Z, k=10, BNPARAM=AnnoyParam()))

e.dex <- buildExhaustive(Y)
str(k.out2 <- queryKNN(Y,Z, k=10, BNINDEX=e.dex))
str(k.out3 <- queryKNN(Y,Z, k=10, BNINDEX=e.dex, BNPARAM=ExhaustiveParam()))

k.dex <- buildKmknn(Y)
str(k.out2 <- queryKNN(Y,Z, k=10, BNINDEX=k.dex))
str(k.out3 <- queryKNN(Y,Z, k=10, BNINDEX=k.dex, BNPARAM=KmknnParam()))

a.dex <- buildAnnoy(Y)
str(a.out2 <- queryKNN(Y,Z, k=10, BNINDEX=a.dex))
str(a.out3 <- queryKNN(Y,Z, k=10, BNINDEX=a.dex, BNPARAM=AnnoyParam()))

queryKNN-functions Query nearest neighbors

Description

Query a dataset for nearest neighbors of points in another dataset, using a variety of algorithms.

Usage

queryAnnoy(
X,
query,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,
subset = NULL,
raw.index = NA,
warn.ties = NA,
...

)

38 queryKNN-functions

queryHnsw(
X,
query,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,
subset = NULL,
raw.index = NA,
warn.ties = NA,
...

)

queryKmknn(
X,
query,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,
subset = NULL,
raw.index = FALSE,
warn.ties = TRUE,
...

)

queryVptree(
X,
query,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,
subset = NULL,
raw.index = FALSE,
warn.ties = TRUE,
...

)

queryKNN-functions 39

queryExhaustive(
X,
query,
k,
get.index = TRUE,
get.distance = TRUE,
last = k,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,
subset = NULL,
raw.index = FALSE,
warn.ties = TRUE,
...

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

query A numeric matrix of query points, containing different data points in the rows
but the same number and ordering of dimensions in the columns.

k A positive integer scalar specifying the number of nearest neighbors to retrieve.

get.index A logical scalar indicating whether the indices of the nearest neighbors should
be recorded.

get.distance A logical scalar indicating whether distances to the nearest neighbors should be
recorded.

last An integer scalar specifying the number of furthest neighbors for which statistics
should be returned.

BPPARAM A BiocParallelParam object indicating how the search should be parallelized.

precomputed A BiocNeighborIndex object of the appropriate class, generated from X. For
findExhaustive, this should be a ExhaustiveIndex from buildExhaustive;
For findKmknn, this should be a KmknnIndex from buildKmknn; for findVptree,
this should be a VptreeIndex from buildVptree; for findAnnoy, this should be
a AnnoyIndex from buildAnnoy; and for findHnsw, this should be a HnswIndex
from buildHnsw.

transposed A logical scalar indicating whether the query is transposed, in which case query
is assumed to contain dimensions in the rows and data points in the columns.

subset A vector indicating the rows of query (or columns, if transposed=TRUE) for
which the nearest neighbors should be identified.

raw.index A logial scalar indicating whether raw column indices should be returned, see
?"BiocNeighbors-raw-index". This argument is ignored for findAnnoy and
findHnsw.

warn.ties Logical scalar indicating whether a warning should be raised if any of the k+1
neighbors have tied distances. This argument is ignored for findAnnoy and
findHnsw.

40 queryKNN-functions

... Further arguments to pass to the respective build* function for each algorithm.
This includes distance, a string specifying whether "Euclidean", "Manhattan"
or "Cosine" distances are to be used.

Details

All of these functions identify points in X that are the k nearest neighbors of each point in query.
queryAnnoy performs an approximate search, while queryExhaustive, queryKmknn and queryVptree
are exact. This requires both X and query to have the same number of dimensions. Moreover, the
upper bound for k is set at the number of points in X.

By default, nearest neighbors are identified for all data points within query. If subset is specified,
nearest neighbors are only detected for the query points in the subset. This yields the same result
as (but is more efficient than) subsetting the output matrices after running queryKmknn on the full
query.

If transposed=TRUE, this function assumes that query is already transposed, which saves a bit of
time by avoiding an unnecessary transposition. Turning off get.index or get.distance may also
provide a slight speed boost when these returned values are not of interest. Using BPPARAM will also
split the search by query points across multiple processes.

Setting last will return indices and/or distances for the k - last + 1-th closest neighbor to the k-th
neighbor. This can be used to improve memory efficiency, e.g., by only returning statistics for the
k-th nearest neighbor by setting last=1. Note that this is entirely orthogonal to subset.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from X
(e.g., with buildKmknn). The resulting BiocNeighborIndex object can be supplied as precomputed
to multiple function calls, avoiding the need to repeat index construction in each call. Note that
when precomputed is supplied, the value of X is ignored.

For exact methods, see comments in ?"BiocNeighbors-ties" regarding the warnings when tied
distances are observed. For approximate methods, see comments in buildAnnoy and buildHnsw
about the (lack of) randomness in the search results.

Value

A list is returned containing:

• index, if get.index=TRUE. This is an integer matrix where each row corresponds to a point
(denoted here as i) in query. The row for i contains the row indices of X that are the nearest
neighbors to point i, sorted by increasing distance from i.

• distance, if get.distance=TRUE. This is a numeric matrix where each row corresponds to a
point (as above) and contains the sorted distances of the neighbors from i.

Each matrix contains last columns. If subset is not NULL, each row of the above matrices refers
to a point in the subset, in the same order as supplied in subset.

See ?"BiocNeighbors-raw-index" for an explanation of the output when raw.index=TRUE for
the functions that support it.

Author(s)

Aaron Lun

queryNeighbors 41

See Also

buildExhaustive, buildKmknn, buildVptree, or buildAnnoy to build an index ahead of time.

See ?"BiocNeighbors-algorithms" for an overview of the available algorithms.

Examples

Y <- matrix(rnorm(100000), ncol=20)
Z <- matrix(rnorm(20000), ncol=20)

out <- queryExhaustive(Y, query=Z, k=5)
head(out$index)
head(out$distance)

out1 <- queryKmknn(Y, query=Z, k=5)
head(out1$index)
head(out1$distance)

out2 <- queryVptree(Y, query=Z, k=5)
head(out2$index)
head(out2$distance)

out3 <- queryAnnoy(Y, query=Z, k=5)
head(out3$index)
head(out3$distance)

out4 <- queryHnsw(Y, query=Z, k=5)
head(out4$index)
head(out4$distance)

queryNeighbors Query all neighbors

Description

Find all neighbors in one data set that are in range of each point in another query data set.

Usage

queryNeighbors(X, query, threshold, ..., BNINDEX, BNPARAM)

Arguments

X A numeric data matrix where rows are points and columns are dimensions. This
can be missing if BNINDEX is supplied.

query A numeric query matrix where rows are points and columns are dimensions.

threshold A numeric scalar or vector specifying the maximum distance for considering
neighbors.

42 queryNeighbors

... Further arguments to pass to specific methods. This is guaranteed to include
subset, get.index, get.distance BPPARAM and raw.index. See ?"queryNeighbors-functions"
for more details.

BNINDEX A BiocNeighborIndex object containing precomputed index information. This
can be missing if X and BNPARAM is supplied, see Details.

BNPARAM A BiocNeighborParam object specifying the algorithm to use. This can be miss-
ing if BNINDEX is supplied, see Details.

Details

The class of BNINDEX and BNPARAM will determine dispatch to specific methods. Only one of these
arguments needs to be defined to resolve dispatch. However, if both are defined, they cannot specify
different algorithms.

If BNINDEX is supplied, X does not need to be specified. In fact, any value of X will be ignored as
all necessary information for the search is already present in BNINDEX. Similarly, any parameters in
BNPARAM will be ignored.

If both BNINDEX and BNPARAM are missing, the function will default to the KMKNN algorithm by
setting BNPARAM=KmknnParam().

Value

A list is returned containing index, a list of integer vectors specifying the identities of the neighbors
of each point; and distance, a list of numeric vectors containing the distances to those neighbors.
See ?"queryNeighbors-functions" for more details.

Author(s)

Aaron Lun

See Also

rangeQueryKmknn and rangeQueryVptree for specific methods.

Examples

Y <- matrix(rnorm(100000), ncol=20)
Z <- matrix(rnorm(10000), ncol=20)
k.out <- queryNeighbors(Y, Z, threshold=3)
v.out <- queryNeighbors(Y, Z, threshold=3, BNPARAM=VptreeParam())

k.dex <- buildKmknn(Y)
k.out2 <- queryNeighbors(Y,Z, threshold=3, BNINDEX=k.dex)
k.out3 <- queryNeighbors(Y,Z, threshold=3, BNINDEX=k.dex, BNPARAM=KmknnParam())

v.dex <- buildVptree(Y)
v.out2 <- queryNeighbors(Y,Z, threshold=3, BNINDEX=v.dex)
v.out3 <- queryNeighbors(Y,Z, threshold=3, BNINDEX=v.dex, BNPARAM=VptreeParam())

queryNeighbors-functions 43

queryNeighbors-functions

Query neighbors in range

Description

Find all neighboring data points within a certain distance of a query point.

Usage

rangeQueryExhaustive(
X,
query,
threshold,
get.index = TRUE,
get.distance = TRUE,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,
subset = NULL,
raw.index = FALSE,
...

)

rangeQueryKmknn(
X,
query,
threshold,
get.index = TRUE,
get.distance = TRUE,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,
subset = NULL,
raw.index = FALSE,
...

)

rangeQueryVptree(
X,
query,
threshold,
get.index = TRUE,
get.distance = TRUE,
BPPARAM = SerialParam(),
precomputed = NULL,
transposed = FALSE,

44 queryNeighbors-functions

subset = NULL,
raw.index = FALSE,
...

)

Arguments

X A numeric matrix where rows correspond to data points and columns correspond
to variables (i.e., dimensions).

query A numeric matrix of query points, containing different data points in the rows
but the same number and ordering of dimensions in the columns.

threshold A positive numeric scalar specifying the maximum distance at which a point
is considered a neighbor. Alternatively, a vector containing a different distance
threshold for each query point.

get.index A logical scalar indicating whether the indices of the neighbors should be recorded.

get.distance A logical scalar indicating whether distances to the neighbors should be recorded.

BPPARAM A BiocParallelParam object indicating how the search should be parallelized.

precomputed A BiocNeighborIndex object of the appropriate class, generated from X. For
rangeFindExhaustive, this should be a ExhaustiveIndex from rangeFindExhaustive.
For rangeFindKmknn, this should be a KmknnIndex from rangeFindKmknn. For
rangeFindVptree, this should be a VptreeIndex from rangeFindVptree.

transposed A logical scalar indicating whether the query is transposed, in which case query
is assumed to contain dimensions in the rows and data points in the columns.

subset A vector indicating the rows of query (or columns, if transposed=TRUE) for
which the neighbors should be identified.

raw.index A logial scalar indicating whether raw column indices should be returned, see
?"BiocNeighbors-raw-index".

... Further arguments to pass to the respective build* function for each algorithm.
This includes distance, a string specifying whether "Euclidean", "Manhattan"
or "Cosine" distances are to be used.

Details

This function identifies points in X that are neighbors (i.e., within a distance threshold) of each
point in query. The exact implementation can either use the KMKNNN approach or a VP tree.
This requires both X and query to have the same number of variables.

By default, neighbors are identified for all data points within query. If subset is specified, neigh-
bors are only detected for the query points in the subset. This yields the same result as (but is more
efficient than) subsetting the output matrices after running queryNeighbors on the full query.

If threshold is a vector, each entry is assumed to specify a (possibly different) threshold for each
point in query. If subset is also specified, each entry is assumed to specify a threshold for each
point in subset. An error will be raised if threshold is a vector of incorrect length.

Turning off get.index or get.distance will provide a slight speed boost and reduce memory us-
age when those returned values are not of interest. If both get.index=FALSE and get.distance=FALSE,

queryNeighbors-functions 45

an integer vector containing the number of neighbors to each point is returned instead, which is more
memory efficient when the identities of/distances to the neighbors are not required.

If transposed=TRUE, this function assumes that query is already transposed, which saves a bit of
time by avoiding an unnecessary transposition. Using BPPARAM will also split the search by query
points across multiple processes.

If multiple queries are to be performed to the same X, it may be beneficial to build the index from X
(e.g., with buildKmknn). The resulting BiocNeighborIndex object can be supplied as precomputed
to multiple function calls, avoiding the need to repeat index construction in each call. Note that
when precomputed is supplied, the value of X is ignored.

Value

A list is returned containing:

• index, if get.index=TRUE. This is a list of integer vectors where each entry corresponds to
a point (denoted here as i) in query. The vector for i contains the set of row indices of all
points in X that lie within threshold of point i. Points in each vector are not ordered, and i
will always be included in its own set.

• distance, if get.distance=TRUE. This is a list of numeric vectors where each entry corre-
sponds to a point (as above) and contains the distances of the neighbors from i. Elements of
each vector in distance match to elements of the corresponding vector in index.

If get.index=FALSE and get.distance=FALSE, an integer vector is returned instead containing
the number of neighbors to i.

If subset is not NULL, each entry of the above lists refers to a point in the subset, in the same order
as supplied in subset.

See ?"BiocNeighbors-raw-index" for an explanation of the output when raw.index=TRUE.

Author(s)

Aaron Lun

See Also

buildKmknn or buildVptree to build an index ahead of time.

See ?"BiocNeighbors-algorithms" for an overview of the available algorithms.

Examples

Y <- matrix(rnorm(100000), ncol=20)
Z <- matrix(rnorm(20000), ncol=20)

out <- rangeQueryKmknn(Y, query=Z, threshold=1)
head(out$index)
head(out$distance)

out2 <- rangeQueryVptree(Y, query=Z, threshold=1)
head(out2$index)
head(out2$distance)

46 VptreeIndex

out3 <- rangeQueryExhaustive(Y, query=Z, threshold=1)
head(out3$index)
head(out3$distance)

VptreeIndex The VptreeIndex class

Description

A class to hold the vantage point tree for exact nearest neighbor identification.

Usage

VptreeIndex(data, nodes, order, NAMES = NULL, distance = "Euclidean")

Arguments

data A numeric matrix with data points in columns and dimensions in rows.

nodes A list of vectors specifying the structure of the VP tree.

order An integer vector of length equal to ncol(data), specifying the order of obser-
vations.

NAMES A character vector of sample names or NULL.

distance A string specifying the distance metric to use.

Details

The VptreeIndex class holds the indexing structure required to run the VP tree algorithm. Users
should never need to call the constructor explicitly, but should generate instances of VptreeIndex
classes with buildVptree.

Users can get values from a VptreeIndex object with the usual [[syntax. All parameters listed in
the constructor can be extracted in this manner.

Value

An instance of the VptreeIndex class.

Author(s)

Aaron Lun

See Also

buildVptree, for the index construction.

BiocNeighborIndex, for the parent class and its available methods.

VptreeParam 47

Examples

example(buildVptree)
str(out[["nodes"]])

VptreeParam The VptreeParam class

Description

A class to hold parameters for the VP tree algorithm for exact nearest neighbor identification.

Usage

VptreeParam(distance = "Euclidean")

Arguments

distance A string specifying the distance metric to use.

Value

An instance of the VptreeParam class.

Author(s)

Aaron Lun

See Also

buildVptree, for the index construction.

findVptree and related functions, for the actual search.

BiocNeighborParam, for the parent class and its available methods.

Examples

(out <- VptreeParam())

Index

[[,AnnoyParam-method (AnnoyParam), 4
[[,BiocNeighborIndex-method

(BiocNeighborIndex), 5
[[,BiocNeighborParam-method

(BiocNeighborParam), 6
[[,HnswParam-method (HnswParam), 32
[[<-,AnnoyParam-method (AnnoyParam), 4
[[<-,BiocNeighborParam-method

(BiocNeighborParam), 6
[[<-,HnswParam-method (HnswParam), 32

AnnoyIndex, 3, 5, 6, 12, 13, 15, 24, 39
AnnoyIndex-class (AnnoyIndex), 3
AnnoyIndex_path (AnnoyIndex), 3
AnnoyIndex_search_mult (AnnoyIndex), 3
AnnoyParam, 4, 6, 7, 16
AnnoyParam-class (AnnoyParam), 4
AnnoyParam_directory (AnnoyParam), 4
AnnoyParam_ntrees (AnnoyParam), 4
AnnoyParam_search_mult (AnnoyParam), 4

BiocNeighborIndex, 3, 5, 9, 16, 20, 21, 24,
26, 28, 30, 32, 34, 36, 39, 42, 44, 46

BiocNeighborIndex-class
(BiocNeighborIndex), 5

BiocNeighborParam, 5, 6, 16, 20, 21, 26, 28,
33, 35, 36, 42, 47

BiocNeighborParam-class
(BiocNeighborParam), 6

BiocNeighbors (BiocNeighbors-package), 2
BiocNeighbors-algorithms, 7
BiocNeighbors-package, 2
BiocNeighbors-raw-index, 9
BiocNeighbors-ties, 10
BiocParallelParam, 24, 26, 30, 39, 44
bndata (BiocNeighborIndex), 5
bndata,BiocNeighborIndex-method

(BiocNeighborIndex), 5
bndistance (BiocNeighborIndex), 5

bndistance,BiocNeighborIndex-method
(BiocNeighborIndex), 5

bndistance,BiocNeighborParam-method
(BiocNeighborParam), 6

bnorder (BiocNeighborIndex), 5
bnorder,AnnoyIndex-method (AnnoyIndex),

3
bnorder,ExhaustiveIndex-method

(ExhaustiveIndex), 19
bnorder,HnswIndex-method (HnswIndex), 31
bnorder,KmknnIndex-method (KmknnIndex),

34
bnorder,VptreeIndex-method

(VptreeIndex), 46
buildAnnoy, 3–5, 11, 16, 24, 25, 39–41
buildExhaustive, 13, 19, 20, 24, 25, 31, 39,

41
buildHnsw, 14, 16, 24, 25, 32, 33, 39, 40
buildIndex, 6, 7, 15, 27
buildIndex,AnnoyParam-method

(buildIndex), 15
buildIndex,HnswParam-method

(buildIndex), 15
buildIndex,KmknnParam-method

(buildIndex), 15
buildIndex,missing-method (buildIndex),

15
buildIndex,VptreeParam-method

(buildIndex), 15
buildKmknn, 11, 16, 16, 24, 25, 30, 31, 34, 35,

39–41, 45
buildVptree, 11, 16, 18, 24, 25, 31, 39, 41,

45–47

dim,BiocNeighborIndex-method
(BiocNeighborIndex), 5

dimnames,BiocNeighborIndex-method
(BiocNeighborIndex), 5

ExhaustiveIndex, 13, 14, 19, 24, 30, 39, 44

48

INDEX 49

ExhaustiveIndex-class
(ExhaustiveIndex), 19

ExhaustiveParam, 20
ExhaustiveParam-class

(ExhaustiveParam), 20

findAnnoy, 5, 12, 13, 21
findAnnoy (findKNN-functions), 22
findExhaustive, 14, 20, 21
findExhaustive (findKNN-functions), 22
findHnsw, 15, 21, 33
findHnsw (findKNN-functions), 22
findKmknn, 10, 11, 17, 21, 35
findKmknn (findKNN-functions), 22
findKNN, 6, 7, 21
findKNN,AnnoyIndex,AnnoyParam-method

(findKNN), 21
findKNN,AnnoyIndex,missing-method

(findKNN), 21
findKNN,ExhaustiveIndex,ExhaustiveParam-method

(findKNN), 21
findKNN,ExhaustiveIndex,missing-method

(findKNN), 21
findKNN,HnswIndex,HnswParam-method

(findKNN), 21
findKNN,HnswIndex,missing-method

(findKNN), 21
findKNN,KmknnIndex,KmknnParam-method

(findKNN), 21
findKNN,KmknnIndex,missing-method

(findKNN), 21
findKNN,missing,AnnoyParam-method

(findKNN), 21
findKNN,missing,ExhaustiveParam-method

(findKNN), 21
findKNN,missing,HnswParam-method

(findKNN), 21
findKNN,missing,KmknnParam-method

(findKNN), 21
findKNN,missing,missing-method

(findKNN), 21
findKNN,missing,VptreeParam-method

(findKNN), 21
findKNN,VptreeIndex,missing-method

(findKNN), 21
findKNN,VptreeIndex,VptreeParam-method

(findKNN), 21
findKNN-functions, 22
findKNN-methods (findKNN), 21

findMutualNN, 26
findNeighbors, 17, 27
findNeighbors,KmknnIndex,KmknnParam-method

(findNeighbors), 27
findNeighbors,KmknnIndex,missing-method

(findNeighbors), 27
findNeighbors,missing,KmknnParam-method

(findNeighbors), 27
findNeighbors,missing,missing-method

(findNeighbors), 27
findNeighbors,missing,VptreeParam-method

(findNeighbors), 27
findNeighbors,VptreeIndex,missing-method

(findNeighbors), 27
findNeighbors,VptreeIndex,VptreeParam-method

(findNeighbors), 27
findNeighbors-functions, 29
findNeighbors-methods (findNeighbors),

27
findVptree, 10, 11, 18, 19, 21, 47
findVptree (findKNN-functions), 22

HnswIndex, 5, 6, 15, 24, 31, 39
HnswIndex-class (HnswIndex), 31
HnswIndex_ef_search (HnswIndex), 31
HnswIndex_path (HnswIndex), 31
HnswParam, 6, 7, 16, 32
HnswParam-class (HnswParam), 32
HnswParam_directory (HnswParam), 32
HnswParam_ef_construction (HnswParam),

32
HnswParam_ef_search (HnswParam), 32
HnswParam_nlinks (HnswParam), 32

kmeans, 17, 35
KmknnIndex, 5, 6, 17, 24, 30, 34, 39, 44
KmknnIndex-class (KmknnIndex), 34
KmknnIndex_cluster_centers

(KmknnIndex), 34
KmknnIndex_cluster_info (KmknnIndex), 34
KmknnParam, 6, 7, 16, 35
KmknnParam-class (KmknnParam), 35
KmknnParam_kmeans_args (KmknnParam), 35

queryAnnoy, 13, 37
queryAnnoy (queryKNN-functions), 37
queryExhaustive, 14, 37
queryExhaustive (queryKNN-functions), 37
queryHnsw, 15, 37

50 INDEX

queryHnsw (queryKNN-functions), 37
queryKmknn, 9, 17, 37
queryKmknn (queryKNN-functions), 37
queryKNN, 6, 7, 27, 36
queryKNN,AnnoyIndex,AnnoyParam-method

(queryKNN), 36
queryKNN,AnnoyIndex,missing-method

(queryKNN), 36
queryKNN,ExhaustiveIndex,ExhaustiveParam-method

(queryKNN), 36
queryKNN,ExhaustiveIndex,missing-method

(queryKNN), 36
queryKNN,HnswIndex,HnswParam-method

(queryKNN), 36
queryKNN,HnswIndex,missing-method

(queryKNN), 36
queryKNN,KmknnIndex,KmknnParam-method

(queryKNN), 36
queryKNN,KmknnIndex,missing-method

(queryKNN), 36
queryKNN,missing,AnnoyParam-method

(queryKNN), 36
queryKNN,missing,ExhaustiveParam-method

(queryKNN), 36
queryKNN,missing,HnswParam-method

(queryKNN), 36
queryKNN,missing,KmknnParam-method

(queryKNN), 36
queryKNN,missing,missing-method

(queryKNN), 36
queryKNN,missing,VptreeParam-method

(queryKNN), 36
queryKNN,VptreeIndex,missing-method

(queryKNN), 36
queryKNN,VptreeIndex,VptreeParam-method

(queryKNN), 36
queryKNN-functions, 37
queryKNN-methods (queryKNN), 36
queryNeighbors, 41
queryNeighbors,KmknnIndex,KmknnParam-method

(queryNeighbors), 41
queryNeighbors,KmknnIndex,missing-method

(queryNeighbors), 41
queryNeighbors,missing,KmknnParam-method

(queryNeighbors), 41
queryNeighbors,missing,missing-method

(queryNeighbors), 41
queryNeighbors,missing,VptreeParam-method

(queryNeighbors), 41
queryNeighbors,VptreeIndex,missing-method

(queryNeighbors), 41
queryNeighbors,VptreeIndex,VptreeParam-method

(queryNeighbors), 41
queryNeighbors-functions, 43
queryNeighbors-methods

(queryNeighbors), 41
queryVptree, 19, 37
queryVptree (queryKNN-functions), 37

rangeFindExhaustive, 30, 44
rangeFindExhaustive

(findNeighbors-functions), 29
rangeFindKmknn, 9, 28, 30, 44
rangeFindKmknn

(findNeighbors-functions), 29
rangeFindVptree, 28, 30, 44
rangeFindVptree

(findNeighbors-functions), 29
rangeQueryExhaustive

(queryNeighbors-functions), 43
rangeQueryKmknn, 42
rangeQueryKmknn

(queryNeighbors-functions), 43
rangeQueryVptree, 42
rangeQueryVptree

(queryNeighbors-functions), 43

show,AnnoyIndex-method (AnnoyIndex), 3
show,AnnoyParam-method (AnnoyParam), 4
show,BiocNeighborIndex-method

(BiocNeighborIndex), 5
show,BiocNeighborParam-method

(BiocNeighborParam), 6
show,HnswIndex-method (HnswIndex), 31
show,HnswParam-method (HnswParam), 32
show,KmknnIndex-method (KmknnIndex), 34
show,KmknnParam-method (KmknnParam), 35

VptreeIndex, 5, 6, 19, 24, 30, 39, 44, 46
VptreeIndex-class (VptreeIndex), 46
VptreeIndex_nodes (VptreeIndex), 46
VptreeParam, 6, 7, 16, 47
VptreeParam-class (VptreeParam), 47

	BiocNeighbors-package
	AnnoyIndex
	AnnoyParam
	BiocNeighborIndex
	BiocNeighborParam
	BiocNeighbors-algorithms
	BiocNeighbors-raw-index
	BiocNeighbors-ties
	buildAnnoy
	buildExhaustive
	buildHnsw
	buildIndex
	buildKmknn
	buildVptree
	ExhaustiveIndex
	ExhaustiveParam
	findKNN
	findKNN-functions
	findMutualNN
	findNeighbors
	findNeighbors-functions
	HnswIndex
	HnswParam
	KmknnIndex
	KmknnParam
	queryKNN
	queryKNN-functions
	queryNeighbors
	queryNeighbors-functions
	VptreeIndex
	VptreeParam
	Index

