
rTRM: an R package for the identification of

transcription regulatory modules (TRMs)

Diego Diez

May 2, 2019

1 Introduction

Transcription factors (TFs) bind to short motifs in the DNA and regulate the expression of target
genes in a cell type and time dependent fashion. TFs do so by cooperating with other TFs in what
it is called Transcriptional Regulatory Modules (TRMs). These TRMs contain different TFs and
form a combinatorial code that explains TF specificity. We have implemented a method for the
identification of TRMs that integrates information about binding locations from a single ChIP-seq
experiment, computational estimation of TF binding, gene expression and protein-protein interaction
(PPI) data (Diez et al. submitted; see workflow figure). rTRM implements the methods required for
the integration of PPI information (step 4 in workflow). To do so, rTRM tries to identify TFs that
are bound to a target TF (the one with experimental evidence- i.e. ChIP-seq data) either directly or
through a bridge protein. This package has been used to identify cell-type independent and dependent
TRMs associated with Stat3 functions [1]. Also, it has been used to identify TRMs in embryonic and
hematopoietic stem cells as part of the publication presenting the methodology (Diez et al. submitted).
Here we present the basic capabilities of rTRM with a naive example, a case study showing the
identification of Sox2 related TRM in ESCs as performed in the paper describing rTRM (Diez et al.
submitted), and a complete workflow in R using the PWMEnrich package for the motif enrichment
step.

2 Minimal example

In this minimal example a dummy network is search to identify TRMs focused around a target node,
N6, with query nodes being N7, N12 and N28. By default findTRM find nodes separated a max
distance of 0 (i.e. nodes directly connected). We change this with parameter max.bridge = 1. Because
node N28 is separated by two other nodes from the target node N6, it is not included in the predicted
TRM. By default findTRM() returns an object of class igraph, which can be used with plotTRM(),
plotTRMlegend() and other rTRM functions. However it is possible to directly obtain a graphNEL
object (from the Bioconductor package graph), setting the type argument to ”graphNEL”. Of course
it is possible to also use the igraph.to.graphNEL() function in the igraph package to transform an
igraph object into a graphNEL object.

> # load the rTRM package

> library(rTRM)

>

> # load network example.

> load(system.file(package = "rTRM", "extra/example.rda"))

>

> # plot network

1

Start with ChIP-seq
based locations for the
target transcription factor

1

ChIP-seq

Identifying TRMs from
PPI networks4

Interactome

Add computational
prediction of binding for the
query transcription factors

2

Motif
enrichment

Remove transcription
factors based on gene
expression

3

RNA-seq

rTRM

Figure 1: Workflow for the identification of TRMs. Steps 1-3 can be performed with standard Biocon-
ductor approaches. rTRM implements a method to perform step 4.

> plot(g, vertex.size = 20, vertex.label.cex = 0.8, layout = layout.graphopt)

>

> # define target and query nodes:

> target = "N6"

> query = c("N7", "N12", "N28")

>

> # find TRM:

> s = findTRM(g, target = target, query = query, method = "nsa", max.bridge = 1)

removing: 4 nodes out of 8 [keeping 4 nodes]

> # annotate nodes:

> V(s)$color = "white"

> V(s)[name %in% query]$color = "steelblue2"

> V(s)[name %in% target]$color = "steelblue4"

>

> # plot:

> plot(s, vertex.size = 20, vertex.label.cex = 0.8)

2

●●
●

●
●

●●●

●
●
●

●

● ●●
●

●
●

●
●

● ●
●●

●
●

●

●

N1 N2

N3

N4

N5

N6N7N8

N9

N10

N11

N12

N13 N14
N15

N16

N17

N18

N19

N20

N21 N22

N23
N24

N25

N26
N27

N28

●

●

●

●

N6

N7

N9

N12

Figure 2: Identification of a TRM 1from a test network (left). In the resulting TRM (right) dark blue
indicates the target node light blue are query nodes and white nodes are bridge nodes

3 Introduction to the rTRM package

rTRM relies on a series of optimizations. For example in the publication we used PWMs for vertebrate
species compiled from different sources. This assumes the binding specificities of TFs will be conserved
on all these species. Recent comparison between mouse and human PWMs suggests that this is the
case for most TFs [9]. rTRM also relies on protein-protein interaction data, and so provides utilities to
download data from the BioGRID database (see below). As some of these functionalities are further
integrated with existing Bioconductor functionality they may be defunct in the future.

3.1 Database

Information about TFs, including Position Specific Weight (PWMs) matrices, mapping to Entrez Gene
identifiers, orthologs in mouse and human and other annotations are stored as a SQLite database.
rTRM provides a basic API for accessing the data. Below there are some examples.

To obtain PWMs:

> pwm = getMatrices()

> head(pwm, 1)

$MA0009.1

1 2 3 4 5 6 7 8 9 10 11

A 0.05 0.025 1 0 0 0 0 0.00 0.025 1 0.775

C 0.70 0.025 0 0 0 0 0 0.05 0.175 0 0.125

G 0.20 0.000 0 1 1 0 1 0.00 0.700 0 0.000

T 0.05 0.950 0 0 0 1 0 0.95 0.100 0 0.100

To get annotations:

> ann = getAnnotations()

> head(ann)

3

row_names pwm_id symbol family domain binding

1 1 MA0009.1 T T monomer

2 2 MA0059.1 MYC::MAX Helix-Loop-Helix dimer

3 3 MA0146.1 Zfx BetaBetaAlpha-zinc finger monomer

4 4 MA0132.1 Pdx1 Homeo monomer

5 5 MA0162.1 Egr1 BetaBetaAlpha-zinc finger monomer

6 6 MA0093.1 USF1 Helix-Loop-Helix monomer

source note

1 jaspar 2010

2 jaspar 2010

3 jaspar 2010

4 jaspar 2010

5 jaspar 2010

6 jaspar 2010

To get map of TFs to genes:

> map = getMaps()

> head(map)

row_names pwm_id entrezgene organism

1 1 MA0009.1 20997 mouse

2 2 MA0059.1 4609 human

3 3 MA0059.1 4149 human

4 4 MA0146.1 22764 mouse

5 5 MA0132.1 18609 mouse

6 6 MA0162.1 13653 mouse

To get map of TFs to ortholog genes:

> o = getOrthologs(organism = "mouse")

> head(o)

row_names entrezgene organism map_entrezgene map_organism

1 775 20997 mouse 20997 mouse

2 776 4609 human 107771 mouse

3 777 4149 human 17187 mouse

4 778 22764 mouse 22764 mouse

5 779 18609 mouse 18609 mouse

6 780 13653 mouse 13653 mouse

It is possible to map motif ids to entrezgene ids in the target organism (only between human and
mouse). This is useful when all the information about existing PWMs is desired, as some TF binding
affinities have only been studied in one organism.

> getOrthologFromMatrix("MA0009.1", organism = "human")

[1] "6862"

> getOrthologFromMatrix("MA0009.1", organism = "mouse")

[1] "20997"

3.2 Interactome data

rTRM requires information about protein-protein interactions (PPIs) for its predictions and includes
interactome (PPI network) data from the BioGRID database [2]. Currently mouse and human inter-
actomes are supported. The networks are provided as igraph format. To access the data use:

4

> # check statistics about the network.

> biogrid_mm()

Mouse PPI network data of class igraph

Number of nodes: 5315

Number of edges: 11695

Source: The BioGRID (http://www.thebiogrid.org)

Release: 3.4.128

Downloaded: 2015-09-17

Use data(biogrid mm) to load it

> # load mouse PPI network:

> data(biogrid_mm)

The amount of available PPI data increases rapidly so it is desirable to have a way to access the
newest data conveniently. rTRM includes support for direct download and processing of PPI data from
the BioGRID database. The PPI network is stored as an igraph object that can be readily used with
rTRM or stored for later use. Below there is an example of the BioGRID database update procedure.

> # obtain dataset.

> db = getBiogridData() # retrieves latest release.

> # db = getBiogridData('3.2.96') # to get a specific release.

>

> # check release:

> db$release

> db$data

>

> # process PPI data for different organisms (currently supported human and

> # mouse):

> biogrid_hs = processBiogrid(db, org = "human")

> biogrid_mm = processBiogrid(db, org = "mouse")

PPI data from other databases could be used as long as it is formatted as an igraph object with
the ’name’ attribute containing entrezgene identifiers and the ’label’ attribute containing the symbol.

3.2.1 Using PSICQUIC package to obtain protein-protein interactions

One possibility available from Bioconductor 2.13 is to use the package PSIQUIC to obtain PPI data.
PSICQUIC provides access to different databases of PPIs, including BioGRID and STRINGS, and
databases of cellular networks like KEGG or Reactome. For exaple, to obtain the human BioGRID
data (note is named BioGrid at PSICQUIC):

> library(PSICQUIC)

> psicquic <- PSICQUIC()

> providers(psicquic)

>

> # obtain BioGrid human PPIs (as data.frame):

> tbl = interactions(psicquic, species = "9606", provider = "BioGrid")

>

> # the target and source node information needs to be polished (i.e. must be

> # Entrez gene id only)

> biogrid_hs = data.frame(source = tbl$A, target = tbl$B)

5

> biogrid_hs$source = sub(".*locuslink:(.*)\\|BIOGRID:.*", "\\1", biogrid_hs$source)

> biogrid_hs$target = sub(".*locuslink:(.*)\\|BIOGRID:.*", "\\1", biogrid_hs$target)

>

> # create graph.

> library(igraph)

> biogrid_hs = graph.data.frame(biogrid_hs, directed = FALSE)

> biogrid_hs = simplify(biogrid_hs)

>

> # annotate with symbols.

> library(org.Hs.eg.db)

> V(biogrid_hs)$label = select(org.Hs.eg.db, keys = V(biogrid_hs)$name, columns = c("SYMBOL"))$SYMBOL

Facilities will be added to automatically process the data from PSICQUIC to produce igraph objects
suitable for rTRM.

4 Case study: TRM associated with Sox2 in embryonic stem
cells (ESCs)

Sox2 is a TF involved in the determination and maintainance of pluripotency in embryonic stem cells
(ESCs). Sox2 forms a transcriptional regulatory module with Nanog and Pou5f1 (Oct4), and together
determine ESCs phenotype. Other TFs important to this process are Erssb and Klf4. In this case
study we want to identify TRMs associated with Sox2. ChIP-seq data for Sox2 was obtained from
Chen et al. (Cell 2008) [3] and motif enrichment analysis performed with HOMER [4], followed by
matching against our library of PWMs using TOMTOM [5]. The starting dataset is the TOMTOM
output file with the motifs enriched in the Sox2 binding regions.

> # read motif enrichment results.

> motif_file = system.file("extra/sox2_motif_list.rda", package = "rTRM")

> load(motif_file)

> length(motif_list)

[1] 177

> head(motif_list)

[1] "MA0039.2" "MA0071.1" "MA0075.1" "MA0077.1" "MA0078.1" "MA0112.2"

First, we read the motifs and convert them into gene identifiers (i.e. Entrez Gene identifier). To
do this we use the function getOrthologFromMatrix, which takes a list of motif identifiers and the
target organism as parameters. The function returns a list with the Entrez Gene ids.

> # get the corresponding gene.

> tfs_list = getOrthologFromMatrix(motif_list, organism = "mouse")

> tfs_list = unique(unlist(tfs_list, use.names = FALSE))

> length(tfs_list)

[1] 98

> head(tfs_list)

[1] "18609" "20682" "13983" "20665" "18291" "18227"

Next, we need a list of genes expressed in ESC. For this, the dataset was obtained from GEO
(GSE27708; [6]) and processed using the custom CDFs from the BrainArray project [7] and the rma
function from the package affy [8]. Genes expressed were determined by removing all genes with log2
expression ¡ 5 in all samples.

6

> # load expression data.

> eg_esc_file = system.file("extra/ESC-expressed.txt", package = "rTRM")

> eg_esc = scan(eg_esc_file, what = "")

> length(eg_esc)

[1] 8734

> head(eg_esc)

[1] "100008567" "100017" "100019" "100037258" "100038489" "100039781"

> tfs_list_esc = tfs_list[tfs_list %in% eg_esc]

> length(tfs_list_esc)

[1] 22

> head(tfs_list_esc)

[1] "26380" "18999" "20674" "16600" "26379" "13984"

Next, we load the PPI network and filter out potential degree outliers and proteins not expressed
in the paired expression data.

> # load and process PPI data.

> biogrid_mm()

Mouse PPI network data of class igraph

Number of nodes: 5315

Number of edges: 11695

Source: The BioGRID (http://www.thebiogrid.org)

Release: 3.4.128

Downloaded: 2015-09-17

Use data(biogrid mm) to load it

> data(biogrid_mm)

> ppi = biogrid_mm

> vcount(ppi)

[1] 5315

> ecount(ppi)

[1] 11695

> # remove outliers.

> f = c("Ubc", "Sumo1", "Sumo2", "Sumo3")

> f = select(org.Mm.eg.db, keys = f, columns = "ENTREZID", keytype = "SYMBOL")$ENTREZID

’select()’ returned 1:1 mapping between keys and columns

> f

[1] "22190" "22218" "170930" "20610"

> ppi = removeVertices(ppi, f)

> vcount(ppi)

[1] 4984

> ecount(ppi)

[1] 11081

> # filter by expression.

> ppi_esc = induced.subgraph(ppi, V(ppi)[name %in% eg_esc])

> vcount(ppi_esc)

[1] 3109

> ecount(ppi_esc)

[1] 4889

> # ensure a single component.

7

> ppi_esc = getLargestComp(ppi_esc)

> vcount(ppi_esc)

[1] 2576

> ecount(ppi_esc)

[1] 4851

To identify TRMs we define a target TF (the one the ChIP-seq data comes from) and some query
TFs (the ones with enriched binding sites in the neighborhood of the target TF).

> # define target.

> target = select(org.Mm.eg.db, keys = "Sox2", columns = "ENTREZID", keytype = "SYMBOL")$ENTREZID

’select()’ returned 1:1 mapping between keys and columns

> target

[1] "20674"

> # find TRM.

> s = findTRM(ppi_esc, target, tfs_list_esc, method = "nsa", max.bridge = 1)

11 query nodes NOT FOUND in network-- removed

removing: 320 nodes out of 328 [keeping 8 nodes]

> vcount(s)

[1] 8

> ecount(s)

[1] 15

Finally, we layout the network using a customized concentric layout and plot the network and the
legend.

> # generate layout (order by cluster, then label)

> cl = getConcentricList(s, target, tfs_list_esc)

> l = layout.concentric(s, cl, order = "label")

>

> # plot TRM.

> plotTRM(s, layout = l, vertex.cex = 15, label.cex = 0.8)

> plotTRMlegend(s, title = "ESC Sox2 TRM", cex = 0.8)

5 A complete workflow in R

In this section we will identify Sox2 TRMs using a workflow performed completely in R. For this
the MotifDb package will be used to obtain the information about PWMs, and PWMEnrich package
for identifying enriched motifs. PWMEnrich requires the computation of background models and the
enrichment analysis per se, which are computational intensive. Therefore these steps were not run
during the compilation of this vignette.

The first step is to retrieve a set of PWMs. Here we will use the MotifDb package available in
Bioconductor. We will use only mouse PWMs (i.e. PWMs for the target organism). It could be
possible to use matrices from other species but then the user has to obtain the orthologs in the target
organism (e.g. using getOrthologsFromBiomart() in rTRM or using the Biomart package directly).

8

Hdac2

Sox15

Sox2

Sall4

EsrrbPou5f1

Klf4

Rad21
ESC Sox2 TRM

C2H2 zinc finger factors
High−mobility group (HMG) domain factors
Homeo domain factors
Nuclear receptors with C4 zinc fingers
unclassified

Figure 3: Sox2 specific TRM in ESCs.

> library(rTRM)

> library(BSgenome.Mmusculus.UCSC.mm8.masked) # Sox2 peaks found against mm8

Loading required package: BSgenome

Loading required package: GenomeInfoDb

Loading required package: GenomicRanges

Loading required package: Biostrings

Loading required package: XVector

Attaching package: ’Biostrings’

The following object is masked from ’package:base’:

strsplit

Loading required package: rtracklayer

Attaching package: ’rtracklayer’

The following object is masked from ’package:igraph’:

blocks

Loading required package: BSgenome.Mmusculus.UCSC.mm8

> library(PWMEnrich)

Loading required package: grid

> registerCoresPWMEnrich(1) # register number of cores for parallelization in PWMEnrich

> library(MotifDb)

See system.file("LICENSE", package="MotifDb") for use restrictions.

> # select mouse PWMs:

> sel.mm = values(MotifDb)$organism %in% c("Mmusculus")

> pwm.mm = MotifDb[sel.mm]

9

The matrices need to be passed as counts, that is the PFM need to be converted to counts. The
easiest way is to multiply by 100 and round the results. We also need to convert it to integer.

> # generate logn background model of PWMs:

> p = as.list(pwm.mm)

> p = lapply(p, function(x) round(x * 100))

> p = lapply(p, function(x) t(apply(x, 1, as.integer)))

With the PFMs we compute the background model using the makeBackground() function from the
PWMEnrich package, which returns the corresponding PWMs. This requires a list with the PFMs as
counts, the organisms to obtain the sequences to compute the background and the type of background
model (here ”logn” model is used).

> pwm_logn = makeBackground(p, Mmusculus, type = "logn")

Next we read the peak information from the Sox2 Chip-seq data. This is the original coordinates
obtained from Chen et al. (Cell 2008), which were obtained for Mmusculus mm8 genome. The function
getSequencesFromGenome() is an utility wrapper to getSeq() that facilitates appending a label to the
sequences’ ids. PWMEnrich requires sequences the same size or longer to the motifs so we check what
is the largest motif and filter the sequences accordingly.

> sox2_bed = read.table(system.file("extra/ESC_Sox2_peaks.txt", package = "rTRM"))

>

> colnames(sox2_bed) = c("chr", "start", "end")

>

> sox2_seq = getSequencesFromGenome(sox2_bed, Mmusculus, append.id = "Sox2")

> # PWMEnrich throws an error if the sequences are shorter than the motifs so

> # we filter those sequences.

> min.width = max(sapply(p, ncol))

> sox2_seq_filter = sox2_seq[width(sox2_seq) >= min.width]

Next, enrichment is computed with the sequences and the PWMs with the background model as
parameters.

> # find enrichment:

> sox2_enr = motifEnrichment(sox2_seq_filter, pwms = pwm_logn, group.only = TRUE)

Next, retrieve the enriched motifs by choosing an appropriate cutoff. Here a raw.score of ¿ 5 is
used. Then, using the annotations in the MotifDb dataset, we can obtain the Entrezgene ids associated
with the enriched TF motifs.

> res = groupReport(sox2_enr)

>

> plot(density(res$raw.score), main = "", log = "x", xlab = "log(raw.score)")

Warning in xy.coords(x, y, xlabel, ylabel, log): 2 x values <= 0 omitted from logarithmic

plot

> abline(v = log2(5), col = "red")

> mtext(text = "log2(5)", at = log2(5), side = 3, cex = 0.8, col = "red")

>

> res.gene = unique(values(MotifDb[res$id[res$raw.score > 5]])$geneId)

> res.gene = unique(na.omit(res.gene))

10

0.5 5.0 50.0
0.

0
0.

2
0.

4

log(raw.score)

D
en

si
ty

log2(5)

Figure 4: Density of log2(raw.score) for group. The selected cutoff is indicated with a red line.

Then proceed with the same steps as in the Use Case example shown in the previous section. The
resulting TRM is similar (85% of edges shared) to the one in the Use Case, which used HOMER for
motif enrichment. Differences may be to different approaches to determine the background. HOMER
uses random sets of sequences with similar composition to the ChIP-seq peaks provided to generate
the background. For PWMEnrich we generated a background using promoter sequences, defined as
2000 bp upstream of the transcription start site (TSS) of all genes in the genome. Generally, using
different strategies for enrichment will tend to produce slightly different TRMs.

> data(biogrid_mm)

> ppi = biogrid_mm

> vcount(ppi)

[1] 5315

> ecount(ppi)

[1] 11695

> f = c("Ubc", "Sumo1", "Sumo2", "Sumo3")

> f = select(org.Mm.eg.db, keys = f, columns = "ENTREZID", keytype = "SYMBOL")$ENTREZID

’select()’ returned 1:1 mapping between keys and columns

> ppi = removeVertices(ppi, f)

> vcount(ppi)

[1] 4984

> ecount(ppi)

[1] 11081

> # filter by expression.

> eg_esc = scan(system.file("extra/ESC-expressed.txt", package = "rTRM"), what = "")

> ppi_esc = induced.subgraph(ppi, V(ppi)[name %in% eg_esc])

> vcount(ppi_esc)

[1] 3109

> ecount(ppi_esc)

[1] 4889

11

Hdac2 Egr1

Sox15

Sox2Sall4

Esrrb

Pou5f1

Zfp281

Klf4

Sf1

Rad21

ESC Sox2 TRM

C2H2 zinc finger factors
High−mobility group (HMG) domain factors
Homeo domain factors
Nuclear receptors with C4 zinc fingers
unclassified

Figure 5: Sox2 TRM identified using PWMEnrich for the motif enrichment.

> # ensure a single component.

> ppi_esc = getLargestComp(ppi_esc)

> vcount(ppi_esc)

[1] 2576

> ecount(ppi_esc)

[1] 4851

> sox2.gene = select(org.Mm.eg.db, keys = "Sox2", columns = "ENTREZID", keytype = "SYMBOL")$ENTREZID

’select()’ returned 1:1 mapping between keys and columns

> sox2_trm = findTRM(ppi_esc, target = sox2.gene, query = res.gene)

18 query nodes NOT FOUND in network-- removed

removing: 346 nodes out of 357 [keeping 11 nodes]

> cl = getConcentricList(sox2_trm, t = sox2.gene, e = res.gene)

> l = layout.concentric(sox2_trm, concentric = cl, order = "label")

> plotTRM(sox2_trm, layout = l, vertex.cex = 15, label.cex = 0.8)

> plotTRMlegend(sox2_trm, title = "ESC Sox2 TRM", cex = 0.8)

We next compare the similarity between the TRM identified using motifs enriched as identified
with HOMER and those identified with PWMEnrich. As shown in the heatmap, both methods return
similar results.

> m = getSimilarityMatrix(list(PWMEnrich = sox2_trm, HOMER = s))

> m

PWMEnrich HOMER

PWMEnrich 100.00000 83.33333

HOMER 83.33333 100.00000

> d = as.data.frame.table(m)

> g = ggplot(d, aes(x = Var1, y = Var2, fill = Freq))

12

PWMEnrich

HOMER

P
W

M
E

nr
ic

h

H
O

M
E

R

similarity

100

75

50

25

0

Figure 6: Similarity between the TRMs predicted using motif enrichment information from PWMEn-
rich and HOMER.

> g + geom_tile() + scale_fill_gradient2(limit = c(0, 100), low = "white", mid = "darkblue",

+ high = "orange", guide = guide_legend("similarity", reverse = TRUE), midpoint = 50) +

+ xlab(NULL) + ylab(NULL) + theme(aspect.ratio = 1, axis.text.x = element_text(angle = 90,

+ vjust = 0.5, hjust = 1))

6 Ploting parameters

The most important parameter determining the appearance of your network will be the layout. When
networks contain many nodes and edges are difficult to interpret. rTRM implements two igraph
layouts that try improve the visualization and interpretation of the identified TRMs. The layout
layout.concentric is a circular layout with multiple concentric layers that places the target TFs in the
center, the enriched (or query) TFs in the outer circle and the bridge TFs in the middle circle. Another
layut is layout.arc that tries to mimic the layout presented in the rTRM description (Fig. 1). In this
case all nodes are plotted in a liner layout, with the targets in the center, and the enriched (query)
nodes at each side. Those enriched nodes connected directly to any of the target nodes are placed
in the left side. Those connected through a bridge node are placed in the right side, with the bridge
node placed in between. The following figure compares the concentric layout obtained in the previous
section with a layout using the layout.arc function.

> plotTRM(sox2_trm, layout = l, vertex.cex = 15, label.cex = 0.7)

> l = layout.arc(sox2_trm, target = sox2.gene, query = res.gene)

> plotTRM(sox2_trm, layout = l, vertex.cex = 15, label.cex = 0.7)

7 Citation

If you use rTRM in your research please include the following reference:

13

Hdac2 Egr1

Sox15

Sox2Sall4

Esrrb

Pou5f1

Zfp281

Klf4

Sf1

Rad21
Hdac2

Egr1

Sox15

Sox2

Sall4

Esrrb

Pou5f1

Zfp281

Klf4

Sf1

Rad21

Figure 7: Sox2 TRM obtained with PWMEnrich workflow and layout.concentric is shown in the left.
Same TRM with layout.arc is shown in the right.

> citation(package = "rTRM")

To cite rTRM in publications use:

Diego Diez, Andrew P. Hutchins and Diego Miranda-Saavedra.

Systematic identification of transcriptional regulatory modules

from protein-protein interaction networks. Nucleic Acids

Research, 2014. 42 (1) e6.

A BibTeX entry for LaTeX users is

@Article{,

title = {Systematic identification of transcriptional regulatory modules from protein-protein interaction networks},

author = {Diego Diez and Andrew P. Hutchins and Diego Miranda-Saavedra},

year = {2014},

journal = {Nucleic Acids Research},

volume = {42},

number = {1},

pages = {e6-e6},

doi = {10.1093/nar/gkt913},

}

8 Session Information

> sessionInfo()

R version 3.6.0 (2019-04-26)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 18.04.2 LTS

14

Matrix products: default

BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid parallel stats4 stats graphics grDevices utils

[8] datasets methods base

other attached packages:

[1] MotifDb_1.26.0

[2] PWMEnrich_4.20.0

[3] BSgenome.Mmusculus.UCSC.mm8.masked_1.3.99

[4] BSgenome.Mmusculus.UCSC.mm8_1.4.0

[5] BSgenome_1.52.0

[6] rtracklayer_1.44.0

[7] Biostrings_2.52.0

[8] XVector_0.24.0

[9] GenomicRanges_1.36.0

[10] GenomeInfoDb_1.20.0

[11] org.Mm.eg.db_3.8.2

[12] AnnotationDbi_1.46.0

[13] IRanges_2.18.0

[14] S4Vectors_0.22.0

[15] Biobase_2.44.0

[16] BiocGenerics_0.30.0

[17] rTRM_1.22.0

[18] igraph_1.2.4.1

[19] knitr_1.22

[20] ggplot2_3.1.1

loaded via a namespace (and not attached):

[1] Rcpp_1.0.1 lattice_0.20-38

[3] gtools_3.8.1 Rsamtools_2.0.0

[5] assertthat_0.2.1 digest_0.6.18

[7] R6_2.4.0 plyr_1.8.4

[9] RSQLite_2.1.1 evaluate_0.13

[11] highr_0.8 pillar_1.3.1

[13] zlibbioc_1.30.0 rlang_0.3.4

[15] lazyeval_0.2.2 data.table_1.12.2

[17] gdata_2.18.0 blob_1.1.1

[19] Matrix_1.2-17 labeling_0.3

[21] BiocParallel_1.18.0 stringr_1.4.0

[23] RCurl_1.95-4.12 bit_1.1-14

15

[25] munsell_0.5.0 DelayedArray_0.10.0

[27] compiler_3.6.0 xfun_0.6

[29] seqLogo_1.50.0 pkgconfig_2.0.2

[31] evd_2.3-3 tidyselect_0.2.5

[33] SummarizedExperiment_1.14.0 tibble_2.1.1

[35] GenomeInfoDbData_1.2.1 matrixStats_0.54.0

[37] XML_3.98-1.19 crayon_1.3.4

[39] dplyr_0.8.0.1 withr_2.1.2

[41] GenomicAlignments_1.20.0 bitops_1.0-6

[43] gtable_0.3.0 DBI_1.0.0

[45] magrittr_1.5 formatR_1.6

[47] scales_1.0.0 stringi_1.4.3

[49] splitstackshape_1.4.8 tools_3.6.0

[51] bit64_0.9-7 glue_1.3.1

[53] purrr_0.3.2 colorspace_1.4-1

[55] memoise_1.1.0

References

[1] Hutchins, A. P., D. Diez, et al. (2013). ”Distinct transcriptional regulatory modules underlie
STAT3’s cell type-independent and cell type-specific functions.” Nucleic Acids Res.

[2] Stark, C., B. J. Breitkreutz, et al. (2011). ”The BioGRID Interaction Database: 2011 update.”
Nucleic Acids Res 39(Database issue): D698-704.

[3] Chen, X., H. Xu, et al. (2008). ”Integration of external signaling pathways with the core transcrip-
tional network in embryonic stem cells.” Cell 133(6): 1106-1117.

[4] Heinz, S., C. Benner, et al. (2010). ”Simple combinations of lineage-determining transcription
factors prime cis-regulatory elements required for macrophage and B cell identities.” Mol Cell
38(4): 576-589.

[5] Gupta, S., J. A. Stamatoyannopoulos, et al. (2007). ”Quantifying similarity between motifs.”
Genome Biol 8(2): R24.

[6] Ho, L., E. L. Miller, et al. (2011). ”esBAF facilitates pluripotency by conditioning the genome for
LIF/STAT3 signalling and by regulating polycomb function.” Nat Cell Biol 13(8): 903-913.

[7] Dai, M., P. Wang, et al. (2005). ”Evolving gene/transcript definitions significantly alter the inter-
pretation of GeneChip data.” Nucleic Acids Res 33(20): e175.

[8] Gautier, L., L. Cope, et al. (2004). ”affy–analysis of Affymetrix GeneChip data at the probe level.”
Bioinformatics 20(3): 307-315.

[9] Jolma, A., Yan, J., Whitington, T., Toivonen, J., Nitta, K. R., Rastas, P., et al. (2013). DNA-
Binding Specificities of Human Transcription Factors. Cell, 152(1-2), 327–339.

16

