Contents

library(dplyr)
library(biotmle)
library(biotmleData)
suppressMessages(library(SummarizedExperiment))
"%ni%" = Negate("%in%")

0.1 Introduction

Here, we briefly work through how to use the biotmle package with data generated by next-generation sequencing technologies, which, in contrast to microarray technologies, produce measurements in the form of discrete counts.


0.2 Simulation: Data Structure

set.seed(6423709)
n <- 50
g <- 2500
cases_pois <- 50
controls_pois <- 10

ngs_cases <- as.data.frame(matrix(replicate(n, rpois(g, cases_pois)), g))
ngs_controls <- as.data.frame(matrix(replicate(n, rpois(g, controls_pois)), g))

ngs_data <- as.data.frame(cbind(ngs_cases, ngs_controls))
exp_var <- c(rep(1, n), rep(0, n))
batch <- rep(1:2, n)
covar <- rep(1, n * 2)
design <- as.data.frame(cbind(exp_var, batch, covar))

head(ngs_data[, 1:7])
##   V1 V2 V3 V4 V5 V6 V7
## 1 69 61 39 46 50 57 43
## 2 42 59 50 54 44 53 54
## 3 41 49 52 54 50 58 34
## 4 30 44 49 44 46 36 61
## 5 50 56 45 44 46 61 58
## 6 61 50 47 53 49 54 67

0.3 Processing: Data Transformation

se <- SummarizedExperiment(assays = list(counts = DataFrame(ngs_data)),
                           colData = DataFrame(design))
se
## class: SummarizedExperiment 
## dim: 2500 100 
## metadata(0):
## assays(1): counts
## rownames: NULL
## rowData names(0):
## colnames(100): V1 V2 ... V49.1 V50.1
## colData names(3): exp_var batch covar

0.4 Analysis: Assessing the Effect of Exposure

rnaseqTMLEout <- biomarkertmle(se = se,
                               varInt = 1,
                               ngscounts = TRUE,
                               parallel = TRUE,
                               family = "gaussian",
                               g_lib = c("SL.mean", "SL.glm",
                                         "SL.randomForest"),
                               Q_lib = c("SL.mean", "SL.glm",
                                         "SL.randomForest", "SL.nnet")
                              )
head(eif(rnaseqTMLEout)$E[, seq_len(6)])
##                [,1]       [,2]      [,3]       [,4]      [,5]       [,6]
## result.1 -329.83655 -212.28070 160.39144   32.96832 -36.05786 -146.77124
## result.2   91.43805 -129.00196 -39.20680  -47.18052  44.29473  -30.83862
## result.3  102.01072 -294.65959 -77.65629 -376.36991 -61.66602 -441.74551
## result.4  323.94443   93.76761  13.80324   93.71017  47.56326  224.33603
## result.5   11.71456 -148.33216  93.43461   47.79556  61.82086 -229.99698
## result.6 -183.73280   -4.00971  45.02578  -53.02987  -4.00971  -69.37162
limmaTMLEout <- modtest_ic(biotmle = rnaseqTMLEout)
head(toptable(limmaTMLEout))
## # A tibble: 6 x 7
##   logFC AveExpr     t P.Value adj.P.Val     B ID         
##   <dbl>   <dbl> <dbl>   <dbl>     <dbl> <dbl> <chr>      
## 1 -57.8   -57.8 -3.29 0.00121     0.930 -4.59 result.673 
## 2 -55.9   -55.9 -3.20 0.00160     0.930 -4.60 result.1091
## 3  62.4    62.4  3.19 0.00168     0.930 -4.60 result.482 
## 4 -59.7   -59.7 -3.10 0.00221     0.930 -4.60 result.1774
## 5 -57.6   -57.6 -3.06 0.00255     0.930 -4.60 result.991 
## 6 -77.2   -77.2 -2.98 0.00327     0.930 -4.60 result.1109

0.5 Results: Data Visualization

plot(x = limmaTMLEout, type = "pvals_adj")

plot(x = limmaTMLEout, type = "pvals_raw")

varInt_index <- which(names(colData(se)) %in% "exp_var")
designVar <- as.data.frame(colData(se))[, varInt_index]
design <- as.numeric(designVar == max(designVar))

heatmap_ic(x = limmaTMLEout,
           row.dendrogram = TRUE,
           clustering.method = "hierarchical",
           design = design, FDRcutoff = 1.0, top = 10)

volcano_ic(biotmle = limmaTMLEout)


0.6 Session Information

## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] SummarizedExperiment_1.14.0 DelayedArray_0.10.0        
##  [3] BiocParallel_1.18.0         matrixStats_0.54.0         
##  [5] Biobase_2.44.0              GenomicRanges_1.36.0       
##  [7] GenomeInfoDb_1.20.0         IRanges_2.18.0             
##  [9] S4Vectors_0.22.0            BiocGenerics_0.30.0        
## [11] biotmleData_1.7.0           biotmle_1.8.0              
## [13] dplyr_0.8.0.1               BiocStyle_2.12.0           
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.1             lattice_0.20-38        listenv_0.7.0         
##  [4] utf8_1.1.4             assertthat_0.2.1       digest_0.6.18         
##  [7] foreach_1.4.4          R6_2.4.0               plyr_1.8.4            
## [10] nnls_1.4               evaluate_0.13          ggplot2_3.1.1         
## [13] pillar_1.3.1           zlibbioc_1.30.0        rlang_0.3.4           
## [16] lazyeval_0.2.2         Matrix_1.2-17          rmarkdown_1.12        
## [19] labeling_0.3           stringr_1.4.0          RCurl_1.95-4.12       
## [22] munsell_0.5.0          compiler_3.6.0         xfun_0.6              
## [25] pkgconfig_2.0.2        superheat_0.1.0        globals_0.12.4        
## [28] htmltools_0.3.6        tidyselect_0.2.5       tibble_2.1.1          
## [31] GenomeInfoDbData_1.2.1 bookdown_0.9           codetools_0.2-16      
## [34] fansi_0.4.0            doFuture_0.8.0         future_1.12.0         
## [37] tmle_1.3.0-2           crayon_1.3.4           MASS_7.3-51.4         
## [40] bitops_1.0-6           grid_3.6.0             gtable_0.3.0          
## [43] magrittr_1.5           scales_1.0.0           cli_1.1.0             
## [46] stringi_1.4.3          XVector_0.24.0         limma_3.40.0          
## [49] ggdendro_0.1-20        ggsci_2.9              iterators_1.0.10      
## [52] tools_3.6.0            glue_1.3.1             purrr_0.3.2           
## [55] yaml_2.2.0             colorspace_1.4-1       SuperLearner_2.0-24   
## [58] BiocManager_1.30.4     knitr_1.22