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Introduction

Transcriptional regulation is undeniably a key aspect of cellular homeostasis. It comes to no surprise that
modern molecular biology and genomics have showed a keen interest in the subject. Transcription factors
(TF) are a force to be reckoned with in the world of transcriptional regulation. Transcription factors are
proteins that bind to DNA in a site-specific manner. Experimentally, this binding site can be determined by
various methods such as SELEX-seq, EMSA or DNAse footprinting. The final result will be a sequence to
which a given TF will bind preferentially. In many case, these results are presented in the form of a Position
Frequency Matrix or Position Weight Matrix. However at a genome wide scale, modern molecular biology
relies on methods such as Chromatin Immuno-precipitation linked to sequencing. This method generates
a genome wide profile with peaks at sites of high TF occupancy. These experiments may be very costly
and it would be interesting to be able to predict TF occupancy sites in silico. With this idea in mind, we
present ChIPanalyser , a R package developed in the effort of understanding Transcription factor binding.
At the core of this package resides an approximation of statistical thermodynamcis as suggested by Zabet
(Zabet et al. 2015). The statistical thermodynamcis framework proposed by Zabet offers a strong ground for
binding site prediction as it requires minimal data input. In its current version, ChIPAnalyser requires a
DNA sequence, a Position Weight Matrix, the number of bound molecules (or TFs bound to DNA) and a
scaling factor for TF specificity. To improve the accuracy of the model, it is also possible to incorporate DNA
accessibility data.

Methods

As described above, ChIPAnalyser is based on an approximation of statistical thermodynamics. The core
formula describing TF binding is given by :

P (N, a, λ, ω)j = N · aj · e( 1
λ ·ωj)

N · aj · e( 1
λ ·ωj) + L · n · [ai · e( 1

λ ·ωj)]i

with

• N , the number of TF molecules bound to DNA
• a , DNA accessibility
• λ , a parameter scaling the specificity of a given TF
• ω , a Position Weight Matrix.

Work Flow - Quick start

Example data Loading

Before going through the inner workings of the package and the work flow, this section will quickly demonstrate
how to load example datasets stored in the package. This data represents a minimal workable examples
for the different functions. All data is derived from real biological data in Drosophila melanogaster (The
Drosophila melanogaster genome can be found as a BSgenome ).
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library(ChIPanalyser)

#Load data
data(ChIPanalyserData)

# Loading DNASequenceSet from BSgenome object

library(BSgenome.Dmelanogaster.UCSC.dm3)

DNASequenceSet <-getSeq(BSgenome.Dmelanogaster.UCSC.dm3)

#Loading Position Frequency Matrix

PFM <- file.path(system.file("extdata",package="ChIPanalyser"),"BCDSlx.pfm")

#Checking if correctly loaded
ls()

## [1] "Access" "DNASequenceSet" "PFM" "eveLocus"
## [5] "eveLocusChip" "geneRef"

The global environment should now contain a few new variables: DNASequenceSet,PFM,Access,geneRef,
eveLocus, eveLocusChip.

• DNASequenceSet is DNAStringSet extracted from the Drosophila melanogaster genome (BSgenome). It
is advised to use a full genome sequence for this object.

• PFM is a path to file. In this case, it is a Position Frequency Matrix derived from the Bicoid Transcription
factor in Drosophila melanogaster. This PFM is in raw format. Although it is possible to to directly
use a PFM R matrix (see motifDB R package), we chose to use a path to a file for this example. Most
PFM’s found online will come in a text file (with various formats: RAW, TRANSFAC, JASPAR).
ChIPanalyser is capable of handling all these formats and parsing these files to usable objects within
the package.

• Access is a GRanges object containing accessible DNA for the sequence above.

• geneRef is a GRanges containing genetic information (exon, intron, 3’UTR, 5’UTR) for the sequence
above.

• eveLocus is a GRanges object with genomic postion for the eve strip locus in Drosophila melanogaster.

• eveLocusChip is a data frame with ChIP score in the format of a simple bed file ( 4 columns :
chromosome, start, end and score) for Bicoid transcription factor.

Quick Start

This section presents a quick work flow. For details on the work flow and objects, see section Work Flow -
Full Guide

Step 1 - Building Data objects and Pre-processing ChIP data

The first step is to set up your data storing objects and extract normalised ChIP scores at loci of interest.
When provided with a PFM, the genomicProfileParameters object will automatically convert it to a
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PWM. The occupancyProfileParameters object requires parameters extracted from ChIP data. If using
the processingChIPseq function, the occupancyProfileParameters will be generated internally.
# Building a genomicProfileParameters objects for data
# storage and PWM computation
GPP <- genomicProfileParameters(PFM=PFM,PFMFormat="raw",

BPFrequency=DNASequenceSet,
ScalingFactorPWM = 1.5,
PWMThreshold = 0.7)

GPP

## Object Class:genomicProfileParameters
##

##
## PWM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## A -0.09520642 -1.0929970 -4.170092 1.761696 1.761696 -5.263560 -9.445015
## C 0.55082162 0.8819112 -4.550984 -9.445015 -9.445015 -9.445015 2.258075
## G 0.63156095 -2.0457025 -9.445015 -4.333846 -4.333846 -3.164873 -9.445015
## T -1.57041086 0.5565425 1.743852 -9.445015 -9.445015 1.735331 -9.445015
## [,8]
## A -4.451342
## C 2.091309
## G -3.573736
## T -1.875062

##
## PFM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## A 190 95 11 689 689 5 0 9
## C 213 268 6 0 0 0 696 620
## G 225 35 0 7 7 16 0 12
## T 68 298 679 0 0 675 0 55

##
## PFMFormat: raw

##
## PWM Scores at Sites higher than Threshold:

## Warning in showList(object, showFunction, print.classinfo = TRUE): Note that starting with BioC 3.7, the class attribute of all
## GRangesList **instances** needs to be set to
## "CompressedGRangesList". Please update this object with
## 'updateObject(object, verbose=TRUE)' and re-serialize it.

## GRangesList object of length 0:
## <0 elements>
##
## -------
## seqinfo: no sequences

##
## No Accessible DNA at Loci:

##

##
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## Genomic Profile Parameters:

## Lambda: 1.5
## BP Frequency: 0.2916399 0.2088135 0.2085611 0.2909855

## Pseudocount: 1
## Natural log: FALSE
## Number Of Sites: 0
## maxPWMScore:
## minPWMScore:
## PWMThreshold: 0.7

## Average Exponential PWM Score:

## DNA Sequence Length:
## Strand Rule: max
## Strand: +-
# Building occupancyProfileParameters with default values
OPP <- occupancyProfileParameters()
OPP

## Object Class:occupancyProfileParameters
##

## Ploidy: 2

## boundMolecules: 1000

## backgroundSignal: 0
## maxSignal: 1
## chipMean: 150
## chipSd: 150
## chipSmooth: 250
## Step Size: 10
# Building occupancyProfileParameters with custom values
OPP <- occupancyProfileParameters(ploidy= 2,

boundMolecules= 1000,
chipMean = 200,
chipSd = 200,
chipSmooth = 250,
maxSignal = 1.847,
backgroundSignal = 0.02550997)

OPP

## Object Class:occupancyProfileParameters
##
## Ploidy: 2

## boundMolecules: 1000

## backgroundSignal: 0.02550997
## maxSignal: 1.847
## chipMean: 200
## chipSd: 200
## chipSmooth: 250
## Step Size: 10
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## Extracting ChIP score
eveLocusChip<-processingChIPseq(eveLocusChip,eveLocus,noiseFilter="zero",cores=1)
str(eveLocusChip)

## List of 2
## $ :List of 1
## ..$ eve: num [1:16000] 0.0108 0.0108 0.0108 0.0108 0.0108 ...
## $ :Formal class 'occupancyProfileParameters' [package "ChIPanalyser"] with 9 slots
## .. ..@ ploidy : num 2
## .. ..@ boundMolecules : num 1000
## .. ..@ backgroundSignal: num 0.0915
## .. ..@ maxSignal : num 1
## .. ..@ chipMean : num 150
## .. ..@ chipSd : num 150
## .. ..@ chipSmooth : num 250
## .. ..@ stepSize : num 10
## .. ..@ removeBackground: num 0
### Extracting occupancy profile parameters object built from ChIP data
OPP<-eveLocusChip[[2]]
eveLocusChip<-eveLocusChip[[1]]

Step 2 - Optimal Parameters

The model is based on the approximation of statistical thermodynamics with inference of two parameters (Scal-
ingFactorPWM and boundMolecules). In order to infer these parameters, we suggest to use computeOptimal.
Values that should be tested for ScalingFactorPWM and for boundMolecules should be provided by user as
described above. If these values are not provided (default value OR only one value for each parameter), then
they will be assigned internally. ChIPanalyser also has multi-core support. If you are using large genomes,
using multiple cores will significantly decrease computational time. The internal values are the following:
ScalingFactorPWM(genomicProfileParameters) <- c(0.25, 0.5, 0.75, 1, 1.25,

1.5, 1.75, 2, 2.5, 3, 3.5 ,4 ,4.5, 5)

boundMolecules(occupancyProfileParameters) <- c(1, 10, 20, 50, 100,
200, 500,1000,2000, 5000,10000,20000,50000, 100000,
200000, 500000, 1000000)

computeOptimalcontains the following arguments:
optimalParam <- suppressWarnings(computeOptimal(DNASequenceSet = DNASequenceSet,

genomicProfileParameters = GPP,
LocusProfile = eveLocusChip,
setSequence = eveLocus,
DNAAccessibility = Access,
occupancyProfileParameters = OPP,
optimalMethod = "all",
peakMethod="moving_kernel",
cores=1))

## Computing Genome Wide PWM Score

## Computing PWM Score at Loci & Extracting Sites Above Threshold

## Single Core PWM Scores Extraction

## Computing Occupancy
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## Computing ChIP-seq-like Profile

## Computing Accuracy of Profile
str(optimalParam)

## List of 3
## $ Optimal Parameters:List of 12
## ..$ pearsonMean : Named chr [1:2] "1" "20000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ spearmanMean : Named chr [1:2] "1.25" "1000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ kendallMean : Named chr [1:2] "1.25" "1000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ MSEMean : Named chr [1:2] "1" "50000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ ksMean : Named chr [1:2] "1.75" "200"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ geometricMean: Named chr [1:2] "1" "20000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ precisionMean: Named chr [1:2] "0.5" "20000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ recallMean : Named chr [1:2] "0.5" "2e+05"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ FscoreMean : Named chr [1:2] "0.5" "20000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ AccuracyMean : Named chr [1:2] "0.5" "20000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ MCCMean : Named chr [1:2] "0.5" "20000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## ..$ AUCMean : Named chr [1:2] "0.5" "20000"
## .. ..- attr(*, "names")= chr [1:2] "ScalingFactor" "BoundMolecules"
## $ Optimal Matrix :List of 12
## ..$ pearsonMean : num [1:14, 1:17] 0.802 0.806 0.805 0.689 0.71 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ spearmanMean : num [1:14, 1:17] 0.632 0.626 0.632 0.658 0.585 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ kendallMean : num [1:14, 1:17] 0.468 0.462 0.465 0.496 0.442 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ MSEMean : num [1:14, 1:17] 1.395 1.522 1.315 0.78 0.855 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ ksMean : num [1:14, 1:17] 0.699 0.713 0.666 0.417 0.518 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ geometricMean: num [1:14, 1:17] 12.17 13.82 11.23 4.71 5.76 ...
## .. ..- attr(*, "dimnames")=List of 2

6



## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ precisionMean: num [1:14, 1:17] 0.384 0.382 0.369 0.346 0.342 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ recallMean : num [1:14, 1:17] 0.787 0.785 0.793 0.794 0.781 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ FscoreMean : num [1:14, 1:17] 0.347 0.345 0.34 0.328 0.323 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ AccuracyMean : num [1:14, 1:17] 0.636 0.636 0.611 0.562 0.557 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ MCCMean : num [1:14, 1:17] 0.29 0.288 0.277 0.241 0.224 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## ..$ AUCMean : num [1:14, 1:17] 0.89 0.889 0.886 0.862 0.84 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:14] "0.25" "0.5" "0.75" "1" ...
## .. .. ..$ : chr [1:17] "1" "10" "20" "50" ...
## $ method : chr "all"

This Function might take some time to compute. Do not be alarmed if it takes some time to
run. You should be notified of the progress of the function as it goes

This function is a combination of all the functions bellow with some more magic to it. In the following steps
we will describe each of the functions.

Step 3 - Genome Wide Scoring

Computing Genome Wide metrics that will be used further down the line. It is possible to set a higher
number of cores to decrease computational time.
genomeWide <- computeGenomeWidePWMScore(DNASequenceSet=DNASequenceSet,

genomicProfileParameters=GPP, DNAAccessibility = Access,cores=1)

## Scoring whole genome

## Accessible DNA ~ Both strands

## Computing Mean waiting time
genomeWide

## Object Class:genomicProfileParameters
##

##
## PWM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## A -0.09520642 -1.0929970 -4.170092 1.761696 1.761696 -5.263560 -9.445015
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## C 0.55082162 0.8819112 -4.550984 -9.445015 -9.445015 -9.445015 2.258075
## G 0.63156095 -2.0457025 -9.445015 -4.333846 -4.333846 -3.164873 -9.445015
## T -1.57041086 0.5565425 1.743852 -9.445015 -9.445015 1.735331 -9.445015
## [,8]
## A -4.451342
## C 2.091309
## G -3.573736
## T -1.875062

##
## PFM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## A 190 95 11 689 689 5 0 9
## C 213 268 6 0 0 0 696 620
## G 225 35 0 7 7 16 0 12
## T 68 298 679 0 0 675 0 55

##
## PFMFormat: raw

##
## PWM Scores at Sites higher than Threshold:

## Warning in showList(object, showFunction, print.classinfo = TRUE): Note that starting with BioC 3.7, the class attribute of all
## GRangesList **instances** needs to be set to
## "CompressedGRangesList". Please update this object with
## 'updateObject(object, verbose=TRUE)' and re-serialize it.

## GRangesList object of length 0:
## <0 elements>
##
## -------
## seqinfo: no sequences

##
## No Accessible DNA at Loci:

##

##
## Genomic Profile Parameters:

## Lambda: 1.5
## BP Frequency: 0.2916399 0.2088135 0.2085611 0.2909855

## Pseudocount: 1
## Natural log: FALSE
## Number Of Sites: 0
## maxPWMScore: 12.8654303345745
## minPWMScore: -49.2286544334621
## PWMThreshold: 0.7

## Average Exponential PWM Score: 0.8457538

## DNA Sequence Length: 3145351
## Strand Rule: max
## Strand: +-

computeGenomeWidePWMScore will return a genomicProfileParameters object with updated values for
maxPWMScore, minPWMScore,averageExpPWMScore, and DNASequenceLength.
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Step 4 - PWM Scores Above Threshold

Once genome wide scores have been computed, the genomeWide object (previously computed) should be
parsed to the next function. The next function will compute sites above the assigned threshold (see below)
for a given locus (or set of loci). If no Locus is provided then the whole genome will be considered. It is
possible to set a higher number of cores to decrease computational time.

** It is important to set names to your setSequence object (see below). We recommend to set names yourself
to make your analysis easier to keep track of. Names will be set internally for computational reasons but
there must be concordance between setSequence and ChIP data **

** This aspect cannot be stressed enough**
SitesAboveThreshold <- computePWMScore(DNASequenceSet=DNASequenceSet,

genomicProfileParameters=genomeWide,
setSequence=eveLocus, DNAAccessibility = Access,cores=1)

## Single Core PWM Scores Extraction
SitesAboveThreshold

## Object Class:genomicProfileParameters
##

##
## PWM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## A -0.09520642 -1.0929970 -4.170092 1.761696 1.761696 -5.263560 -9.445015
## C 0.55082162 0.8819112 -4.550984 -9.445015 -9.445015 -9.445015 2.258075
## G 0.63156095 -2.0457025 -9.445015 -4.333846 -4.333846 -3.164873 -9.445015
## T -1.57041086 0.5565425 1.743852 -9.445015 -9.445015 1.735331 -9.445015
## [,8]
## A -4.451342
## C 2.091309
## G -3.573736
## T -1.875062

##
## PFM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## A 190 95 11 689 689 5 0 9
## C 213 268 6 0 0 0 696 620
## G 225 35 0 7 7 16 0 12
## T 68 298 679 0 0 675 0 55

##
## PFMFormat: raw

##
## PWM Scores at Sites higher than Threshold:

## GRangesList object of length 1:
## $eve
## GRanges object with 420 ranges and 2 metadata columns:
## seqnames ranges strand | PWMScore DNAaffinity
## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## eve chr2R 5860705-5860712 + | -1.84573024098586 1
## eve chr2R 5860709-5860716 + | -4.96148500199546 1
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## eve chr2R 5860715-5860722 + | 8.81832070896316 1
## eve chr2R 5860728-5860735 + | 4.24981127739825 1
## eve chr2R 5860758-5860765 + | -5.25856937621247 1
## ... ... ... ... . ... ...
## eve chr2R 5876629-5876636 + | 5.76325435176529 1
## eve chr2R 5876635-5876642 + | 0.824810948340001 1
## eve chr2R 5876641-5876648 - | -5.0584607351313 1
## eve chr2R 5876666-5876673 + | 1.87745682827728 1
## eve chr2R 5876684-5876691 + | -2.38839005613713 1
##
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

##
## No Accessible DNA at Loci:

## -

##
## Genomic Profile Parameters:

## Lambda: 1.5
## BP Frequency: 0.2916399 0.2088135 0.2085611 0.2909855

## Pseudocount: 1
## Natural log: FALSE
## Number Of Sites: 0
## maxPWMScore: 12.8654303345745
## minPWMScore: -49.2286544334621
## PWMThreshold: 0.7

## Average Exponential PWM Score: 0.8457538

## DNA Sequence Length: 3145351
## Strand Rule: max
## Strand: +-

This function returns another genomicProfileParameters object with an updated AllSitesAboveThreshold
slot. This slot contains a GRanges object with sites above threshold and associated PWMScores.

Step 4 - compute Occupancy

From the PWMScores, ChIPanalyser will compute occupancy for each sites above threshold.
Occupancy <- computeOccupancy(SitesAboveThreshold,

occupancyProfileParameters= OPP)

## Computing Occupancy at sites higher than threshold.
Occupancy

## Object Class:genomicProfileParameters
##

##
## PWM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## A -0.09520642 -1.0929970 -4.170092 1.761696 1.761696 -5.263560 -9.445015
## C 0.55082162 0.8819112 -4.550984 -9.445015 -9.445015 -9.445015 2.258075
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## G 0.63156095 -2.0457025 -9.445015 -4.333846 -4.333846 -3.164873 -9.445015
## T -1.57041086 0.5565425 1.743852 -9.445015 -9.445015 1.735331 -9.445015
## [,8]
## A -4.451342
## C 2.091309
## G -3.573736
## T -1.875062

##
## PFM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## A 190 95 11 689 689 5 0 9
## C 213 268 6 0 0 0 696 620
## G 225 35 0 7 7 16 0 12
## T 68 298 679 0 0 675 0 55

##
## PFMFormat: raw

##
## PWM Scores at Sites higher than Threshold:

## $`lambda = 1.5 & boundMolecules = 1000`
## GRangesList object of length 1:
## $eve
## GRanges object with 420 ranges and 3 metadata columns:
## seqnames ranges strand | PWMScore DNAaffinity
## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## eve chr2R 5860705-5860712 + | -1.84573024098586 1
## eve chr2R 5860709-5860716 + | -4.96148500199546 1
## eve chr2R 5860715-5860722 + | 8.81832070896316 1
## eve chr2R 5860728-5860735 + | 4.24981127739825 1
## eve chr2R 5860758-5860765 + | -5.25856937621247 1
## ... ... ... ... . ... ...
## eve chr2R 5876629-5876636 + | 5.76325435176529 1
## eve chr2R 5876635-5876642 + | 0.824810948340001 1
## eve chr2R 5876641-5876648 - | -5.0584607351313 1
## eve chr2R 5876666-5876673 + | 1.87745682827728 1
## eve chr2R 5876684-5876691 + | -2.38839005613713 1
## Occupancy
## <numeric>
## eve 0.0915185584072193
## eve 0.0914749225700571
## eve 0.148659402751388
## eve 0.0943624008602243
## eve 0.0914737995560999
## ... ...
## eve 0.099361641959952
## eve 0.0917645162456286
## eve 0.0914745312764083
## eve 0.0920652829761032
## eve 0.0915034155828825
##
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
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##
## No Accessible DNA at Loci:

## -

##
## Genomic Profile Parameters:

## Lambda: 1.5
## BP Frequency: 0.2916399 0.2088135 0.2085611 0.2909855

## Pseudocount: 1
## Natural log: FALSE
## Number Of Sites: 0
## maxPWMScore: 12.8654303345745
## minPWMScore: -49.2286544334621
## PWMThreshold: 0.7

## Average Exponential PWM Score: 0.8457538

## DNA Sequence Length: 3145351
## Strand Rule: max
## Strand: +-

This function will return a genomicProfileParameters object with an updated AllSitesAboveThreshold.
Now the Occupancy values for each sites are included.

Step 5 - compute ChIP -seq like profiles

The ultimate goal of ChIPanalyser is to produce ChIP-seq like profile predicting transcription factor binding.
To do so, the following function will compute ChIP-seq like scores from occupancy values.
chipProfile <- computeChipProfile(setSequence = eveLocus,

occupancy = Occupancy,occupancyProfileParameters = OPP,
method="moving_kernel")

## Computing ChIP Profile
chipProfile

## $`lambda = 1.5 & boundMolecules = 1000`
## $`lambda = 1.5 & boundMolecules = 1000`$eve
## GRanges object with 1600 ranges and 1 metadata column:
## seqnames ranges strand | ChIP
## <Rle> <IRanges> <Rle> | <numeric>
## eve chr2R 5860693-5860703 * | 0.0633101738995645
## eve chr2R 5860703-5860713 * | 0.0686501364849457
## eve chr2R 5860713-5860723 * | 0.0741342776797116
## eve chr2R 5860723-5860733 * | 0.0797869804734581
## eve chr2R 5860733-5860743 * | 0.0856333772959523
## ... ... ... ... . ...
## eve chr2R 5876643-5876653 * | 0.0800444269473348
## eve chr2R 5876653-5876663 * | 0.0762385945900301
## eve chr2R 5876663-5876673 * | 0.0723418265102848
## eve chr2R 5876673-5876683 * | 0.0683367973234721
## eve chr2R 5876683-5876693 * | 0.0642057003062555
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
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This function will return aList of GRangesLists of GRanges. Each element of the list represents a combination
of ScalingFactorPWM and boundMolecules. The GRangesList contains the Loci of interest. Finally, the
individual GRanges contains ChIP-seq like scores for every n base pairs (with n = stepSize, see bellow).

This object may be difficult to navigate if many different parameters, or Loci are used. In order to facilitate
navigation, we included a search function. See function: searchSites This function can also be used to
navigate AllSitesAboveThreshold slot after occupancy scores have been computed.

Step 6 - Model Accuracy

Assessing model quality (predicted model against real ChIP-seq data).
AccuracyEstimate <- profileAccuracyEstimate(LocusProfile = eveLocusChip,

predictedProfile = chipProfile, occupancyProfileParameters = OPP,method="all")

## Warning in ks.test(predicted, locusProfile): p-value will be approximate in
## the presence of ties
AccuracyEstimate <-AccuracyEstimate[[1]][[1]][[1]]
AccuracyEstimate

## MSE pearson spearman kendall KsDist
## 0.01091931 0.77735490 0.66616368 0.50456610 0.19500000
## KsPval geometric pearsonMean spearmanMean kendallMean
## 0.00000000 0.90072786 0.77735490 0.66616368 0.50456610
## MSEMean ksMean geometricMean precisionMean recallMean
## 0.47768643 0.19500000 0.90072786 0.35149108 0.79913747
## FscoreMean AccuracyMean MCCMean AUCMean precision
## 0.33277032 0.56294790 0.24380162 0.86504334 0.35149108
## recall f1 accuracy MCC AUC
## 0.79913747 0.33277032 0.56294790 0.24380162 0.86504334

Step 7 - Plotting

Finally, once all has been computed, it is possible to plot the results.
# Plotting Optimal heat maps
par(oma=c(0,0,3,0))
layout(matrix(1:8,ncol=4, byrow=T),width=c(6,1.5,6,1.5),height=c(1,1))
plotOptimalHeatMaps(optimalParam,layout=FALSE)
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# Plotting occupancy Profile
##

plotOccupancyProfile(predictedProfile=chipProfile[[1]][[1]],
setSequence=eveLocus,
chipProfile = eveLocusChip[[1]],
DNAAccessibility = Access,
occupancy = AllSitesAboveThreshold(Occupancy)[[1]][[1]],
profileAccuracy=AccuracyEstimate,
occupancyProfileParameters = OPP,
geneRef=geneRef
)
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DNA Position chr2R 5860693:5876692

O
cc

up
an

cy
Occupancy Profile

5860693 5862471 5864248 5866026 5867804 5869581 5871359 5873137 5874914 5876692

MSE = 0.01092
pearson = 0.7774
spearman = 0.6662
kendall = 0.5046
KsDist = 0.195
KsPval = 0
geometric = 0.9007
pearsonMean = 0.7774
spearmanMean = 0.6662
kendallMean = 0.5046
MSEMean = 0.4777
ksMean = 0.195
geometricMean = 0.9007
precisionMean = 0.3515
recallMean = 0.7991
FscoreMean = 0.3328
AccuracyMean = 0.5629
MCCMean = 0.2438
AUCMean = 0.865
precision = 0.3515
recall = 0.7991
f1 = 0.3328
accuracy = 0.5629
MCC = 0.2438
AUC = 0.865

+

−

eve eve TER94eve TER94eve

Work Flow - Full Guide

This section will describe ChIPanalyser’s work flow. However in this section we will describe in detail data
objects, parameters, and functions. Please refer to this section if in doubt. If the doubt persists, don’t hesitate
to send an email to the maintainer.

Data objects - Genomic Profile Parameters

The very first aspect to consider when using ChIPAnalyser is data input. Many (if not all functions) require
specific data inputs and parameters in order to carry out the computation. To facilitate, the storage of these
parameters, we created a genomicProfileParameters object (S4 class). This is the very first step before any
other work. All other functions rely on this genomicProfileParameters object in one form or another. The
output of most functions will be a genomicProfileParameters object. Thus the output of one functions
should be used as an input for the next functions in the pipeline. All functions are described bellow in section
Work Flow - Analysis.

This object comes in the following form:
genomicProfileParameters(PWM, PFM, ScalingFactorPWM, PFMFormat, pseudocount,

BPFrequency, naturalLog, noOfSites,
minPWMScore, maxPWMScore, PWMThreshold,
AllSitesAboveThreshold, DNASequenceLength,
averageExpPWMScore, strandRule,whichstrand, NoAccess)

To build a genomicProfileParameters object :
# Assign Value wanted for each parameter
GPP <- genomicProfileParameters(PWM, PFM,ScalingFactorPWM, PFMFormat,

pseudocount, BPFrequency, naturalLog, noOfSites,
PWMThreshold, DNASequenceLength,
strandRule, whichstrand)

As one can see, genomicProfileParameters contains many arguments. However many of these arguments al-
ready have default values assigned to them. Some of the arguments should not be set by user. These values are
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computed internally and will automatically updated (minPWMScore, maxPWMScore, AllSitesAboveThresh-
old, NoAccess). In this situation, most arguments are not required to build a genomicProfileParameters
object and a minimal build can be described as:
# return empty genomicProfileParameters object
GPP <- genomicProfileParameters()
# return minimal working object
GPP <- genomicProfileParameters(PFM=PFM,PFMFormat="raw")
# Suggested Minimal Build
GPP <- genomicProfileParameters(PFM=PFM,PFMFormat="raw",
BPFrequency=DNASequenceSet)

Although many parameters have assigned default values, it is recommended to use custom parameters to
better fit the needs of the analysis. The method described above will build a new genomicProfileParameters
object with the values that were assigned to each argument. Only three slots are required in order to build
a genomicProfileParameters object (see below - The compulsory ones).Most other slots are optional.
If after building genomicProfileParameters, you wish to modify the value of only one slot and keep the
values that you had previously assigned, it is possible to modify each slot individually by using the slot
access/setter methods. Each slot and it’s access/setter method is described below.

Position Matricies - The compulsory ones

• PWM , a Position Weight Matrix. If a Position Weight Matrix is readily available it is possible to directly
use this Matrix. This PWM should contain four rows ( one for each base pair; ACTG in order). The
number c olumns will depend on the length of the preferred binding motif of a given Transcription
Factor. This argument is only necessary IF and ONLY IF, no PFM (Position Frequency Matrix) is
available. Choosing between PWM or PFM comes down to personal choice as long a PWM is available for
further computation (see PFM). If a PFM is available (see below), the Position Weight Matrix will be
directly computed from the Position Frequency Matrix. Although it is possible to assign a new PWM
to the genomicProfileParameters object without creating a new object, we suggest that if you were
to decided to use another Position Weight Matrix to create a new genomicProfileParameters.

#Accessing PositionWeightMatrix slot
PositionWeightMatrix(GPP)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## A -0.09520642 -1.0929970 -4.170092 1.761696 1.761696 -5.263560 -9.445015
## C 0.55082162 0.8819112 -4.550984 -9.445015 -9.445015 -9.445015 2.258075
## G 0.63156095 -2.0457025 -9.445015 -4.333846 -4.333846 -3.164873 -9.445015
## T -1.57041086 0.5565425 1.743852 -9.445015 -9.445015 1.735331 -9.445015
## [,8]
## A -4.451342
## C 2.091309
## G -3.573736
## T -1.875062
# Setting PositionWeightMatrix slot
PositionWeightMatrix(GPP) <- newPWM
### This is not the advised method
### newPWM is a matrix following the format described above

• PFM , a Position Frequency Matrix. The Position Frequency Matrix argument may come in multiple forms:
in the form of a Matrix containing four rows (one for each base pair ACTG) and columns depending of
the length of the binding motif or in the form of a path to file linking to a PFM. Position Frequency
Matricies come in various configurations. The most common ones (all supported by ChIPAnalyser)
are RAW (similar to the simple matrix described previously), Transfac and JASPAR. Finally, if the
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binding sequences are available, the PFM will be generated from sequence information. We suggest to
use a path/to/file linking towards the PFM file. Most PFM will come in one of the formats described
above and ChIPanalyser will parse these files in a usable format. However, PLEASE NOTE THAT
THE FORMAT SHOULD BE SPECIFIED. See PFMFormat bellow.

If a PWM is readily available, PFM is not necessary. However, keep in mind that at least one is necessary.
Although it is possible to assign a new PFM to the genomicProfileParameters object without creating a
new object, we suggest that if you were to decided to use another Position Frequency Matrix to create a new
genomicProfileParameters.
# Accessing PositionFrequencyMatrix slot
PositionFrequencyMatrix(GPP)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## A 190 95 11 689 689 5 0 9
## C 213 268 6 0 0 0 696 620
## G 225 35 0 7 7 16 0 12
## T 68 298 679 0 0 675 0 55
# Setting PositionFrequencyMatrix slot
PositionFrequencyMatrix(GPP) <- newPFM

In this situation, newPFM is either a path to file or a PFM matrix. The PFMFormat will be the one assigned
to the genomicProfileParameters object.

At least one of PWM or PFM is required to create a genomicProfileParameters storage object. If a PFM
is provided then the PWM will be automatically computed and updated.

• PFMFormat, a file format for PositionFrequencyMatrix file. When Loading a PFM from a file (as
described above), one should included the format of the file that they are using. PFMFormat may be
one of the following: “raw”,“transfac”,“JASPAR” or “sequences”.

PFMFormat(GPP)

PFMFormat(GPP)<-"raw"

Default is set at “raw”.

All other arguments are optional however we strongly recommend to tailor the values assigned to
genomicProfileParameters to your needs. The following sections will describe these optional parameters.

Genomic Parameters - The optional ones

• ScalingFactorPWM , a scaling factor for TF specificity. Although this parameter is optional (Default
value is set at 1), the scaling factor (or lambda as described in the equations above) is crucial for
many functions (described below). ScalingFactorPWM, must be a positive numeric value or a vector
containing positive numeric values. The optimal value for ScalingFactorPWM may be inferred by using
computeOptimal. Different values for ScalingFactorPWM will influence the goodness of fit of the model.
For more information, see computeOptimal and profileAccuracyEstimate.

ScalingFactorPWM(GPP)

ScalingFactorPWM(GPP) <- 0.5

ScalingFactorPWM(GPP) <- c(0.5, 1, 1.5, 2)

• PWMpseudocount, a probability modifier. When computing a PWM from a PFM, it is possible that certain
base pairs are completely absent from the Position Frequency Matrix. This absence will lead to odd
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results as part of this transformation requires a logarithmic transformation (at Position probability
matrix step - a Matrix that describes the simple probability of a base pair being in that position of a
binding motif given the PFM). zeroes will give minus infinities. In order to overcome this problem,a
PWMpseudocount is introduced in the Position Probability Matrix. a PWMpseudocount of 1 (Default
Value is 1) will then become a 0 after logarithmic transformation thus removing any mathematical
discomforts.

PWMpseudocount(GPP)

PWMpseudocount(GPP) <- 1

• BPFrequency, the frequency at which each base pair will occur in a given organism. Probabilistically
speaking, all base pairs have an equal chance of occurring in the genome (Default value for this slot is set
at 0.25 per base pair). However, biologically speaking this is not the case. BPFrequency may be supplied
in various forms. If base pair frequency is known, it may be supplied as a vector containing the probability
of occurrence of each base pair. If however, this frequency is unknown, genomicProfileParameters
will compute BPFrequency from a BSgenome or a DNAStringSet. Bare in mind that BPFrequency is
used to generate a PWM from a PFM, thus if one were to change the BPFrequency after creating a
genomicProfileParameters with an already computed PWM , this would not influence the value of
the PWM. It would be necessary to rebuild a new genomicProfileParameters object.

BPFrequency(GPP)

BPFrequency(GPP)<-c(0.2900342,0.2101426,0.2099192,0.2899039)

BPFrequency(GPP) <- DNASequenceSet

• naturalLog, a logical value. As described previously (see pseudocount), the transformation from PFM
to PWM requires a logarithmic transformation. The user may choose which logarithmic transformation,
they would rather apply (Default is TRUE). If naturalLog = TRUE, then the natural logarithm will be
used for transformation. If naturalLog = FALSE, then log2 will be used instead. Keep in mind that,
the goal is to avoid any funky business during PFM to PWM transformation (e.g. Minus infinities or
division by zero).

naturalLog(GPP)

naturalLog(GPP) <- FALSE

• noOfSites , the number of sites used to compute the PWM from the PFM. In the event that a PFM contains
a large amount of sites (as it sometimes is the case with Transfac PFM), it is possible to restrict this
number of sites. The default value is 0. When noOfSites = 0, the whole PFM is used to compute the
PWM.

noOfSites(GPP)

noOfSites(GPP) <- 8

• PWMThreshold, a numeric threshold against which PWMScores are selected (Default is 0.7). Although
it is possible to compute every single motif present in a stretch of DNA (if this is of interest, set
PWMThreshold to 0), in most cases, only the sites with a high PWM Score will be of interest. The
PWMThreshold , a numeric value between 0 and 1, will select regions above that given threshold. For
the default threshold of 0.7, only the top 30% of PWMScores will be selected.

PWMThreshold(GPP)

PWMThreshold(GPP) <- 0.7

• strandRule, indicates how the genome should be scored with the PWM (Default is “max”). As DNA
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is double stranded, it is necessary to specify how a strand of DNA should be scored. If strandRule
= "max", both strands will be scored and the highest score between each strand will be selected.
If strandRule = "sum", both strands will be scored and their respective score will be summed. If
strandRule = "mean", both strands will be score and the average score between both strands will
selected as PWM Score. Only three possibilities: “max”, “sum” and “mean”

strandRule(GPP)

strandRule(GPP) <- "mean"

• whichstrand, indicates which strand will be used to score the genome with the PWM (Default is both
strand and is indicated by “+-”). Three options exist: plus strand (“+”), minus strand (“-”) or both
(“+-” or “-+”).

whichstrand(GPP)

whichstrand(GPP) <- "+"

Genomic Parameters - The Updated ones

Some of the slots genomicProfileParameters should not be changed by user. We strongly advise against
changing these slots. Certain Parameters are updated after a certain computation has been carried out. For
example, maxPWMScore and minPWMScore are computed during the computeGenomeWidePWMScore function
(see below) and represent both the highest and the lowest score of the given DNA sequence. These slots will
be updated in the genomicProfileParameters object as one makes its way through the ChIPAnalyser work
flow. Essentially, they are place holders for information required further down the work flow. Only slots that
are of interest for the user are available for visualisation. If these slots have note been updated, the function
will not return any value.

• maxPWMScore, a numeric value describing the highest PWM Score on a given DNA sequence and the
value assigned to lambda. It is still possible to access this slot using:

maxPWMScore(Occupancy)

## [1] 12.86543

• minPWMScore, a numeric value describing the lowest PWM Score on a given DNA sequence and the
value assigned to lambda. It is possible to access this slot using:

minPWMScore(Occupancy)

## [1] -49.22865

• averageExpPWMScore a numeric value representing the exponential of the average PWM Score. This
score depends on the values assigned to lambda. It is possible to access this slot using:

averageExpPWMScore(Occupancy)

## [1] 0.8457538

• DNASequenceLength , a numeric value describing the length of the DNA sequence used. Although
theoretically one could provide this information, DNA length is automatically computed and the slot
updated during computeGenomeWidePWMScore function. The length of this sequence is the length of
the sequence used to compute the scores previously mentioned (maxPWMScore, minPWMScore and
averageExpPWMScore). This means that if DNA accessibility data is provided, the length of the
sequence will only be the length of the accessible DNA.

DNASequenceLength(Occupancy)
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## [1] 3145351

• NoAccess, indicates if certain Loci of interest (see setSequence below) do not contain any accessible
DNA. It is possible that certain of the loci you have chosen do not contain any accessible DNA (no
overlap with DNA accessibility data provided). If this is the case, you will be notified during the
computation and the loci will be s tored in the NoAccess slot.

NoAccess(Occupancy)

## [1] "-"

• AllSitesAboveThreshold, stores all sites above threshold with the associated PWM Score and Oc-
cupancy. This slot may contain a variety of objects however they all represent the same thing: it
will always contain at its core a GRanges object (slot class defined as “GRlist” - can be one of the
following GRangesList or list). This GRanges inlcudes sites above threshold (start, end and strand),
PWMScores for those sites and possibly Occupancy (depending on what has already been computed).
GRanges are encapsulated in a GRangesList as each GRanges represent a specific Loci. This GRanges-
List may also be encapsulated in a list. This list will represent a combination of lambda and number of
bound Molecules (see boundMolecules). For more information on this list see computeOccupancy. It
is possible to access this slot by using:

AllSitesAboveThreshold(Occupancy)

## $`lambda = 1.5 & boundMolecules = 1000`
## GRangesList object of length 1:
## $eve
## GRanges object with 420 ranges and 3 metadata columns:
## seqnames ranges strand | PWMScore DNAaffinity
## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## eve chr2R 5860705-5860712 + | -1.84573024098586 1
## eve chr2R 5860709-5860716 + | -4.96148500199546 1
## eve chr2R 5860715-5860722 + | 8.81832070896316 1
## eve chr2R 5860728-5860735 + | 4.24981127739825 1
## eve chr2R 5860758-5860765 + | -5.25856937621247 1
## ... ... ... ... . ... ...
## eve chr2R 5876629-5876636 + | 5.76325435176529 1
## eve chr2R 5876635-5876642 + | 0.824810948340001 1
## eve chr2R 5876641-5876648 - | -5.0584607351313 1
## eve chr2R 5876666-5876673 + | 1.87745682827728 1
## eve chr2R 5876684-5876691 + | -2.38839005613713 1
## Occupancy
## <numeric>
## eve 0.0915185584072193
## eve 0.0914749225700571
## eve 0.148659402751388
## eve 0.0943624008602243
## eve 0.0914737995560999
## ... ...
## eve 0.099361641959952
## eve 0.0917645162456286
## eve 0.0914745312764083
## eve 0.0920652829761032
## eve 0.0915034155828825
##
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
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# Or

searchSites(Occupancy)

## $`lambda = 1.5 & boundMolecules = 1000`
## GRangesList object of length 1:
## $eve
## GRanges object with 420 ranges and 3 metadata columns:
## seqnames ranges strand | PWMScore DNAaffinity
## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## eve chr2R 5860705-5860712 + | -1.84573024098586 1
## eve chr2R 5860709-5860716 + | -4.96148500199546 1
## eve chr2R 5860715-5860722 + | 8.81832070896316 1
## eve chr2R 5860728-5860735 + | 4.24981127739825 1
## eve chr2R 5860758-5860765 + | -5.25856937621247 1
## ... ... ... ... . ... ...
## eve chr2R 5876629-5876636 + | 5.76325435176529 1
## eve chr2R 5876635-5876642 + | 0.824810948340001 1
## eve chr2R 5876641-5876648 - | -5.0584607351313 1
## eve chr2R 5876666-5876673 + | 1.87745682827728 1
## eve chr2R 5876684-5876691 + | -2.38839005613713 1
## Occupancy
## <numeric>
## eve 0.0915185584072193
## eve 0.0914749225700571
## eve 0.148659402751388
## eve 0.0943624008602243
## eve 0.0914737995560999
## ... ...
## eve 0.099361641959952
## eve 0.0917645162456286
## eve 0.0914745312764083
## eve 0.0920652829761032
## eve 0.0915034155828825
##
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

The size of the AllSitesAboveThreshold slot will increase drastically as the number of values assinged to
ScalingFactorPWM (or lambda) and boundMolecules increases. In order to navigate and search this slot
with ease, it is possible to use the searchSites function (See below: searchSites).

Data Objects - Occupancy Profile Parameters

genomicProfileParameters represents a good chunk of the parameters needed to go through the entire
ChIPAnalyser work flow. However, there are more to come! A second parameter storing object was created
to handle non-compulsory parameters. This lightens genomicProfileParameters by handling part of the
parameters.

This second S4 object is called occupancyProfileParameters. The interesting aspect of this object is that
none of the slots are compulsory. This means that if not provided , a new occupancyProfileParameters
object will be created internally. All default values will be used for further computation.

As stated previously, we strongly advise using custom parameters in order to increase goodness of
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fit of model. The processingChIPseq function returns a list, the second element of which is an
occupancyProfileParameter object. This specific object will contain both max signal and background
directly extracted from you ChIP data. These slots are explained below.

However this function can also take a occupancyProfileParameters object as an argument if you wish
to change the smoothing parameters (see chipSd,chipMean and chipSmooth). The processingChIPseq
function will update the one that is provided.

** See processcingChIPseq below **
OPP <- occupancyProfileParameters(ploidy = 2 ,boundMolecules = 1000 ,

backgroundSignal = 0 ,maxSignal = 1, chipMean = 150 , chipSd = 150 ,
chipSmooth = 250 , stepSize = 10 ,
removeBackground = 0 )

As it is the case with genomicProfileParameters, it is also possible to access/set each slot individually
after having created an occupancyProfileParameters object. Each slot is described as the following:

• ploidy, the ploidy level of the of the organism of interest (Default is set at 2). This only considers
simple polyploidy (or haploidy). The model does not (yet) consider hybrids such as wheat.

ploidy(OPP)
ploidy(OPP) <- 2

• boundMolecules, a positive integer (or vector of positive integers) describing the number of bound
molecules (Transcription factors) to DNA (Default value is set at 2000). In this model, occupancy is
reliant on the number of bound molecules. The number of molecules will influence the goodness of
fit of the model. It is possible to infer the number of bound Molecules by using the computeOptimal
function. For more information, see computeOptimal and profileAccuracyEstimate.

boundMolecules(OPP)
boundMolecules(OPP) <- 5000

• backgroundSignal, a numeric value representing the background Signal in real ChIP-seq data (Default
is set at 0). The background siganl is defined as the mean ChIP score over the entire genome (see
processingChIPseq below).

backgroundSignal(OPP)

backgroundSignal(OPP) <- 0.02550997

• maxSignal, a numeric value representing the maximum signal in real ChIP-seq data (Default is set at
1) See processingChIPseq below)

maxSignal(OPP)

maxSignal(OPP) <- 1.86

• chipMean, a numeric value representing the average peak width in base pairs in real ChIP-seq data
(Default is set at 150).

chipMean(OPP)

chipMean(OPP) <- 150

• chipSd, a numeric value representing the standard deviation of peak width in real ChIP-seq data
(Default is set at 150).

chipSd(OPP)
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chipSd(OPP) <- 150

• chipSmooth, a numeric value representing the size of the window used for smoothing the profile (Default
is set at 250). The goal of ChIPAnalyser is to produce ChIP-seq like profile from predicted high
occupancy sites. In order to mimic these ChIP-seq profile, a smoothing algorithm is used to smooth
occupancy profiles. This algorithm uses ChIP-seq parameters such as chipMean, chipSd, maxSignal,
backgroundSignal and chipSmooth.

chipSmooth(OPP)

chipSmooth(OPP) <- 250

• stepSize, a numeric value describing the bin size (in base pairs) used for computing ChIP-seq like
profiles (Default is set at 10). In the case of long sequences, it not always necessary to include ChIP-like
occupancy at every base pair (mainly for speed and memory usage). stepSize will determine the size
of the bins used to split your sequence of interest. As an example, if your sequence is 16 000 bp long
with a stepSize of 10, the resulting profile will be composed of 1600 occupancy points.

stepSize(OPP)

stepSize(OPP) <- 10

• removeBackground, a numeric value describing a threshold at which Occupancy signals must be removed
(Default is set at 0).

removeBackground(OPP)

removeBackground(OPP) <- 0

Work Flow - Analysis

Once a genomicProfileParameter object has been established, the rest of the analysis becomes fairly straight
forward. Unless, you already have prior knowledge on the number of bound molecules (boundMolecules)
and the PWM scaling factor (ScalingFactorPWM or referred to as lambda), we advise you to first infer
the optimal set of parameters as described in computeOptimal. However, as this function is essentially a
combination of all other functions in the package (with a little bit more magic to it), we will overview a
simple analysis work flow first and finish with computeOptimal function and its associated plotting function
plotOptimalHeatMaps.

ChIP Score extraction.

It can be required to provied ChIP data to some of the functions in ChIPanalyser. We provided a
function that will extract and normalise ChIP data from various formats. Based on this score, an
occupancyProfileParameters will also be builtor updated (see above) with value for the relevant slots (See
backgroundSignal and maxSignal).
processingChIPseq(profile,loci=NULL,reduce=NULL,

occupancyProfileParameters=NULL,noiseFilter="zero",peaks=NULL,
Access=NULL,cores=1)

As input, this functions takes:

• profile a path to file containing ChIP scores (bed,wig,bigBed,. . . ), a GRanges or a data.framecontaining
ChIP scores.
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• loci argument is a GRanges of the loci of interest. If none are supplied, a set of Sequence will be built
internally based on the different chromosome available in ChIP data.

• reduce is a numeric value describing how many regions are to be selected. If a large amount of regions
are supplied (let’s say you split your favourite genome into bins of 20kbp and built a GRanges with
those bins), you may choose to select the top regions based on the average ChIP singal in that region
or if peaks are supplied select the regions overlapping with peaks with the highest ChIP score.

• occupancyProfileParameters is an occupancyProfileParameters object. If you wish to change
smoothing parameters (see chipSd,chipMean and chipSmooth) please provide the aformentioned object.
processingChIPseq will return a updated occupancyProfileParameters.

• peaks is a path to file or GRanges containing ChIP peaks. This argument is generally used if reduce is
not NULL

• Access is a GRanges object containing accesible DNA for a given organism/cell type. If reduce is not
NULL, only regions with accessible DNA will be selected. If peaks is not NULL, regions with peaks
and accessible DNA will be selected.

• noiseFilter is one of the following: zero, mean, median or sigmoid. The noise filter is the method by
which noise is buffered. Zero will remove all score below 0. Mean and median will remove all score
below the mean and median respectively. Finally, sigmoid will assign a weight to each score based on a
logistic regression curve (midpoint = ChIP-seq score 95 quantile). All scores above the midpoint will
receive a weight between 1 and 2. All score below will receive a score between 0 and 1.

• cores is the number of course that should be used to process ChIP data.

Genome Wide Scoring

In order to score the entire genome (or the accessible genome), it is possible to use the computeGenomeWidePWMScore
function. The output of this function will be influenced by the value assigned to lambda. If more than one
value was assigned to the scaling factor, parameters dependant on lambda will be updated accordingly
(computed for each value of lambda). It is possible to run this functions and make use of multiple cores in
order to decrease computational time. The arguments of the function are the following :
computeGenomeWidePWMScore(DNASequenceSet, genomicProfileParameters,

DNAAccessibility = NULL, GenomeWide = TRUE,cores=1, verbose = TRUE)

Input Data - Genome Wide scoring

As input, computeGenomeWidePWMScore requires to obligatory arguments: DNASequenceSet and
genomicProfileParameters. DNASequenceSet comes in the form of the following:
DNASequenceSet

## A DNAStringSet instance of length 15
## width seq names
## [1] 23011544 CGACAATGCACGACAGAGG...ATGAACCCCCCTTTCAAA chr2L
## [2] 21146708 GACCCGCTAGGAGATGTTG...TTTGCATTCTAGGAATTC chr2R
## [3] 24543557 TAGGGAGAAATATGATCGC...AACCAAGTTAATGTTCGG chr3L
## [4] 27905053 GAATTCTCTCTTGTTGTAG...TTCGCATTCTAGGAATTC chr3R
## [5] 1351857 GAATTCGCGTCCGCTTACC...CGATTTGAGATATATGAA chr4
## ... ... ...
## [11] 2555491 AACGAGGCCCATTTCATAC...ATGCCATTCGCTAGAAGT chr3LHet
## [12] 2517507 CCCTGTTTGCATCAGCGTT...TAAAAACAATTTGCTCCC chr3RHet
## [13] 204112 TAGATAGATAGATAGATAG...ATCGGAGTTAATGTTTGC chrXHet
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## [14] 347038 AGGGTCACGTAATGCTGAT...TTGTTTTCCCCGGGATTG chrYHet
## [15] 29004656 ATTGAAAATGGATTGCATT...CAAGACCTTTCAAGACAA chrUextra

DNASequenceSet may also come in the form of a BSgenome object. However, we advise to use a DNAStringSet
for a question of ease and speed. If you are unfamiliar with BSgenome and DNAStringSet, the following
example demonstrates how to use these objects in this context.
#Extracting DNAStringSet from BSgenome

DNASequenceSet <- getSeq(BSgenome.Dmelanogaster.UCSC.dm3)

As a reminder a genomicProfileParameters are presented in the following format:
GPP

## Object Class:genomicProfileParameters
##

##
## PWM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## A -0.09520642 -1.0929970 -4.170092 1.761696 1.761696 -5.263560 -9.445015
## C 0.55082162 0.8819112 -4.550984 -9.445015 -9.445015 -9.445015 2.258075
## G 0.63156095 -2.0457025 -9.445015 -4.333846 -4.333846 -3.164873 -9.445015
## T -1.57041086 0.5565425 1.743852 -9.445015 -9.445015 1.735331 -9.445015
## [,8]
## A -4.451342
## C 2.091309
## G -3.573736
## T -1.875062

##
## PFM:

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## A 190 95 11 689 689 5 0 9
## C 213 268 6 0 0 0 696 620
## G 225 35 0 7 7 16 0 12
## T 68 298 679 0 0 675 0 55

##
## PFMFormat: raw

##
## PWM Scores at Sites higher than Threshold:

## Warning in showList(object, showFunction, print.classinfo = TRUE): Note that starting with BioC 3.7, the class attribute of all
## GRangesList **instances** needs to be set to
## "CompressedGRangesList". Please update this object with
## 'updateObject(object, verbose=TRUE)' and re-serialize it.

## GRangesList object of length 0:
## <0 elements>
##
## -------
## seqinfo: no sequences

##
## No Accessible DNA at Loci:

27



##

##
## Genomic Profile Parameters:

## Lambda: 1
## BP Frequency: 0.2916399 0.2088135 0.2085611 0.2909855

## Pseudocount: 1
## Natural log: FALSE
## Number Of Sites: 0
## maxPWMScore:
## minPWMScore:
## PWMThreshold: 0.7

## Average Exponential PWM Score:

## DNA Sequence Length:
## Strand Rule: max
## Strand: +-

DNAAccessibility is an optional argument in computeGenomeWidePWMScore. If present, then the genome
will be scored only on the accessible DNA. DNAAccessibility comes as a GRanges containing accessible
DNA sites.
# DNA accessibility
Access

## GRanges object with 4703 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] chr2R 7339296-7342564 *
## [2] chr2R 9436993-9437589 *
## [3] chr2R 15728083-15728687 *
## [4] chr2R 4980200-4980845 *
## [5] chr2R 6028863-6029419 *
## ... ... ... ...
## [4699] chr2R 21120053-21120400 *
## [4700] chr2R 21140572-21140980 *
## [4701] chr2R 21143160-21143517 *
## [4702] chr2R 21144932-21145281 *
## [4703] chr2R 21145564-21146702 *
## -------
## seqinfo: 6 sequences from an unspecified genome; no seqlengths

verbose will determine if progress messages should be printed in the console and cores will determine the
number of cores that will be used to compute genome wide metrics.

computeGenomeWidePWMScore

As an example of computeGenomeWidePWMScore usage:
# With DNAAccessibility

GenomeWide <- computeGenomeWidePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP, DNAAccessibility = Access,cores=1)

GenomeWide
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# Without DNA accessibility

GenomeWide <- computeGenomeWidePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GPP,cores=1)

GenomeWide

Scoring sites above threshold

Once genome wide metrics have been computed, the next step in the analysis is to extract sites above
threshold (Sites with strong binding sites according to PWM Scores). The computePWMScore function will
score the genome and extract sites above a local threshold (dependant on PWMThreshold, maxPWMScore
and minPWMScore). It is possible to run this functions and make use of multiple cores in order to decrease
computational time. The arguments of this functions are the following:
computePWMScore(DNASequenceSet, genomicProfileParameter,

setSequence = NULL, DNAAccessibility = NULL, cores=1 ,verbose = TRUE)

Input Data - Sites Above threshold

Only two arguments are absolutely required: DNASequenceSet and genomicProfileParameters. However,
setSequence represents the Loci of interest. If setSequence = NULL, then sites above threshold will
computed and extracted on a genome wide scale (or accessible genome if DNA Accessibility is provided).
DNASequenceSet and DNAAccessibility are in the same format as previously described (verbose plays the
same role as previously described). setSequence is a GRanges representing the loci of interest (may contain
more than one loci/range) and comes in the following format:
eveLocus

## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## eve chr2R 5860693-5876692 *
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

An important aspect to mention, is that it is recommended you name your loci of interest (not to be confused
with seqnames). If no names are supplied they will be named internally following the format:

• ChromosomeName_startOfRange..endOfRange

If you are unfamiliar with GRanges, the following examples demonstrates naming in the context of ChIP-
Analyser. We recommend getting acquainted with GenomicRanges as many aspect of ChIPanalyser require
the use of GRanges.
# Sequence names of Loci
seqnames(eveLocus)

## factor-Rle of length 1 with 1 run
## Lengths: 1
## Values : chr2R
## Levels(1): chr2R
# Names of Loci

names(eveLocus)
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## [1] "eve"
# Naming Loci in GRanges
names(eveLocus) <- "eve"

computePWMScore

To compute PWM Scores at sites above threshold:
# With DNA Accessibility

PWMScores <- computePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GenomeWide,
setSequence = eveLocus, DNAAccessibility = Access,cores=1)

PWMScores

# Without DNA Accessibility

PWMScores <- computePWMScore(DNASequenceSet = DNASequenceSet,
genomicProfileParameters = GenomeWide,
setSequence = eveLocus,cores=1)

PWMScores

As you can see, the genomicProfileParameters argument is the genomicProfileParameters object com-
puted in the previous example. ChIPAnalyser works in a sequential manner: resulting objects from one
function are often parsed as arguments to other functions. Finally, if your sequence of interest does not contain
any accessible DNA, you will be notified during the computation and it is possible to extract inaccessible loci
by using NoAccess(PWMScores) (See NoAccess slot in genomicProfileParameters).

Occupancy

Occupancy scores are computed using the formula described in Methods. It is worth mentioning that
Occupancy scores are dependant on values assigned to ScalingFactorPWM and boundMolecules. If more
than one value were to be assigned to these parameters, the resulting output will be a combination of both.
For more information see the computeOptimal example as we will demonstrate multiple value computation
(Single Value for lambda and boundMolecules will return an object identical in structure as with multiple
values). The arguments for computeOccupancy are the following:
computeOccupancy(AllSitesPWMScore, occupancyProfileParameters = NULL,

norm = TRUE,verbose = TRUE)

Input Data - Occupancy

computeOccupancy requires a genomicProfileParameters object result of the previous function
(computePWMScore). If you are unsure, if your genomicProfileParameter contains the right information, it
is possible to check by using:
AllSitesAboveThreshold(PWMScores)

If your GRanges does not contain PWMScore as a metadata column, you are either using the wrong object
or you have not yet computed PWM Scores.

occupancyProfileParameters is an occupancyProfileParameters object. If not provided, a new one will
be generated internally. As previously mentioned, we strongly recommend to set those parameters to improve
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the model’s goodness of it. As a reminder, a occupancyProfileParameters object (previously created - see
section Data object - Occupancy profile Parameters) should print on the screen as follows:
OPP

## Object Class:occupancyProfileParameters
##

## Ploidy: 2

## boundMolecules: 1000

## backgroundSignal: 0.0914686723280862
## maxSignal: 1
## chipMean: 150
## chipSd: 150
## chipSmooth: 250
## Step Size: 10

Finally, if norm = TRUE, the occupancy profiles will be normalised and verbose = TRUE progress messages
will be printed to the console.

computeOccupancy

To compute Occupancy scores with computeOccupancy:
Occupancy <- computeOccupancy(AllSitesPWMScore = PWMScores,

occupancyProfileParameters = OPP)
Occupancy

As it is the case in the previous functions, AllSitesPWMScore should be the result of the previous function
(computePWMScore). computeOccupancy will return a genomicProfileParameters object with an updated
AllSitesAboveThreshold slot. This slot should now contain a list of GRangesLists containing GRanges
(one for each Loci of interest) with two metadata columns (PWMScore and Occupancy). Each element in
the list is named with the specific combination of lambda and boundMolecules used to compute this set of
occupancies. Finally, if your sequence of interest does not contain any accessible DNA, you will be notified
during the computation and it is possible to extract inaccessible loci by using NoAccess(PWMScores) (See
NoAccess slot in genomicProfileParameters).

ChIP-seq like profiles

The ultimate goal of ChIPAnalyser is to produce ChIP-seq like profile from occupancy data (from sites that
display a high TF occupancy). computeChipProfile creates ChIP-seq like profiles from occupancy data by
smoothing occupancy profiles and mimicking real ChIP-seq data. It is possible to run this functions and
make use of multiple cores in order to decrease computational time. The arguments of computeChipProfile
are the following:
computeChipProfile( setSequence ,

occupancy, occupancyProfileParameters = NULL, norm = TRUE,
method = c("moving_kernel","truncated_kernel","exact"),
peakSignificantThreshold= NULL,cores=1
verbose = TRUE)
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Input data - ChIP-seq profiles

The computeChipProfile function requires two compulsory arguments setSequence and occupancy.
setSequence is a GRanges describing the loci of interest (this is the same GRanges used in computePWMScore).
occupancy is a genomicProfileParameters object result of computeOccupancy function. To make sure this is
the right genomicProfileParameters, you may use AllSitesAboveThreshold() (See AllSitesAboveThresh-
old slot description above). occupancyProfileParameters is an occupancyProfileParameters object. If
not supplied, it will be generated de novo internally. Once again, we recommend to set the parameters of
this object in relationship to real ChIP-seq data. norm = TRUE and method respectively represent if the
ChIP-seq like profile should be normalised and if you wish to use an approximation for ChIP-seq profile
or not. moving_kernel will use Rcpp to approximate and compute peaks, truncated_kernel will also
approximate peaks but without using Rcpp, and exact will not approximate peaks. These methods represent
different way of computing and/or approximating ChIP-seq peaks. Finally, peakSignificantThreshold
is a threshold at which peaks will be selected. If you select “moving_kernel” then this threshold is a
numeric value describing the peak tail hight cut-off value. The default in this case is 0.001. In the case of
“truncated_kernel” and “exact”, the threshold represents a distance in base pair from the peak summit at
which the peak should be cut. In this case, default is set at 1250 base pairs.

It should be noted that these methods will produce very similar results. And by very similar results, we mean
nearly identical.

computeChipProfile

To generate a ChIP-seq like profile:
chipProfile <- computeChipProfile(setSequence = eveLocus,

occupancy = Occupancy,occupancyProfileParameters = OPP,cores=1)
chipProfile

The output of this functions is slightly different as it returns a named list (each element in the list is named
after the specific combination of lambda and boundMolecules used to compute occupancies) containing a
GRangesList of GRanges with ChIP profile values as a metadata column. These GRanges also differ in
the sense that they now contain the whole loci (or accessible loci) cut into bins of size equal to stepSize
(See stepSize slot in occupancyProfileParameters). Each GRangesList contains GRanges for each Loci of
interest.

Searching through SitesAboveThreshold and ChIP-seq profiles

As described previously, The size of the AllSitesAboveThreshold slot will increase drastically as the number
of values assigned to ScalingFactorPWM (or lambda) and boundMolecules increases. In order to navigate
and search this slot with ease, it is possible to use the searchSites function. This function may also be used
on predicted ChIP-seq profiles (result of computeChipProfile). searchSites comes in the following form:
searchSites(Sites,ScalingFactor="all", BoundMolecules="all",Locus="all")

It is possible to use this function as a simple extraction method similarly to the AllSitesAboveThreshold
method. In this case, the usage is the following:
searchSites(Occupancy)

## $`lambda = 1.5 & boundMolecules = 1000`
## GRangesList object of length 1:
## $eve
## GRanges object with 420 ranges and 3 metadata columns:
## seqnames ranges strand | PWMScore DNAaffinity
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## <Rle> <IRanges> <Rle> | <numeric> <numeric>
## eve chr2R 5860705-5860712 + | -1.84573024098586 1
## eve chr2R 5860709-5860716 + | -4.96148500199546 1
## eve chr2R 5860715-5860722 + | 8.81832070896316 1
## eve chr2R 5860728-5860735 + | 4.24981127739825 1
## eve chr2R 5860758-5860765 + | -5.25856937621247 1
## ... ... ... ... . ... ...
## eve chr2R 5876629-5876636 + | 5.76325435176529 1
## eve chr2R 5876635-5876642 + | 0.824810948340001 1
## eve chr2R 5876641-5876648 - | -5.0584607351313 1
## eve chr2R 5876666-5876673 + | 1.87745682827728 1
## eve chr2R 5876684-5876691 + | -2.38839005613713 1
## Occupancy
## <numeric>
## eve 0.0915185584072193
## eve 0.0914749225700571
## eve 0.148659402751388
## eve 0.0943624008602243
## eve 0.0914737995560999
## ... ...
## eve 0.099361641959952
## eve 0.0917645162456286
## eve 0.0914745312764083
## eve 0.0920652829761032
## eve 0.0915034155828825
##
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

If you wish to navigate and extract only certain combinations of ScalingFactorPWM and/or boundMolecules
and/or Loci, searchSites could be use as shown below:
searchSites(chipProfile, ScalingFactor=c(1.5,2.5), BoundMolecules=c(1000,1500)

,Locus=c("eve","odd"))

## $`lambda = 1.5 & boundMolecules = 1000`
## $`lambda = 1.5 & boundMolecules = 1000`$eve
## GRanges object with 1600 ranges and 1 metadata column:
## seqnames ranges strand | ChIP
## <Rle> <IRanges> <Rle> | <numeric>
## eve chr2R 5860693-5860703 * | 0.0633101738995645
## eve chr2R 5860703-5860713 * | 0.0686501364849457
## eve chr2R 5860713-5860723 * | 0.0741342776797116
## eve chr2R 5860723-5860733 * | 0.0797869804734581
## eve chr2R 5860733-5860743 * | 0.0856333772959523
## ... ... ... ... . ...
## eve chr2R 5876643-5876653 * | 0.0800444269473348
## eve chr2R 5876653-5876663 * | 0.0762385945900301
## eve chr2R 5876663-5876673 * | 0.0723418265102848
## eve chr2R 5876673-5876683 * | 0.0683367973234721
## eve chr2R 5876683-5876693 * | 0.0642057003062555
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
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Estimating the accuracy of the model

In order to determine how accurate the predicted model is, it is possible to compare the predicted ChIP-seq
like profile (as built in computeChipProfile) to real ChIP-seq data for a given Transcription Factors at loci
of interest. profileAccuracyEstimate provides a way to compare both profiles. The arguments for this
function are the following:
profileAccuracyEstimate(LocusProfile,

predictedProfile, occupancyProfileParameters = NULL,method="all")

Input data - Accuracy Estimate

profileAccuracyEstimate requires only two arguments. precitedProfile is the result of computeChipProfile.
Finally, LocusProfile is a list containing actual ChIP-seq profiles. This list is the result of the
processingChIPseq function.

We also strongly recommend that each loci in LocusProfile (each element of the list) should be named in
an identical manner as the loci used in setSequence (See previous functions). This list should come in the
following format:
str(eveLocusChip)

## List of 1
## $ eve: num [1:16000] 0.0108 0.0108 0.0108 0.0108 0.0108 ...

In this example, there is only one element in the list. However, this list can be as long as you wish and
contain all the Loci that you are interested in.

occupancyProfileParameters is only required if you have change the step size slot. Each predicted profile,
will only contain a fraction of the score (see stepSize)

Finally, method is the quality assessment method that you wish to use. The following possibilities are available:
pearson, spearman, kendall, ks, geometric,fscore and all. pearson,spearman and kendall are correlation
methods. ks is a Kolmogorov-Smirnov test (Will return both KS Distance and KS p-value) geometric is in
an house metric that describes the ratio of difference in the area between curves over shared area between
curves. fscore is a combination of multiple metrics such as Precision,recall,Fscore,Accuracy,MCC, and AUC.
all is a combination of all the above mentioned.

In every case, the Mean Squared Error will also be returned.

profileAccuracyEstimate

To test the accuracy the model against ChIP-seq data:
AccuracyEstimate <- profileAccuracyEstimate(LocusProfile = eveLocusChip,

predictedProfile = chipProfile, occupancyProfileParameters = OPP)
AccuracyEstimate

This function returns a list of two elements. The first element represents lists containing the model quality
assessments for every combination of parameters (Bound Molecules and lambda) for every genomic region.
The second element of the list contains the result of the ROCR package: False positives, False Negative,
etc. . .

Generally Speaking, we recommend to only use the first element of this list. However, we offer the possibility
to choose from the other metrics available in the ROCR package by returning the ROCR prediction object.
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Finding optimal Parameters

As described previously, it is not always possible to know the optimal set of parameters for ScalingFactorPWM
and boundMolecules. ChIPAnalyser offers the possibility to backward infer the parameters using the
computeOptimal function. By testing different combinations of ScalingFactorPWM and boundMolecules,
the computeOptimal function will return a list of values that were the highest ranking parameter combination
for each model quality assessment method selected (seeprofileAccuracyEstimate above). This function
will also return a list of matricies containing relevant scores for each combination. It is possible to run this
functions and make use of multiple cores in order to decrease computational time. Values that should be
tested for ScalingFactorPWM and for boundMolecules should be provided by user. If these values are not
provided (default value and only one value for each parameter), then they will be assigned internally. The
internal values are the following:
ScalingFactorPWM(genomicProfileParameters) <- c(0.25, 0.5, 0.75, 1, 1.25,

1.5, 1.75, 2, 2.5, 3, 3.5 ,4 ,4.5, 5)

boundMolecules(occupancyProfileParameters) <- c(1, 10, 20, 50, 100,
200, 500,1000,2000, 5000,10000,20000,50000, 100000,
200000, 500000, 1000000)

In terms of its arguments,computeOptimal can be described as:
computeOptimal(DNASequenceSet,

genomicProfileParameters,
LocusProfile,
setSequence,
DNAAccessibility = NULL,
occupancyProfileParameters = NULL,
optimalMethod = "all",
peakMethod="moving_kernel"
cores=1)

Please note that this functions will take some time to complete. Do not be alarmed if it seems
to have stalled.

Input Data - Optimal Parameters

computeOptimal is essentially a combination of previous functions (with a bit more magic to it). For this
reason, data input in extremely similar to the functions described above. As a quick reminder:

• DNASequenceSet, a DNAStringSet (or BSgenome) containing the sequences of the organism of interest.
• genomicProfileParameters, a genomicProfileParameters object containing at least a Position

Weight Matrix or Position Frequency Matrix. All other slots will be computed internally.
• LocusProfile, a named list of ChIP-seq profile for loci of interest.
• setSequence, a named GRanges containing loci of interest.
• DNAAccessibility, a GRanges containing Accessible DNA.
• occupancyProfileParameters, an occupancyProfileParameters object. Although optional, we

strongly advise to tailor this object by using values directly extracted from LocusProfile

optimalMethod defines which metric you wish to compute. There are four possible choices: pearson, spearman,
kendall, ks, geometric, fscore or all It is imperative that the lists/GRanges are named with the name of
the Loci of interest. peakMethoddescribes if you wish to use an approximation for ChIP-seq profile peaks.
moving_kernel will use Rcpp to approximate and compute peaks, truncated_kernel will also approximate
peaks but without using Rcpp, and exact will not approximate peaks. These methods represent different
way of computing and/or approximating ChIP-seq peaks.
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Finally, cores describes the number of cores that will be used to compute the optimal set of parameters.

computeOptimal

As a example describing the usage of compute optimal
optimalParam <- computeOptimal(DNASequenceSet = DNASequenceSet,

genomicProfileParameters = GPP,
LocusProfile = eveLocusChip,
setSequence = eveLocus,
DNAAccessibility = Access,
occupancyProfileParameters = OPP,
optimalMethod = "all",
cores=1)

optimalParam

The computeOptimal function will return a list of values that were the highest ranking parameter combination
for each model quality assessment method selected (seeprofileAccuracyEstimate above). This function
will also return a list of matricies containing relevant scores for each combination.

Plotting Results

As it is the case in mamy fields, data visualisation is a key aspect in any analysis. For this purpose,
ChIPAnalyser offers two plotting functions: plotOptimalHeatMaps and plotOccupancyProfile.

Optimal Parameters

Once you have computed the optimal set of parameters, it is possible to plot these results in the form of a
heat map using plotOptimalHeatMaps. Depending on what you are interested in, this function will either
plot correlation ,MSE, theta or all of the previous. This functions requires minimal input as described below:
plotOptimalHeatMaps(optimalParam=optimalParam,contour=TRUE,col=NULL,main=NULL,

layout=TRUE)

Input Data & Plotting

plotOptimalHeatMaps only requires one data input in the form of the result of computeOptimal (see
computeOptimal). contour defines if contour lines should be plotted. col are the colors that you wish to
use for your heatmaps. It should be noted that the color vector will be recycled if not enough colors are
provided. main is the main title. Finally, layout is a logical value that defines if standard layout should be
selected. Standard layout will generate an individual heatmap for each matrix provided (computeOptimal
result) with a heat map scale bar on the left.

NOTE: If you use your own layout, you should be aware that the plotOptimalHeatMaps will always plot
both the heat map and the scale bar. In R this is considered as two plots (rasterImage scales).

As an example:
plotOptimalHeatMaps(optimalParam)

See plot in Quick Guide

The boxed tile represents the highest correlation or theta for a given combination of ScalingFactorPWM and
boundMolecules. In the case of MSE the boxed tile represents the lowest Mean Squared Error.
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Plotting Profiles

ChIPAnalyser produces ChIP-seq like profiles. It is possible to plot these profiles but also to add a variety of
features to these plots as well graphical parameter parsing. plotOccupancyProfile takes care of plotting
with the following arguments:
plotOccupancyProfile <- function(predictedProfile,

setSequence,
chipProfile = NULL,
DNAAccessibility = NULL,
occupancy = NULL,
profileAccuracy=NULL,
PWM=FALSE,
occupancyProfileParameters = NULL,
geneRef = NULL,axis=TRUE,...)

Input Data & Profiles

In order to increase plotting flexibility, plotOccupancyProfile only plots one profile at a time. In practice,
this means that only simple data units should be parsed to this functions. This also means that the main
title is left to the user discretion. The arguments described above should come in the following format:

• precitedProfile, a GRanges object containing the predicted ChIP-seq like profile for one locus and
one combination of lambda and boundMolecules.

• setSequence, a GRanges object containing the locus of interest.
• profileAccuracy, the profile Accuracy estimate for one loci and for one combination of lambda and

boundMolecules
• chipProfile, a vector containing ChIP-seq data for locus of interest. In previous functions, ChIP-seq

data was stored in a named list. In this case, it is the individual numeric vector contained within that
list.

• occupancy, a GRanges object containing both PWMScore and Occupancy. This GRanges is the result
of computeOccupancy and should only contain a GRanges object for one locus and one combination of
lambda and boundMolecules.

• PWM, a logical operator indicating wherever you wish to plot occupancy or PWMScores. It is necessary
to also include occupancy data.

• DNAAccessibility, a GRanges object containing DNAAccessibility. DNAAccessibility is similar to
DNAAccessibility data described previously.

• occupancyProfileParameters, an occupancyProfileParameters object. This object should be the
same as the one used in functions described above. However, the minimal requirement is that the
stepSize slot remains consistent with stepSize used previously. As a reminder, stepSize default value
is set at 10.

• geneRef, a List containing genetic information (3’UTR, 5’UTR, exons, intron and enhancers). Each
element of this list, is a GRanges containing the information regarding 3’UTR, 5’UTR, exons, intron
and enhancers.

• axis determine if the axes should be included
• ... Any other graphical Parameter of the following : col, density, border, lty, lwd, cex, cex.axis, xlab,

ylab, xlim, ylim, las and axislables.

As this object has not yet be described, geneRef should come in a similar format as the following:
geneRef

## GRanges object with 7 ranges and 2 metadata columns:
## seqnames ranges strand | type ID
## <Rle> <IRanges> <Rle> | <character> <character>
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## [1] chr2R 5866746-5867058 + | exon eve
## [2] chr2R 5866746-5866919 + | five_prime_UTR eve
## [3] chr2R 5867059-5867129 + | intron eve
## [4] chr2R 5867130-5868284 + | exon eve
## [5] chr2R 5868122-5868284 + | three_prime_UTR eve
## [6] chr2R 5876666-5876808 + | exon TER94
## [7] chr2R 5876666-5876791 + | five_prime_UTR TER94
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths

It should be noted that only two arguments are necessary (predictedProfile and setSequence). The more
arguments are provided the more information will be plotted. As an example:
plotOccupancyProfile(predictedProfile=chipProfile[[1]][[1]],

setSequence=eveLocus,
chipProfile = eveLocusChip[[1]],
DNAAccessibility = Access,
occupancy = AllSitesAboveThreshold(Occupancy)[[1]][[1]],
occupancyProfileParameters = OPP,
geneRef =geneRef)

Session Information

sessionInfo()

## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] BSgenome.Dmelanogaster.UCSC.dm3_1.4.0
## [2] ChIPanalyser_1.6.0
## [3] RcppRoll_0.3.0
## [4] BSgenome_1.52.0
## [5] rtracklayer_1.44.0
## [6] Biostrings_2.52.0
## [7] XVector_0.24.0
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## [8] GenomicRanges_1.36.0
## [9] GenomeInfoDb_1.20.0
## [10] IRanges_2.18.0
## [11] S4Vectors_0.22.0
## [12] BiocGenerics_0.30.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.1 compiler_3.6.0
## [3] BiocManager_1.30.4 bitops_1.0-6
## [5] tools_3.6.0 zlibbioc_1.30.0
## [7] digest_0.6.18 evaluate_0.13
## [9] lattice_0.20-38 Matrix_1.2-17
## [11] DelayedArray_0.10.0 yaml_2.2.0
## [13] xfun_0.6 GenomeInfoDbData_1.2.1
## [15] stringr_1.4.0 knitr_1.22
## [17] caTools_1.17.1.2 gtools_3.8.1
## [19] grid_3.6.0 Biobase_2.44.0
## [21] XML_3.98-1.19 BiocParallel_1.18.0
## [23] rmarkdown_1.12 gdata_2.18.0
## [25] ROCR_1.0-7 magrittr_1.5
## [27] Rsamtools_2.0.0 gplots_3.0.1.1
## [29] htmltools_0.3.6 matrixStats_0.54.0
## [31] GenomicAlignments_1.20.0 SummarizedExperiment_1.14.0
## [33] KernSmooth_2.23-15 stringi_1.4.3
## [35] RCurl_1.95-4.12
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