Overview of Causal Reasoning with CausalR: Hypothesis Scoring and P-value Calculation

Steven J Barrett, Glyn Bradley

May 2, 2019

Contents

1	Inti	roduction	3			
2	2 Loading Input Network and Experimental Data					
3	Cor	mputing Score: Multiple Causal Hypotheses	9			
4	Cor	nputing Score: Specific Causal Hypothesis	10			
	4.1	Hypothesis-specific CCGs	12			
5	Sco	ring	13			
	5.1	Example Causal hypothesis to be Scored	14			
	5.2	Network Predictions based upon Hypothesis Node0+	14			
	5.3	Scoring Calculation	14			
6	$\mathbf{H}\mathbf{y}_{\mathbf{j}}$	pothesis Score Significance Calculation	15			
	6.1	Calculation of p-value	15			
	6.2	Calculation of Enrichment p-value	16			
	6.3	Efficiency and Accuracy of Significance Calculation	17			
7	Seq	uential Causal Analysis of Networks (SCAN)	19			
8		ualising the Network of Nodes explained by a Specific pothesis	24			
	٠.	Indirect Individual Hypothesis Network Generation	24			

	8.2	Indirect Network Generation for All Hypotheses found Common across SCAN Deltas	25
	8.3	Direct Network Generation for All Hypotheses found Common across SCAN Deltas	26
9	\mathbf{Ad}	ditional Usability Features	27
	9.1	Automated File Naming	27
	9.2	Output Suppression, Re-direction and Quiet Mode	27
	9.3	Operating Systems	28
	9.4	Parallelisation	28
	9.5	Network Filtering	28
\mathbf{A}	ppen	dices	30
	A	Command Sequence Listing for Examples	30
	В	Speeding-up CausalR Processing	34

1 Introduction

CausalR provides causal reasoning (causal network analysis) methods for the Bioconductor project, enabling the prediction of regulators of sets of observed endpoints (e.g. genome scale expression measurements) by integration with prior knowledge in the form of a causal interaction network. Predicted regulators (hypotheses) are assigned a score reflecting their fit with the input differiential experimental data. Two levels of signmificance are computed for each hypothesis.

Table 1 is an example of the ranked hypotheses output of *CausalR*, produced by executing functions CreateCCG(), ReadExperimentalData() then RankTheHypotheses() on the example causal network and experimental data used in the following text.

Node	Regulation	Score	Correct	Incorrect	Ambiguous	p-value	Enrichment
							p-value
Node0	1	4	5	1	1	0.114	1
Node1	1	3	3	0	0	0.121	1
Node3	1	1	1	0	0	0.500	0.875
Node5	-1	1	1	0	0	0.375	0.875
Node6	-1	1	1	0	0	0.375	0.875
Node7	-1	1	1	0	0	0.375	0.875
Node2	1	0	2	2	0	0.629	0.5
Node4	1	0	0	0	0	0.625	1
Node2	-1	0	2	2	0	0.543	0.5
Node4	-1	0	0	0	0	0.500	1
Node5	1	-1	0	1	0	1	0.875
Node6	1	-1	0	1	0	1	0.875
Node7	1	-1	0	1	0	1	0.875
Node3	-1	-1	0	1	0	1	0.875
Node1	-1	-3	0	3	0	0.957	1
Node0	-1	-4	1	5	1	0.971	1

Table 1: CausalR delta=2 output for example inputs.

Reconstruction of regulatory networks from either newly predicted of previous known regulators of the input experimental data is facilitated, outputting .sif network and annotation files for visualisation in Cytposcape.

The *SCAN* (Sequential Causal Analysis of Netwroks) methodology of limited false positives in the prediction of regulators is also provided. For further background on methodological details, suggested analysis approaches and an actual biological causal network, see Bradley and Barrett [submitted].

The following tutorial text provides a step-by-step series of examples on using *CausalR*, together with further descriptive explanation of what is happening at each stage. For convenience, the complete set of commands, with details of further functionality, are listed in Appendix A in the form of an R script.

2 Loading Input Network and Experimental Data

After starting the R environment (either the standard R console or via an IDE such as *Rstudio*, *http://www.rstudio.com*), and setting the working directory to an appropriate location for accessing input files, proceed to loading the *CausalR* library,

```
library(CausalR)
```

The loading of the main package also performs

```
library(igraph)
```

since *igraph* contains network analysis functionality required by CausalR.

These triples represent the network to be used in the example processing,

NodeO Activates Node1 Node0 Node2 Inhibits Node1 Activates Node3 Node1 Activates Node4 Node1 Inhibits Node5 Node2 Inhibits Node5 Node2 Activates Node6 Node2 Activates Node7

Each line triple represents a directed edge in the input network of Figure 1.

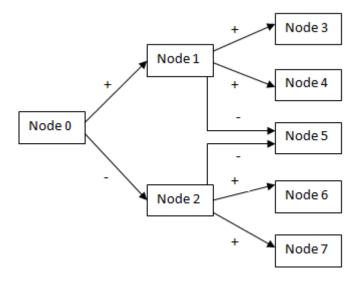
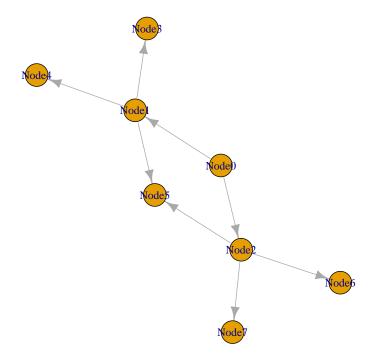


Figure 1: Example input network.

This is read from tab-separated (Cytoscape .sif format) file by one of two user functions, CreateCG() or CreateCCG() which respectively create and store either a causal or a computational causal graph. To understand what these are we first show how the function CreateCG() is used to create an internal representation of the network as a Causal Graph (CG).

The CG is stored in the workspace as an igraph object, which is a particular type of object that can be used to store and process graphs in R (see http://igraph.org/r/doc/igraph.pdf). The Causal Graph can then be visualised via,

```
PlotGraphWithNodeNames(cg) # producing the following graph.
```



Note that although only directional connectivity is shown, edge sign attribution of the input network is retained. Note also that igraph will assign internal numeric nodeIDs (for simplicity, the example network here mirrors these) that are used internally by CausalR functions. Most CausalR functions will automatically convert igraph nodeIDs back to node names recognisable to the user, but there are exceptions that return output with these numbers. For those outputs, the user will need to apply the GetNodeName().

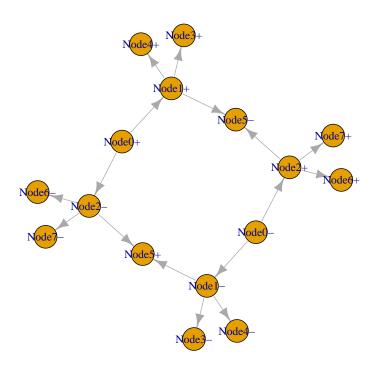
The CreateCCG() function creates in the workspace an *igraph* object (here assigned to "ccg") which contains a computational causal network representation of the contents of the input network.sif file.

```
ccg <- CreateCCG(system.file( "extdata", "testNetwork1.sif",
    package="CausalR"))</pre>
```

The latter is employed internally instead of a CG for processing efficiency.

A CCG contains double the nodes and vertices, to separately represent up and down regulation of each node, and these are connected according to the original edge relations from the network.sif file. The Computational Causal Graph (CCG) for the input network input can be visualised via,

PlotGraphWithNodeNames(ccg) # producing the following graph.



The input differential experimental results (used in subsequent worked examples) is as follows,

1
1
1
1
0
-1
-1
-1

In the second column, 1 represents differential activation, -1 differential inhibition and 0 indicates no differential regulation was observed for the entity represented by the node.

The inclusion of all non-differential results is critical to accurate significance calculations (in their absence *CausalR* will otherwise see them as not measured and process them accordingly).

A tab-separated file containing this content is read into the workspace using ReadExperimentalData(), as follows,

At this stage checks are performed to identify entities (nodes) not present within the CG/CCG.

These are flagged to the user and excluded from the two column experimental data matrix [igraph nodeID, regulation] that is stored in the workspace for subsequent processing.

3 Computing Score: Multiple Causal Hypotheses

To compute a list of score-ranked hypotheses within an interactive session, the user would employ the RankTheHypotheses() function as follows,

```
options(width=120)
RankTheHypotheses(ccg, experimentalData, delta=2)
## Number of Nodes to analyse: 8
## NodeID Regulation Score Correct Incorrect Ambiguous p-value Enrichment p-value
                                                                                1.000
## NodeO+
            1 1 4 5 1 1 0.1142857
                                    3 0 0 0.121111

1 0 0 0.5000000

1 0 0 0.3750000

1 0 0 0.3750000

1 0 0 0.3750000

2 2 0 0.6285714

0 0 0 0.6250000

2 2 0 0.5428571

0 0 0 0.5000000

0 1 0 1.0000000

0 1 0 1.0000000
                                                         0 0.1214286
                       1
1
                              3
## Node1+
              2
                                                                                  1.000
             2
4
6
7
8
## Node3+
                              1
                                                                                  0.875
                       -1 1
                                                                                 0.875
## Node5-
## Node6-
                                                                                 0.875
## Node7-
                       -1 1
                                                                                 0.875
                       1
1
## Node2+
              3
                              0
                                                                                  0.500
## Node4+
              5
                              0
                                                                                  1.000
              3
## Node2-
                       -1 0
                                                                                 0.500
## Node4-
                       -1 0
                                                                                 1.000
## Node5+
            6
                       1 -1
                                                                                  0.875
                       1
1
## Node6+
                             -1
                                                                                  0.875
                                      0
## Node7+
              8
                             -1
                                                1
                                                         0 1.0000000
                                                                                  0.875
                                     0
## Node3-
                       -1 -1
                                                         0 1.0000000
                                               1
                                                                                  0.875
## Node1-
                       -1 -3
                                       0
                                                3
                                                         0 0.9571429
                                                                                  1.000
                        -1 -4
## Node0-
                                                         1 0.9714286
                                                                                   1.000
```

RankTheHypotheses() incorporates usability features (see Section 9) and parallelisation is supported (see Appendix B for instructions).

Alternatively, the following is used to output similar (results for both + and - hypotheses will again be generated) for a subset of nodes,

```
options(width=120)
testlist<-c('Node0','Node2','Node3')</pre>
RankTheHypotheses(ccg, experimentalData,
                         delta=2, listOfNodes=testlist)
## Number of Nodes to analyse: 3
##
     NodeID Regulation Score Correct Incorrect Ambiguous p-value Enrichment p-value
## NodeO+ 1 1 4 5 1 0.1142857
                                                           1.000
                   1
## Node3+
                         1
                                       0
                                               0 0.5000000
                                                                    0.875
                       0
                              2 2 2
           3
## Node2+
                                               0 0.6285714
           3
4
                                                                   0.500
                   -1 0
## Node2-
                                              0 0.5428571
                                                                   0.500
## Node3-
                   -1 -1
                              0
                                      1
                                               0 1.0000000
                                                                    0.875
## Node0-
                        -4
                                             1 0.9714286
                                                                    1.000
```

RankTheHypotheses() takes as arguments the workspace CCG and experimental matrix object (both from the processing described above), together with a user supplied numeric value for the path length, termed delta, delta.

The latter represents the desired number of edges in the network the user wishes the algorithm to look forward, from the hypothesis, to observed result nodes.

With each further level searched into the network, the number of connected nodes increases roughly exponentially until the *delta* approximates the network average degree. With deltas close to or above the network average degree the majority of hypothesis nodes will be connected to most other nodes in the network, and consequently the ability of the scoring algorithm to differentiate good hypotheses from bad ones will be degraded.

RankTheHypotheses() calls the hidden function Scorehypothesis(), which computes scores reflecting the overall level of agreement between predictions based upon an individual hypothesis and the experimentally observed results for nodes within *delta* edges (i.e. to which it can be causally-linked).

4 Computing Score: Specific Causal Hypothesis

To get scores and significance summary for both up- and down-regulation hypotheses concerning an individual node, the listOfNodes input can be assigned to a sole node name (note that node names are case sensitive in CausalR),

```
options(width=120)
RankTheHypotheses(ccg, experimentalData, 2, listOfNodes='NodeO')

## Number of Nodes to analyse: 1
## NodeID Regulation Score Correct Incorrect Ambiguous p-value Enrichment p-value
## NodeO+ 1 1 4 5 1 1 0.1142857 1
## NodeO- 1 -1 -4 1 5 1 0.9714286 1
```

It may first be useful to check on node content and length of the shortest path from the proposed hypothesis (root) node to any specific (outcome) target node(s) of interest. For this the function GetShortestPathsFromCCG() is employed,

```
GetShortestPathsFromCCG(ccg, 'Node0', 'Node3')
```

```
node0+ node1+ node3+
```

An alternative to RankTheHypotheses() enables acquisition of further detail on the breakdown of scoring contributions. The MakePredictionsFromCCG()

function can be used directly to get scores for a particular signed hypothesis of a node.

```
predictions <- MakePredictionsFromCCG('Node0',+1,ccg,2)</pre>
predictions
         [,1] [,2]
## [1,]
            1
## [2,]
            2
                  1
## [3,]
            3
                 -1
## [4,]
            4
                  1
## [5,]
            5
                 1
## [6,]
            6
                 0
            7
## [7,]
                 -1
## [8,]
                 -1
```

The input node0 is the root (or hypothesis) node, +1 is the direction of regulation, ccg is the network, and the last value, 2, is the delta value (these inputs are explained in more detail in the following section). The predictions will be returned as above, with the igraph assigned node ID in the first column and the direction of regulation in the second.

The ScoreHypothesis() function can then be used to provide a summary of the comparisons between the predictions from the given hypothesis against the observed outcomes in the experimental data,

```
ScoreHypothesis(predictions, experimentalData)
## [1] 4 5 1 1
```

This returns 4 integer values, which (in order) are the score (the number of correct predictions minus the number of incorrect predictions), number of correct predictions, number of incorrect predictions and number of ambiguous predictions (these will be explained later within the Scoring Section).

To discover how each predicted node outcome contributes to the score, the CompareHypothesis() function is used to provide a comparison between experiment and prediction for each node separately,

GetNodeName(ccg,CompareHypothesis(predictions, experimentalData))

```
##
     NodeID Prediction Experiment Score
## 1
     Node0
                      1
## 2 Node1
                      1
                                  1
                                         1
## 4 Node3
                      1
                                  1
                                         1
## 7
      Node6
                     -1
                                 -1
                                         1
## 8
                     -1
                                 -1
      Node7
                                         1
## 5 Node4
                      1
                                  0
                                         0
## 6 Node5
                      0
                                 -1
                                         0
## 3 Node2
                                        -1
                     -1
```

The use of function GetNodeName() is required here to convert *igraph* nodeIDs, output by CompareHypothesis(), back to user recognisable node names, as was supplied in the inputs.

Functions CalculateSignificance() and CalculateEnrichmentPValue() can be used to calculate the statistical significance of a given signed hypothesis, as detailed in the R code of Appendix A.

4.1 Hypothesis-specific CCGs

During scoring, hypothesis-specific CCGs are sequentially created and scored. Each hypothesis will be represented as the unique root node of its corresponding CCG, whilst the maximum depth for any hypothesis CCG is equal to the path length, delta.

Since each hypothesis observes a either upward or downward regulation, the number of individual hypothesis CCGs computed and scored will be equal to twice the number of nodes in the input network, if all possible hypotheses are tested, as this is the default behaviour for function RankTheHypotheses().

Prior to the construction of each hypothesis CCG, nodes beyond delta edges from the hypothesis are removed from the processed network and untested nodes (those without experimental results, apart from the hypothesis node itself) are also excluded. To construct the final hypothesis CCG, regulatory relations are then applied between the hypothesis along all paths toward the remaining nodes, observing the original network edge values.

5 Scoring

To aid scoring the CCG object represents a partitioning of the set of nodes in the experimental data, represented by T|G|, into three sets: the positively regulated, negatively regulated and those that are unaffected. These sets are denoted as S_h+ , S_h- and S_h0 respectively, as defined in [2012a].

Thus in the terminology of the Methods: Scoring hypotheses section of [2012a], the observed experimental input (as above) would be represented as:

```
G_{+} = \{\text{Node0}, \text{Node1}, \text{Node2}, \text{Node3}\}

G_{-} = \{\text{Node5}, \text{Node6}, \text{Node7}\}

G_{0} = \{\text{Node4}\}
```

Any node greater than **delta** edges from the hypothesis node is automatically added to S_h0 , since the path length to the hypothesis is deemed too distant to include in scoring, according to user parameterisation.

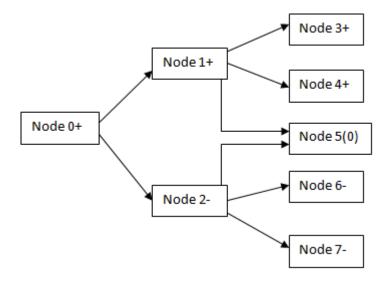


Figure 2: Network consequences of NodeO+

5.1 Example Causal hypothesis to be Scored

In the following example calculations, the causal hypothesis to be scored is up-regulation of Node0, denoted as Node0+. Figure 2 above shows the downstream consequences of up-regulating Node0, as derived by traversing its hypothesis CCG, observing how the original network edge values translate the regulatory sign of the (root) hypothesis along the paths to predicted outcomes. Note that Node 5 is both positively and negatively regulated by Node0+.

5.2 Network Predictions based upon Hypothesis Node0+

The predictions $|TG_c|$ from the network (represented as per [2012a], Methods: Scoring hypotheses) would be:

```
S_h+ = {Node0, Node1, Node3, Node4}

S_h- = {Node2, Node6, Node7}

S_h0 = {Node5}
```

5.3 Scoring Calculation

[Example for delta=2] Comparing T|G| to $T|G_c|$ yields the correct predictions from this hypothesis as: Node 0, Node 1, Node 3, Node 6 and Node 7. The only incorrect prediction from this hypothesis is: Node 2.

The CausalR scoring algorithm traces the shortest path from hypothesis to outcome node and then evaluates its sign to achieve a predicted regulation for that outcome node. The hypothesis here yields a so called "ambiguous" prediction-outcome match for Node 5, since there are two shortest paths to it and their predictions disagree, hence it doesn't contribute to the scoring.

Node 4 is also excluded from the score calculation because the observed experimental outcome for it was non-differentially regulated (unchanged) and this is a result that cannot be predicted by CausalR, as only an up or down regulation can be inferred from a signed graph.

Subtracting number of incorrect predictions (1) from the number that was correct (5) yields a score of 4 for hypothesis NodeO+.

6 Hypothesis Score Significance Calculation

To account for the scenario where the more heavily connected hypothesis nodes have greater potential to score more highly than less connected ones, the significance of each hypothesis score needs to be individually calculated.

A lower significance (higher p-value) cut-off can then be applied as a filter to the overall scores ranking, as decided via the biological expertise of the user.

CausalR provides both p-values and enrichment p-values for this purpose. There are two alternatives for p-value calculation: a computationally expensive exact "quartic" algorithm (see section 2.4 in [2012a]) and (for larger inputs) a very much more efficient (minutes instead of hours, hence set as default) approximate "cubic" algorithm (see pages 6-7 in [2012b]).

6.1 Calculation of p-value

[Continuation of previous example for delta=2] Within the context of network causal reasoning (see section 2.4, [2012a]), we are looking for the probability of obtaining a hypothesis (node) score at least as extreme as that which was observed, assuming the null hypothesis, that the hypothesis node was not responsible for producing the experimental outcomes, is true (i.e. result is not significantly different from random).

To calculate the p-value significance of this score for hypothesis Node0+, these predictions must be scored against all possible predictions with |G+| = 4, and |G-| = 3.

Given that there are 8 nodes to pick each combination from, the total number of combinations is: ${}^{8}C_{4} \times {}^{4}C_{3} = 280$

There is only one way to get the highest possible score of 7.

There are two approaches to achieve a score of 6. The first is to choose all 4 nodes in G+ from the nodes in S_h+ , and two of the nodes in G- from S_h- : there are ${}^4C_4 \times {}^3C_2 = 3$ ways of doing this. The other possibility is to choose 3 nodes in S_h+ and 1 in S_h0 as the nodes in G+. Then choose all

three of the nodes in G- from S_h - there are ${}^4C_3 \times {}^3C_3 = 4$ ways of doing this. Hence there are 7 ways of scoring 6 in total.

A score of 5 cannot be achieved.

There are two ways to score 4. (The first is to choose 3 nodes from S_h + and 1 from S_h - as the nodes in G+, then choose 2 nodes from S_h - and the 1 in S_h 0 as the nodes in G-. There are ${}^4C_3 \times {}^3C_1 = 12$ ways of doing this. The second way is to choose 3 nodes from S_h + and the 1 from S_h 0 as the nodes in G+, then choose 2 nodes from S_h - and 1 in S_h + as the nodes in G-. There are ${}^4C_3 \times {}^3C_2 = 12$ ways of doing this. This means in total there are 24 ways of scoring 4.

We now have all the information we need to calculate the p-value of the hypothesis above. There are 24+7+1=32 ways to score 4 or higher, hence the p-value should be 32/280=0.114, as can be seen for the up-regulated node 0 hypothesis in Table 1.

6.2 Calculation of Enrichment p-value

Enrichment p-values, p_E , are calculated using standard approaches used for gene ontology enrichment (see [GOEAST])

Where $n_{++} + n_{+-} + n_{-+} + n_{--} = m$ (i.e. the number of differentially expressed genes, m in Table 2), and T = T|G| is the total number of experimental transcripts; then p_E is the probability of getting m or more differential nodes from a set of T nodes given the fraction of nodes predicted to be differential.

This computation is done using the Fisher exact test (see [Fisher]), as implemented in the fisher test function in base R.

The goal is to compare the actual number of differential nodes to the number of predicted ones, given the values of $q_+, q_-, q_0, n_+, n_-, n_0, n_{++}, n_{+-}, n_{-+}$ and n_{--} in Table 2 below.

Predicted	Measured	Measured	Measured
Causal Network	Differential	Non-	Total
		differential	
Differentially	$n_{++} + n_{+-} + n_{-+} + n_{} = m$	$n_{+0} + n_{-0}$	$q_{+} + q_{-}$
Expressed			
Non-	$n_{0+} + n_{0-} = n_+ + n m$	n_{00}	q_0
differentially			
Expressed			
Total	$n_{+} + n_{-}$	n_0	T G

Table 2: Result outcome categorisations used in significance calculations.

The probability of getting this arrangement of values is given by the hypergeometric distribution,

$$p = \frac{\binom{q_{+} + q_{-}}{m} \binom{q_{0}}{n_{0+} + n_{0-}}}{\binom{|T(G)|}{n_{+} + n_{-}}}$$

To obtain p_E , the probability of getting m or more elements in the intersection between the sets of predicted versus experimentally-observed differential nodes, needs to be calculated. The formula employed to calculate the enrichment p-value is therefore,

$$p_E = \sum_{i=m}^{q_++q_-} \frac{\binom{q_++q_-}{i}\binom{q_0}{n_++n_--i}}{\binom{|T(G)|}{n_++n_-}}$$

6.3 Efficiency and Accuracy of Significance Calculation

As stated earlier, it is crucial to include non-differential outcomes in the experimental input for accurate significance calculations. The problem with this is that for large NGS study data compute times increase greatly and much of the added effort will be on significance calculations for poor hypotheses.

This can be avoided by resetting the correctPredictionsThreshold value used by the RankTheHypotheses() function. This is normally set to minus infinity, which means that p and p_E values will be calculated regardless of

hypothesis score. When reset to a positive value it restricts significance calculations to a subset of hypotheses with a minimum number of correct predictions (all other hypotheses will automatically get NA values).

```
options(width=120)
Rankfor4<-RankTheHypotheses(ccg, experimentalData, 2,</pre>
                    correctPredictionsThreshold=4)
## Number of Nodes to analyse: 8
Rankfor4 # For example output only
       NodeID Regulation Score Correct Incorrect Ambiguous p-value Enrichment p-value
## NodeO+
         1 1 4 5 1 0.1142857
0
## Node1+
                   1
                       3
                             3
                                    0
                                                  NA
                                                                NA
                                                  NA
                                                                NA
                                                                NΑ
                                                                NA
                                                                NA
                                                                NA
                                                                NΑ
                                                                NA
                                                                NΑ
                                                                NA
                                                                NA
                                                                NΑ
                                                                NA
subset(Rankfor4,Correct>=4)
       NodeID Regulation Score Correct Incorrect Ambiguous p-value Enrichment p-value
## NodeO+ 1 1 4 5 1 0.1142857
```

This can also be useful where the user wishes to employ the more computationally expensive exact quartic (1a) algorithm on a subset of interesting hypotheses, instead of using the default cubic (1b) approximation algorithm.

7 Sequential Causal Analysis of Networks (SCAN)

Given that true causal regulators are likely to regulate nodes at various distances along the pathways in which they feature, the use of a range of different deltas can be employed to improve enrichment for them. This was the thinking behind Sequential Causal Analysis of Networks (SCAN) approach introduced in Bradley and Barrett [submitted].

By invoking the runSCANR() function, the RankThehypotheses() function is iteratively run for a range of path lengths (deltas), starting from delta=1 up to the value of the user-supplied variable NumberOfDeltaToScan (default is 5), to discover nodes that consistently score in the highest topNumGenes (default is 150) across all SCAN deltas run.

So for example given the following experimental data,

NodeA 1 NodeB -1 NodeC NodeD -1 NodeE 1 NodeF -1 NodeG 1 NodeH -1 NodeI 1 NodeJ -1

and a more complex network, as in the Cytoscape (http://www.cytoscape.org) depiction of testnet.sif in Figure 3 below).

The runSCANR() function will first write the number of nodes to analyse to the R console window (this will be repeated for each delta run). Then the next NumberOfDeltaToScan lines output will list the top hypotheses from each delta that was run, whilst the final line gives the SCAN results for the top hypotheses in common between these deltas.

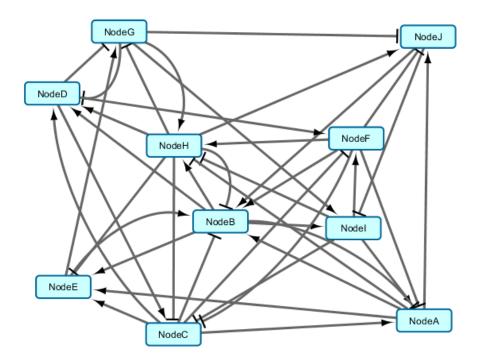


Figure 3: Network input for SCAN Example.

```
runSCANR(ccg, experimentalData, numberOfDeltaToScan=2, topNumGenes=4,
         correctPredictionsThreshold=1,writeResultFiles = TRUE,
        writeNetworkFiles = "none",quiet=TRUE)
## $testList
##
   1
                 2
## 1 Node1+ Node0+
## 2 NodeO+ Node1+
## 3 Node3+ Node3+
## 4 Node5- Node5-
##
## $uniqueNodes
##
    names maxDelta
## 1 Node1+
## 2 Node0+
                  2
## 3 Node3+
                  2
## 4 Node5-
```

```
##
## $commonNodes
## [1] "Node1+" "Node0+" "Node3+" "Node5-"
```

testList contains the hypotheses found at each delta, as restricted by top-NumGenes.

uniqueNodes contains all hypotheses, with the maximum delta that returned them.

commonNodes contains only the hypotheses subset ranked in the first top-NumGenes of all hypotheses across ALL deltas run, and these are ranked in order found at the highest delta.

Additionally, under the above settings, three files are created in the current R workspace:

 $1. \ A \ common \ nodes \ file: \ Common \ Nodes-test \ Network 1-test \ Data 1-delta S \ canned 2-top 4.txt$

Containing:

Node1+

Node0+

Node3+

Node5-

This content is equivalent to that in commonNodes above.

 $2. \ A top nodes file: TopNodes-testNetwork1-testData1-deltaScanned2-top4.txt \\ Containing:$

```
names maxDelta
Node1+ 2
Node0+ 2
Node3+ 2
Node5-2
```

This content is equivalent to that in uniqueNodes above.

3. A ResultsTable: ResultsTable-NetworkFileName-ExptlDataFileName-deltaused.txt containing RankTheHypotheses()output for the highest delta run.

Note that the above files are auto-named according to the input files and content-defining parameters (more details in Section 9).

Hypothesis-specific regulatory networks can be generated directly by runSCANR(), from the commonNode list, however the returned number of common hypotheses won't apriori be known (see Section 8 for details of direct and indirect hypothesis regulatory network file creation).

From experiments with CausalR on signals for known pathways (see Bradley and Barrett [submitted]), setting of the topNumGenes parameter to represent 1 percent of the number of nodes present in the input network provides a reliable starting heuristic for identifying the true regulators.

A SCAN run covering 1-5 deltas can typically take overnight with large inputs, however parallelisation is supported via setting doParallel=TRUE). Various additional steps can also be taken to improve run times:

- 1. Use of the R compiler (see Appendix B)
- 2. Excluding scoring of hypotheses for non-differential nodes,

3. Suppression of significance calculations. Note that these will be inaccurate and unused anyway if non-differential results are excluded, as with SCAN we are relying more upon biological logic rather statistics. As this is the usual scenario, the correctPredictionsThreshold parameter is set with a default value of Inf (infinity, so as to not compute

p-values, substituting NAs for them. Scoring and rankings will still be computed for all hypotheses). correctPredictionsThreshold can be set to a lower value if accurate p-values are required for a partial or full set of hypotheses scored.

Accurate p-values and pE-values can also later be computed separately for the subset of interesting hypotheses coming from SCAN using,

```
testlist<-c('Node0','Node3','Node2')
RankTheHypotheses(ccg, experimentalData,2,listOfNodes=testlist)</pre>
```

which gives up- and down-regulated hypothesis results for each named input node in the testlist.

Alternatively, for an individual signed node hypothesis, the user can start from MakePredictionsFromCCG() as described earlier under section "Calculating Score for a Specific Causal Hypothesis".

8 Visualising the Network of Nodes explained by a Specific Hypothesis

Hypothesis-specific regulatory sub-networks can be generated indirectly (i.e. after running SCAN) for individual hypotheses or all hypotheses, as well as directly via runsCANR() itself.

8.1 Indirect Individual Hypothesis Network Generation

The function WriteExplainedNodesToSifFile() allows production of a network of explained nodes, for a particular hypothesis, in .sif file format for visualising in Cytoscape. The function is called as follows:

```
WriteExplainedNodesToSifFile("Node1", +1,ccg,experimentalData,delta=2)
```

Unless directed elsewhere, this creates six new files in the working directory:

```
corExplainedNodes-testNetwork1-testData1-delta2-Node1+.sif
corExplainedNodes-testNetwork1-testData1-delta2-Node1+_anno.txt
```

incorExplainedNodes-testNetwork1-testData1-delta2-Node1+.sif
incorExplainedNodes-testNetwork1-testData1-delta2-Node1+_anno.txt

```
ambExplainedNodes-testNetwork1-testData1-delta2-Node1+.sif
ambExplainedNodes-testNetwork1-testData1-delta2-Node1+_anno.txt
```

The correctly explained nodes (corExplainedNodes) sif file contains interactions representing all of the explained nodes (i.e. nodes that have the same direction of regulation in both the network and the experimental data, as predicted under the hypothesis of up-regulated Node1+, with content structured as follows,

Node1 Activates Node1 Node1 Activates Node3 Node1 Inhibits Node5

The corresponding (corExplainedNodes) annotation file contains the respective explained node regulation values,

```
NodeID Regulation
Node1 1
Node3 1
Node5 -1
```

These files can be directly loaded into Cytoscape to visualise the regulatory network of hypothesis-explained nodes, such as in figure 4.

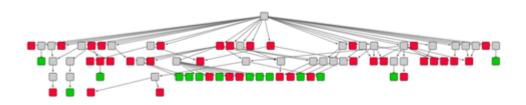


Figure 4: Example hypothesis-specific regulatory network (Cytoscape view).

8.2 Indirect Network Generation for All Hypotheses found Common across SCAN Deltas

An additional function, WriteAllExplainedNodesToSifFile(), accepts the commonNodes component of the scanResults workspace object (assigned to store the runSCANR() output) to generate networks for all the hypotheses found in common across all SCAN delta settings:

```
scanResults <- runSCANR(ccg, experimentalData, numberOfDeltaToScan=2,
  topNumGenes=4,correctPredictionsThreshold=1,
  writeResultFiles = FALSE, writeNetworkFiles = "none",quiet=FALSE)
WriteAllExplainedNodesToSifFile(scanResults, ccg, experimentalData,
  delta=2, correctlyExplainedOnly = TRUE, quiet = TRUE)</pre>
```

This produces pairs of corExplainedNodes .sif and annotation network files for all hypotheses (Node0+, Node1+, Node3+ and Node5-), in each case including only those experimental data nodes that are correctly explained by that hypothesis (i.e. as defined by using writeNetworkFiles = "correct" instead of "all").

8.3 Direct Network Generation for All Hypotheses found Common across SCAN Deltas

The following command shows how to generate the same networks as in the latter example above, only directly from runscank()

```
runSCANR(ccg, experimentalData, numberOfDeltaToScan=2,
  topNumGenes=4,correctPredictionsThreshold=1,quiet=TRUE,
  writeResultFiles = TRUE, writeNetworkFiles = "correct")
```

Files generated in this way get the full input auto-naming, i.e. corExplainedNodes-testNetwork1-testData1-delta2-top4-Node0+.sif, but care needs to be taken to sensibly try to restrict the set of common nodes produced by runSCANR() otherwise there may be very many!

9 Additional Usability Features

9.1 Automated File Naming

The RankTheHypotheses() and runSCANR() functions will auto-name their primary output files with names that identify all relevant inputs and parameterisations employed.

These filenames will therefore contain the input network filename, input experimental signal filename and the input delta parameter value.

The results table produced by runSCANR() will also feature the topNumGenes parameter value.

All network files output by functions WriteExplainedNodesToSifFile() and WriteAllExplainedNodesToSifFile() will contain in their filename the specified hypothesis node name with the +/- direction of regulation.

9.2 Output Suppression, Re-direction and Quiet Mode

All the functions mentioned in the above section will by default output to the current R working directory, however they can to configured to send outputs to a named directory specified via the outputDir parameter (this can accept a path with directory name, if the folder is not to be in working directory). If the specified directory doesn't exist it will be created.

RankTheHypotheses() and runSCANR() functions have a quiet flag that is set to FALSE by default. Changing this to TRUE will suppress output of some or all results to the screen (depending upon other settings; useful for batch scripted runs).

Similarly, there are flags to suppress results files creation:

RankTheHypotheses() has a writeFile flag set to TRUE so as to write a file by default. When set to FALSE no output files are created (useful when outputs are to be stored a workspace object, i.e. via assignment using the <- assignment operator.

runSCANR() has a writeResultsFiles flag which works in a similar way to control writing of the usual SCAN text file outputs. The default TRUE setting will result in three text files. FALSE will switch this off, i.e. for when results are directed into the R workspace via assignment to an object.

RunSCANR() also accepts a further writeNetworkFiles flag for control of automated regulator network files generation. This is set to all by default.

9.3 Operating Systems

CausalR as a Bioconductor package has been built for Linux, PC and Mac operating systems. Operation and functionality is identical regardless of the OS used.

9.4 Parallelisation

The RankTheHypotheses() and RunSCANR() functions are fully parallelised. Parallelisation can be switched-on by including doParallel=TRUE in their parameters. The user can optionally specify the number of cores by setting the numCores flag to an integer value (default is NULL, whereby the number of available cores will be automatically detected). See Appendix B for further advice on speeding-up CausalR processing.

9.5 Network Filtering

The CreateCCG() function can read an optional node inclusion text file containing a list of node names to filter the network interactions against. The direction of filtering is controlled by an optional excludeNodesInFile parameter to specify including (excludeNodesInFile=FALSE) only those text file nodes (and their interactions) in the CCG network object, or to (default setting) exclude those nodes from all interactions in the CCG.

Note that both the influencing and influenced nodes will be searched against across all interactions within the input network. Individual interactions will be included or excluded if one (or both) node name(s) match against any specified within the node inclusion file.

References

- [1] Bradley, G. and Barrett, S.J. (submitted) CausalR: extracting mechanistic sense from genome scale data. Bioinformatics, application note.
- [2] Chindelevitch, L. et al. (2012a) Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics, 28(8):1114-21.
- [3] Chindelevitch, L. et al. (2012b) Assessing statistical significance in causal graphs (Methodology article). BMC Bioinformatics, 13:35-48.
- [4] Fischer, R. A. (1970) Statistical Methods for Research Workers. Oliver & Boyd.
- [5] Zheng, Q. and Wang, X-J. (2008) GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Research, 36, W358–W363.

Appendices

A Command Sequence Listing for Examples

```
# Set-up
library(CausalR)
library(igraph)
# Load network, create CG and plot
cg <- CreateCG('testNetwork1.sif')</pre>
PlotGraphWithNodeNames(cg)
# Load network, create CCG and plot
ccg <- CreateCCG(system.file( "extdata", "testNetwork1.sif",</pre>
    package="CausalR"))
PlotGraphWithNodeNames(ccg)
# Load experimental data
experimentalData <- ReadExperimentalData(system.file( "extdata",</pre>
                         "testData1.txt", package="CausalR"),ccg)
# Make predictions for all hypotheses, with pathlength set to 2.
RankTheHypotheses(ccg, experimentalData, 2)
# Make predictions for all hypotheses, running in parallel
# NOTE: this requires further set-up as detailed in Appendix B.
RankTheHypotheses(ccg,experimentalData,delta,doParallel=TRUE)
# Make predictions for a single node (results for + and -
# hypotheses for the node will be generated),
RankTheHypotheses(ccg, experimentalData,2,listOfNodes='Node0')
```

```
# for up- and down-regulated hypotheses for each named node),
testlist <- c('Node0','Node3','Node2')</pre>
RankTheHypotheses(ccg, experimentalData,2,listOfNodes=testlist)
# An example of making predictions for a particular signed hypo-
# -thesis at delta=2, for up-regulated node0, i.e.node0+.
# (shown to help understanding of hidden functionality)
predictions<-MakePredictionsFromCCG('Node0',+1,ccg,2)</pre>
GetNodeName(ccg,CompareHypothesis(predictions,experimentalData))
# Scoring the hypothesis predictions
ScoreHypothesis(predictions, experimentalData)
# Compute statistics required for Calculating Significance
# p-value
Score<-ScoreHypothesis(predictions, experimentalData)</pre>
CalculateSignificance(Score, predictions, experimentalData)
PreexperimentalDataStats <-</pre>
    GetNumberOfPositiveAndNegativeEntries(experimentalData)
    #this gives integer values for n_+ and n_- for the
    #experimental data, as shown in Table 2.
    PreexperimentalDataStats
    # add required value for n_0, number of non-differential
    # experimental results,
    experimentalDataStats<-c(PreexperimentalDataStats,1)</pre>
    # then use.
    AnalysePredictionsList(predictions,8)
    # ...to output integer values q_+, q_- and q_-0 for
         significance calculations (see Table 2)
    # then store this in the workspace for later use,
    predictionListStats<-AnalysePredictionsList(predictions,8)</pre>
```

Make predictions for an arbitrary list of nodes (gives results

```
# Compute Significance p-value using default cubic algorithm
CalculateSignificance(Score, predictionListStats,
    experimentalDataStats, useCubicAlgorithm=TRUE)
# or simply,
CalculateSignificance(Score, predictionListStats,
    experimentalDataStats)
# as use cubic algorithm is the default setting.
# Compute Significance p-value using default quartic algorithm
CalculateSignificance(Score, predictionListStats,
                experimentalDataStats,useCubicAlgorithm=FALSE)
# Compute enrichment p-value
CalculateEnrichmentPvalue(predictions, experimentalData)
# Running SCAN whilst excluding scoring of hypotheses for non-
# -differential nodes
AllData<-read.table(file="testData1.txt", sep="\t")
DifferentialData<-AllData[AllData[,2]!=0,]</pre>
write.table(DifferentialData, file="DifferentialData.txt",
    sep="\t",row.names=FALSE, col.names=FALSE, quote=FALSE)
runSCANR(ccg, ReadExperimentalData("DifferentialData.txt", ccg),
        NumberOfDeltaToScan=3, topNumGenes=100,
        correctPredictionsThreshold=3)
# Indirect Individual Hypothesis Network Generation (after running SCAN)
WriteExplainedNodesToSifFile("Node1", +1,ccg,experimentalData,delta=2)
# Indirect Network Generation for All Hypotheses (after running SCAN)
scanResults <- runSCANR(ccg, experimentalData, numberOfDeltaToScan=2,
 topNumGenes=4,correctPredictionsThreshold=1,
  writeResultFiles = FALSE, writeNetworkFiles = "none", quiet=FALSE)
WriteAllExplainedNodesToSifFile(scanResults, ccg, experimentalData,
 delta=2, correctlyExplainedOnly = TRUE, quiet = TRUE)
```

```
# Direct Network Generation for All Hypotheses (whilst running SCAN)
runSCANR(ccg, experimentalData, numberOfDeltaToScan=2,
  topNumGenes=4,correctPredictionsThreshold=1,quiet=TRUE,
  writeResultFiles = TRUE, writeNetworkFiles = "correct")
```

B Speeding-up CausalR Processing

The runtimes for RankTheHypotheses() increase with the size of network and experimental input. This can be offset via the use of parallelisation or the R (JIT) byte code compiler (no additional package installations are needed to use these as they are integral to the latest versions of base R). Note that run times will not be improved for very small examples where the cost of setting-up parallelisation or JIT outweighs its benefit.

Parallelisation is recommended for architectures featuring a multicore processor(s), whilst JIT is advised for older single or dual core machines.

Running RankTheHypotheses() in parallel:

Parallel processing can be activated via the doParallel flag,

```
RankTheHypotheses(ccg,experimentalData,delta,doParallel=TRUE)
```

By default the function will attempt to detect the number of available processer cores and use all of them bar one.

Alternatively, the number of cores to use can be set directly via the numCores flag,

To get the number of processor cores on their system:

Linux users can use the lscpu or nproc -all commands. In the absence of user privileges for these, try grep processor /proc/cpuinfo. The Linux top command can be used to check existing CPU utilisation.

Windows users can open a DOS window and type,

WMIC CPU Get DeviceID, NumberOfCores, NumberOfLogicalProcessors

or WMIC CPU Get /Format:List can be used.

Alternatively, they can look in the 'CPU Usage History' under the Windows Task manager 'Performance' tab.

Running RankTheHypotheses() with JIT compilation:

In order to activate the R byte code compiler functionality, R must be started with an additional flag command, R_COMPILE_PACKAGES=1. This can be done from the *Linux* or *Windows* command line when invoking R.

Alternatively, prior to starting R from the desktop icon on a Windows machine, place the R_COMPILE_PACKAGES=1 after the path to Rgui.exe in the Target field, under the Shortcut tab of the R icon Properties (accessed by right mouse click on the R icon).

Upon starting R, from double clicking the icon, the commands to use prior to loading CausalR are:

```
library(compiler)
enableJIT=3
```

When set to greater than zero, enableJIT invokes Just-In-Time (JIT) compilation, whilst enableJIT = 0 disables it. JIT can also be enabled by starting R with the environment variable R_ENABLE_JIT set to 1, 2 or 3, depending upon the level required. CausalR works with the level set to 3.

For further details see, http://www.inside-r.org/r-doc/compiler/compile or, alternatively, type ??compiler :: compile at the R command prompt to pull up the relevant R help page.

The JIT compiler compiles the package the first time it is run. Therefore, in order to achieve speed-up, the user needs to run a small *CausalR* example prior to running a very large one. JIT can also be used for medium sized inputs where the user wishes to run the computationally-expensive exact p-value calculation algorithm.

Note: when running very large networks/input the memory available to R may need reconfiguration (this is explained in the R documentation, but one easy way is to start-up R with the command line flag, -max-mem-size=????M, where ???? is a value in KB such that 4000M = 4MB (this can

also be inserted in the Windows icon Target field, see above). Use of 64bit R is also recommended in order to be able to address sufficient memory.