
Package ‘geecc’
October 16, 2019

Type Package

Title Gene Set Enrichment Analysis Extended to Contingency Cubes

Version 1.18.0

Date 2016-09-19

Author Markus Boenn

Maintainer Markus Boenn <markus.boenn@ufz.de>

Description Use log-linear models to perform hypergeometric and chi-squared tests for gene set en-
richments for two (based on contingency tables) or three categories (contingency cubes). Cate-
gories can be differentially expressed genes, GO terms, sequence length, GC content, chromoso-
mal position, phylostrata, divergence-strata,

License GPL (>= 2)

Depends R (>= 3.3.0), methods

Imports MASS, hypergea (>= 1.3.0), gplots, Rcpp (>= 0.11.3), graphics,
stats, utils

LinkingTo Rcpp

SystemRequirements Rcpp

Suggests hgu133plus2.db, GO.db, AnnotationDbi

biocViews ImmunoOncology, BiologicalQuestion, GeneSetEnrichment,
WorkflowStep, GO, StatisticalMethod, GeneExpression,
Transcription, RNASeq, Microarray

git_url https://git.bioconductor.org/packages/geecc

git_branch RELEASE_3_9

git_last_commit 0c27de6

git_last_commit_date 2019-05-02

Date/Publication 2019-10-15

R topics documented:
geecc-package . 2
concub-class . 3
concubfilter-class . 4
filterConCub . 6
GO2list . 6
marioni . 8

1

2 geecc-package

plotConCub . 8
pval2star . 10
runConCub . 10
sortAscii . 12

Index 13

geecc-package Gene set enrichment for two or three categories

Description

This package performs gene set enrichment analyses considering two or three categories. Categories
might be regulated genes, sequence length, GC content, GO terms, KEGG pathways and so on.

Author(s)

Markus Boenn Maintainer: Markus Boenn <markus.boenn@ufz.de>

Examples

##
a completely artificial example run
through the routines of the package
##
R <- 500
#generate R random gene-ids
ID <- sapply(1:R, function(r){paste(sample(LETTERS, 10), collapse="") })
ID <- unique(ID)

#assign artificial differentially expressed genes randomly
category1 <- list(deg.smallFC=sample(ID, 100, rep=FALSE),
deg.hughFC=sample(ID, 100, rep=FALSE))
#assign artificial GO terms of genes randomly
category2 <- list(go1=sample(ID, 50, replace=FALSE),
go2=sample(ID, 166, replace=FALSE),
go3=sample(ID, 74, replace=FALSE),
go4=sample(ID, 68, replace=FALSE))
#assign artificial sequence length of genes randomly
LEN <- setNames(sample(seq(100, 1000, 100), length(ID), replace=TRUE), ID)
category3 <- split(ID, f=factor(LEN, levels=seq(100, 1000, 100)))
CatList <- list(deg=category1, go=category2, len=category3)

ConCubFilter.obj <- new("concubfilter", names=names(CatList))
ConCub.obj <- new("concub", categories=CatList)
ConCub.obj.2 <- runConCub(obj=ConCub.obj, filter=ConCubFilter.obj, nthreads=1)
ConCub.obj.3 <- filterConCub(obj=ConCub.obj.2, filter=ConCubFilter.obj)
plotConCub(obj=ConCub.obj.3, filter=ConCubFilter.obj)
x <- getTable(ConCub.obj.3)

concub-class 3

concub-class Class "concub"

Description

An object of type concub

Details

Specifying the background population is crucial for the tests for association between factors. Usu-
ally the population is the set of all probe sets represented on a micro-array or the set of all genes
in a genome. If an expression set is passed with the population-parameter, all probe sets beginning
with the pattern “AFFX” (Affymetrix quality control) are removed.

Objects from the Class

Objects can be created by calls of the form new("concub",...).

Slots

categories: A named list of named lists. Each item of the outer list represents the two or three
categories. Each item of the inner lists represents a variable of the category.

population: A character vector containig the background population. As an alternative, an object
with class ‘eSet’, ‘ExpressionSet’, or ‘DGEList’; background population is then set to the
outcome of rownames(population).

keep.empty.vars: A boolean list with names being names of categories.

options: Additional options for individual categories. See Details.

approx: specifies the minimum expected value when an exact hypergeometric test (below) or the
chi-squared approximation should be used. Defaults to 0.

null.model: A formula specifying the null-model of the test.

test.result: A list to store test results. Filled up after runConCub.

test.result.filter: A list to store filtered test results. Filled up after filterConCub.

test.result.filter.heatmap: A list to store heatmaps for further manipulation. Filled up after
plotConCub.

The last three slots are not set by the user.

Methods

getTable signature(object = "concub"): creates a table containing the results of the tests.
Usage: getTable(object,na.rm=TRUE,dontshow=list())
Arguments:

object an object of type concub
na.rm logical. If TRUE (the default), rows with NA P-values (or odds ratios) are removed

The resulting table is a data frame with 8 or 10 columns, depending on if a two- or three-way
test was applied

1. ’factor1’:this column has the name of the first category
2. ’factor2’:this column has the name of the second category

4 concubfilter-class

3. ’factor3’:this column has the name of the third category
4. n.’factor1’:number of items in variable of first category
5. n.’factor2’:number of items in variable of second category
6. n.’factor3’:number of items in variable of third category
7. p.value:(probably adjusted) p-value
8. log2.odds.ratio:log2 of the sample odds ratio
9. n.tags:number of items at position x1,1,1 or x1,1

10. tags:items at position x1,1,1 or x1,1 (e.g. gene identifiers)

You have to run filterConCub() before you can get the table. If filterConCub() was not
run, a warning is shown and getTable returns NULL.

show signature(object = "concub")

See Also

GOStats to perform a simple two-way enrichment analysis

Examples

showClass("concub")

concubfilter-class Class "concubfilter"

Description

An object of type concubfilter

Details

The large number of different filter options (and corresponding getter and setter accessors) makes it
necessary to maintain them in a special class. This differs from other packages like GOstats, where
arguments for controlling the program and the results are stored in the same object.

Objects from the Class

Objects can be created by calls of the form new("concubfilter",...).

Slots

For a more detailed description of some slots see below.

nfact: a numeric giving the number of factors

names: a character vector giving the name of each factor

p.value: a numeric giving the P-value to be considered. Defaults to 0.1.

test.direction: a character giving the direction of association. Defaults to “two.sided”.

minimum.l2or: a numeric giving the minimum absolute log2 odds ratio to be considered. Defaults
to 0.

skip.min.group: a numeric giving the minimum number of tag a group is allowed to have. De-
faults to 2.

concubfilter-class 5

skip.min.obs: a numeric giving the minimum number at the position of interest allowed. Defaults
to 2.

skip.zeroobs: a logical. Defaults to TRUE.

drop.insignif.layer: A vector of logicals. By default, all positions are set to FALSE.

drop.wrongdir.layer: A vector of logicals. By default, all positions are set to FALSE.

drop.lowl2or.layer: A vector of logicals. By default, all positions are set to FALSE.

Methods and slot accessors

Several methods are implemented for class concubfilter. They can be roughly grouped into infor-
mative, basic, skip-test, and data-reduction methods.

Individual options can be accessed by the corresponding getter and setter methods, for instance

skip.zeroobs signature(x = "concubfilter"): get current setting to skip test in case of zero cell

skip.zeroobs<- signature(x = "concubfilter"): set a new value to skip test in case of zero cell

Informative methods: Currently only a single method is implemented.

show signature(object = "concubfilter"): a short summary about current filter settings

Basic filters/threshoulds:

p.value The maximum P-value that should be taken into account
minimum.l2or The minumum absolute of log2 odds ratio that should be taken into account
test.direction The direction of the association. Can be “two.sided”, “greater” (test for over-

representation), or “less” (test for under-representation)

Skip test: The following filters cause a skip of a test, i.e. the test is never run if at least one of
the conditions is fullfilled.

skip.zeroobs skip the test, if the position of interest (x00 or x000) is zero, i.e. no tag from the
population matches the conditions defined at the marginals.

skip.mingroup skip the test, if the groups considered at the position of interest are too small at
all.

skip.minobs skip the test, if the position of interest contains less than ‘this value’ entries.

Data reduction: The following filters reduce the amout of outcome of the tests. They are
applied to both, the (2 or 3 dimensional) table containing the odds ratios and the table containing
the corresponding P-values.

drop.insignif.layer drop all layers in the tables where all P -values are greater than the value
defined in ‘p.value’.

drop.wrongdir.layer drop all layers in the tables where all odds ratios are showing into the op-
posite direction as defined in ‘test.direction’.

drop.lowl2or.layer drop all layers in the tables where all absolutes of the log2 odds ratios are
smaller than ‘min.l2or’.

Examples

showClass("concub")

6 GO2list

filterConCub Filter results from two- or three-way tests

Description

Performs filtering on results from two- or three-way tests

Usage

filterConCub(obj, filter, p.adjust.method = "none", verbose=1)

Arguments

obj object of type concub

filter object of type concubfilter

p.adjust.method

set adjustment-method for p-values. Must match any of p.adjust.methods.

verbose An integer specifying the level of verbosity.

Details

You have to execute runConCub before filtering.

Value

an (extended) object of type concub with filtered test results

Examples

a character vector listing possible
adjustment approaches
p.adjust.methods

GO2list Filter GO and KEGG database

Description

Filter GO and KEGG database and transform database to list

Usage

GO2list(dbase, go.cat = NULL, rm = NULL, keep = NULL)
KEGG2list(dbase, rm = NULL, keep = NULL)
GO2offspring(x)
GO2level(x, go.level=-1, relation=c("is_a"))

GO2list 7

Arguments

dbase A datastructure storing identifieres of GO/KEGG terms and assigned genes. Can
be one of

database usually of class ‘ProbeGo3AnnDbBimap’ (as defined in package “An-
notationDbi”)

named list with keys being the identifiers and values being genes

dataframe with first column being the identifiers and second column being
genes. Additional columns are ignored.

x a list with keys being the identifiers and values being genes (e.g. output of
GO2list)

go.cat GO category ("MF", "BP", "CC") that should be returned and filtered

go.level Level in the DAG of GO terms. Defaults to “-1” for pass through without modi-
fication. Otherwise: a positive integer giving the level at which GO terms should
be grouped together.

rm remove these terms

keep keep only these terms

relation relationships in GO hierarchy that should be considered. Defaults to “is_a”

Details

The settings for “rm” and “keep” can be combined, allowing for efficient reduction of the number
of GO terms and KEGG pathways, respectively.

Providing a named list instead of a database can be useful for non-model organisms, where only
a draft Blast2GO-annotation is available. In this case, the names of the list are the GO terms (or
KEGG pathways) and the content of each list item is a character vector with tag-ids.

The function GO2offspring does the same as the databaseGO2ALLPROBES function does (e.g.
hgu133plus2GO2ALLPROBES). I.e. instead of representing only features (probe sets, genes, ...)
assigned to the GO terms directly, it also contains all features assigned to all children (offsprings).

The function GO2level groups GO terms together at a more general level to simplify data interpre-
tation and speed up runtime. This function works according to the level option provided by DAVID,
but the number of levels is not restricted.

Value

A named list with each slot containing the ids for the term or pathway.

Examples

library(hgu133plus2.db)
x <- GO2list(dbase=hgu133plus2GO2PROBE, go.cat="CC",
rm=c("GO:0000139", "GO:0000790", "GO:0005730", "GO:0005739"))

8 plotConCub

marioni Affymetrix microarray gene expression data

Description

The experiment aims to detect differentially expressed genes in Affymetrix micro-arrays and RNA-
seq data in a comparative study. For this, samples from two tissues (liver and kidney) were com-
pared.

Usage

marioni

Format

A data.frame containing gene expression values from an Affymetrix microarray, including P-
values, log2-fold changes and alternative annotations

Value

A data.frame.

Source

http://giladlab.uchicago.edu/data.html

References

Marioni, J. C. et al. (2008) RNA-seq: an assessment of technical reproducibility and comparison
with gene expression arrays. Genome research

Examples

data(marioni)
head(marioni[, 1:5])

plotConCub Generate a heatmap showing log_2 odds ratios and P -values.

Description

The function generates a heatmap by calling the heatmap.2-function from the gplots-package.
Each cell shows the log2 odds ratio of the test for the corresponding variables. In addition, stars
indicate the P -value for this test.

Usage

plotConCub(obj, filter, fix.cat = 1, show=list(), dontshow=list(),
args_heatmap.2 = list(), col = list(range = NULL),
alt.names = list(), t = FALSE)

plotConCub 9

Arguments

obj An object with class concub

filter An object with class concubfilter

fix.cat The heatmap can only visualize a two-dimensional table. In case of three-
dimensions, one dimension (category) must be fixed.

show A named list. The names are the names of the categories. Each item is a char-
acter vector of variables that should be shown in the plot.

dontshow A named list. The names are the names of the categories. Each item is a char-
acter vector of variables that should not be shown in the plot.

args_heatmap.2 Arguments passed to ‘heatmap.2’. Can be used to change size of fonts etc.

col A vector of colors, for instance from heat.colors

alt.names Substitute variables by alternative terms. For instance, if variables are artificial
ids, they can be substituted by descriptive text for the heatmap.

t logical; transpose matrix for heatmap. Default FALSE.

Value

An object with class concub.

Examples

##
a completely artificial example run
through the routines of the package
##
R <- 500
#generate R random gene-ids
ID <- sapply(1:R, function(r){paste(sample(LETTERS, 10), collapse="") })
ID <- unique(ID)

#assign artificial differentially expressed genes randomly
category1 <- list(deg.smallFC=sample(ID, 100, rep=FALSE),
deg.hughFC=sample(ID, 100, rep=FALSE))
#assign artificial GO terms of genes randomly
category2 <- list(go1=sample(ID, 50, replace=FALSE),
go2=sample(ID, 166, replace=FALSE),
go3=sample(ID, 74, replace=FALSE),
go4=sample(ID, 68, replace=FALSE))
#assign artificial sequence length of genes randomly
LEN <- setNames(sample(seq(100, 1000, 100), length(ID), replace=TRUE), ID)
category3 <- split(ID, f=factor(LEN, levels=seq(100, 1000, 100)))
CatList <- list(deg=category1, go=category2, len=category3)

ConCubFilter.obj <- new("concubfilter", names=names(CatList))
ConCub.obj <- new("concub", categories=CatList)
ConCub.obj.2 <- runConCub(obj=ConCub.obj, filter=ConCubFilter.obj, nthreads=1)
ConCub.obj.3 <- filterConCub(obj=ConCub.obj.2, filter=ConCubFilter.obj)
plotConCub(obj=ConCub.obj.3, filter=ConCubFilter.obj)

10 runConCub

pval2star Transform P-values to stars

Description

Transform P-values to stars

Usage

pval2star(x)

Arguments

x A matrix of P-values

Details

Use stars as simplification of P-values

Value

A character matrix of same dimension and names as x with stars instead of P-values.

Examples

x <- matrix(runif(25), nrow=5, dimnames=list(LETTERS[1:5], letters[1:5]))
pval2star(x)

runConCub Enrichment analysis on two- or three-way contingency tables.

Description

Perform the enrichment analysis on two- or three-way contingency tables.

Usage

runConCub(obj, filter, nthreads = 2, subset = NULL,
verbose=list(output.step=0, show.cat1=FALSE,
show.cat2=FALSE, show.cat3=FALSE))

Arguments

obj an object with class concub

filter an object with class concubfilter

nthreads number of threads to use in hypergeom.test

subset a named list. Restrict enrichment analysis to these category variables

verbose A list to control verbosity:

runConCub 11

output.step: after how many variables passed of category 2 a control output
should be printed

show.cat1: show current level of category 1

show.cat2: show current level of category 2

show.cat3: show current level of category 3

Details

This function applies a test for association for all combinations of all variables of all categories
to be tested. Depending on the settings in the concubfilter-object, a one-sided or two-sided test is
made, using the exact hypergeometric test as implemented in the hypergea-package if the smallest
expected value is smaller than 5, or using the chi-squared test as implemented in the loglm-function
implemented in the MASS-package. The minimum expected value can be changed in the concub-
object by the user (approx-parameter). In this function only filter-settings those filter settings are
used, which skip the tests.

Value

An object with class concub.

Examples

##
a completely artificial example run
through the routines of the package
##
R <- 500
#generate R random gene-ids
ID <- sapply(1:R, function(r){paste(sample(LETTERS, 10), collapse="") })
ID <- unique(ID)

#assign artificial differentially expressed genes randomly
category1 <- list(deg.smallFC=sample(ID, 100, rep=FALSE),
deg.hughFC=sample(ID, 100, rep=FALSE))
#assign artificial GO terms of genes randomly
category2 <- list(go1=sample(ID, 50, replace=FALSE),
go2=sample(ID, 166, replace=FALSE),
go3=sample(ID, 74, replace=FALSE),
go4=sample(ID, 68, replace=FALSE))
#assign artificial sequence length of genes randomly
LEN <- setNames(sample(seq(100, 1000, 100), length(ID), replace=TRUE), ID)
category3 <- split(ID, f=factor(LEN, levels=seq(100, 1000, 100)))
CatList <- list(deg=category1, go=category2, len=category3)

ConCubFilter.obj <- new("concubfilter", names=names(CatList))
ConCub.obj <- new("concub", categories=CatList)
ConCub.obj.2 <- runConCub(obj=ConCub.obj, filter=ConCubFilter.obj, nthreads=1)
ConCub.obj.2

12 sortAscii

sortAscii Optimized operations of sets of character-vectors

Description

Sort and use pre-sorted character vectors in set-operations

Usage

sortAscii(x)
intersectPresort(pop, x)
setdiffPresort(pop, x)

Arguments

x an unsorted vectors of strings

pop a sorted vector of strings

Details

By default, sorting is done lexicographically in R. The routine sortAscii does sorting accoring to
the ASCII-order as done in C/C++.

For routines intersectPresort and setdiffPresort the first argument has to be sorted according
to ASCII-order. This first argument is expected to be large compared to the second argument. Both
functions are wrappers for optimized C++-functions performing the set-operation.

Value

An character-vector. In case of intersectPresort and setdiffPresort, these vectors are un-
named.

Examples

AA <- matrix(sample(c(LETTERS, letters), 10*30000, rep=TRUE), ncol=10)
A <- unique(apply(AA, 1, paste, collapse=""))
B <- sample(AA, 100, replace=FALSE); B <- c(B, "1234")

res <- intersectPresort(sortAscii(A), B)

Index

∗Topic classes
concub-class, 3
concubfilter-class, 4

∗Topic datasets
marioni, 8

∗Topic package
geecc-package, 2

concub-class, 3
concubfilter-class, 4

drop.insignif.layer
(concubfilter-class), 4

drop.insignif.layer,concubfilter-method
(concubfilter-class), 4

drop.insignif.layer<-
(concubfilter-class), 4

drop.insignif.layer<-,concubfilter-method
(concubfilter-class), 4

drop.lowl2or.layer
(concubfilter-class), 4

drop.lowl2or.layer,concubfilter-method
(concubfilter-class), 4

drop.lowl2or.layer<-
(concubfilter-class), 4

drop.lowl2or.layer<-,concubfilter-method
(concubfilter-class), 4

drop.wrongdir.layer
(concubfilter-class), 4

drop.wrongdir.layer,concubfilter-method
(concubfilter-class), 4

drop.wrongdir.layer<-
(concubfilter-class), 4

drop.wrongdir.layer<-,concubfilter-method
(concubfilter-class), 4

filterConCub, 6

geecc (geecc-package), 2
geecc-package, 2
getTable (concub-class), 3
getTable,concub-method (concub-class), 3
GO2level (GO2list), 6
GO2list, 6

GO2offspring (GO2list), 6

heat.colors, 9
heatmap.2, 9

initialize,concub-method
(concub-class), 3

initialize,concubfilter-method
(concubfilter-class), 4

intersectPresort (sortAscii), 12

KEGG2list (GO2list), 6

marioni, 8
minimum.l2or (concubfilter-class), 4
minimum.l2or,concubfilter-method

(concubfilter-class), 4
minimum.l2or<- (concubfilter-class), 4
minimum.l2or<-,concubfilter-method

(concubfilter-class), 4

p.adjust.methods, 6
p.value (concubfilter-class), 4
p.value,concubfilter-method

(concubfilter-class), 4
p.value<- (concubfilter-class), 4
p.value<-,concubfilter-method

(concubfilter-class), 4
plotConCub, 8
pval2star, 10

runConCub, 6, 10

setdiffPresort (sortAscii), 12
show,concub-method (concub-class), 3
show,concubfilter-method

(concubfilter-class), 4
skip.min.group (concubfilter-class), 4
skip.min.group,concubfilter-method

(concubfilter-class), 4
skip.min.group<- (concubfilter-class), 4
skip.min.group<-,concubfilter-method

(concubfilter-class), 4
skip.min.obs (concubfilter-class), 4

13

14 INDEX

skip.min.obs,concubfilter-method
(concubfilter-class), 4

skip.min.obs<- (concubfilter-class), 4
skip.min.obs<-,concubfilter-method

(concubfilter-class), 4
skip.zeroobs (concubfilter-class), 4
skip.zeroobs,concubfilter-method

(concubfilter-class), 4
skip.zeroobs<- (concubfilter-class), 4
skip.zeroobs<-,concubfilter-method

(concubfilter-class), 4
sortAscii, 12

test.direction (concubfilter-class), 4
test.direction,concubfilter-method

(concubfilter-class), 4
test.direction<- (concubfilter-class), 4
test.direction<-,concubfilter-method

(concubfilter-class), 4

	geecc-package
	concub-class
	concubfilter-class
	filterConCub
	GO2list
	marioni
	plotConCub
	pval2star
	runConCub
	sortAscii
	Index

