
Package ‘chroGPS’
October 16, 2019

Type Package

Title chroGPS2: Generation, visualization and differential analysis of
epigenome maps

Version 2.2.0

Date 2018-12-10

Author Oscar Reina, David Rossell

Maintainer Oscar Reina <oscar.reina@irbbarcelona.org>

Description We provide intuitive maps to visualize, analyze and compare the association between ge-
netic elements based on their epigenetic profiles. The approach is based on Multi-
Dimensional Scaling, and includes a parallelized implementation for handling high dimen-
sional datasets. We provide several sensible distance metrics, and adjustment procedures to re-
move systematic biases typically observed when merging data obtained under different technolo-
gies or genetic backgrounds. We also provide functions and methods to perform differential anal-
ysis of epigenome maps at factor and gene level.

License GPL (>=2.14)

Depends R (>= 3.2.0), GenomicRanges, IRanges, methods, Biobase, MASS,
graphics, stats, changepoint

#Imports graphics, cluster, DPpackage, ICSNP

Imports cluster, DPpackage, ICSNP, ellipse, vegan

Enhances parallel, XML, rgl, gplots, pheatmap, ChIPpeakAnno,
org.Dm.eg.db, caTools, plotly

Collate adjustPeaks.R distGPS.R domainDist.R mds-class.R mds.R
procrustesAdj.R clusGPS.R geneSetGPS.R getmodEncode.R
gff2RDList.R gps2xgmml.R diffFactors.R diffGenes.R
mergeReplicates.R profileClusters.R rankFactorsbyDomain.R
rankFactorsbyProfile.R

LazyLoad yes

biocViews Epigenetics, Clustering, ChIPchip, ChIPSeq,
HistoneModification, Visualization, DataRepresentation,
ImmunoOncology

git_url https://git.bioconductor.org/packages/chroGPS

git_branch RELEASE_3_9

git_last_commit 77aa427

git_last_commit_date 2019-05-02

Date/Publication 2019-10-15

1

2 addVar

R topics documented:
addVar . 2
adjustPeaks . 3
bg3 . 4
boostMDS . 5
clusGPS . 6
clusGPS-class . 9
combineGenesMatrix . 10
diffFactors . 11
diffGenes . 12
distGPS . 15
distGPS-class . 17
domainDist . 18
geneSetGPS . 19
getURL . 20
gff2RDList . 20
gps2xgmml . 21
mds . 22
mds-class . 24
mergeClusters . 25
mergeReplicates . 26
procrustesAdj . 28
profileClusters . 29
rankFactorsbyDomain . 30
rankFactorsbyProfile . 32
s2 . 33
splitDistGPS-class . 34

Index 35

addVar Plot vector of a quantitative variable over a MDS map.

Description

Given a quantitative variable as a numeric vector with one element for each point on a MDS map,
calculate and plot the weight vector corresponding to that variable.

Usage

addVar(mds1, z, plot = TRUE, label = "z", pos = 3, ...)

Arguments

mds1 An object of class mds with the MDS object.
z Numeric vector with the quantitative variable, one element for each point.
plot Set to TRUE to calculate and draw the resulting vector on the MDS.
label Something to be printed on the tip of the vector arrow, usually the name of the

given variable.
pos Graphical position where the label is drawn respect to the vector arrow tip.
... Additional parameters given to the generic function plot.

adjustPeaks 3

Value

A named list with the vector components.

Examples

Not run
See chroGPS-manual.pdf for examples.

adjustPeaks Adjust peak width so that samples obtained under different conditions
become comparable.

Description

Peaks obtained under different conditions (e.g. chip-chip, chip-seq, mnase-seq) are typically not
comparable in terms of their width. adjustPeaks modifies the mean and SD of the peak width
distribution for each condition, so that they become equivalent to the condition with widest peaks.
See details.

Usage

adjustPeaks(x, adjust, sampleid, logscale = TRUE)

Arguments

x GRangesList indicating the binding sites for each sample/experiment.

adjust Vector indicating the adjustment factor, i.e. the condition under which each
sample has been obtained.

sampleid Vector containing the sample identifier. sampleid should take the same value
for samples obtained under different conditions, as this is used to detect the
samples to be used for Procrustes adjustment.

logscale If set to TRUE the mean and SD are matched for log width, otherwise the original
widths are used. Working in log scale can help reduce the effect of outliers (e.g.
an usually long binding site).

Details

In a sense, the peak calling resolution is decreased so that they become comparable to the less
precise technology (notice that there is no reliable way to increase the precision given by a low-
resolution technology).

Value

GRangesList object with adjusted widths.

Methods

signature(x=’GRangesList’) Each element in x contains the binding sites for a different sample.
The start, end and chrosomome of each binding sites should be accessed via start, end and
space.

4 bg3

See Also

procrustesAdj for an alternative, more general, adjustment based on Procrustes. distGPS for
computing distances, mds to create MDS-oriented objects.

Examples

#See examples in help(procrustesAdj)

bg3 Sample binding site and related data from BG3 cell line in Drosophila
melanogaster.

Description

chroGPS example dataset including ChIP-CHIP (modEncode) and ChIP-Seq (NCBI GEO GSE19325)
data for Drosophila melanogaster BG3 cell line. The object toydists stores precomputed distGPS
objects (called d,d2,d3) for the epigenetic factors used in the dynamic vignette that comes with the
package.

Usage

data(bg3)

Source

http://www.modencode.org http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19325

References

http://www.modencode.org http://www.ncbi.nlm.nih.gov/geo/

See Also

s2 for the analog S2 cell line object. toydists for precomputed distance matrixes.

Examples

data(bg3)
class(bg3)
bg3
bg3names$Factor
See vignette examples for several uses of these datasets.

boostMDS 5

boostMDS Improve goodness-of-fit of a given MDS solution in terms of R-square.

Description

Given a distance matrix and a valid MDS representation for it, improve the R-square correlation
between observed and approximated distances until converged is reached for a given threshold.

Usage

boostMDS(D, Y, rate = 0.01, maxit = 50, tol = 0.001, samplesize,
verbose = TRUE, scale = FALSE, seed = 149, plt = FALSE, mc.cores = 1)

Arguments

D Distance matrix.

Y Matrix with points from a valid MDS solution for the distances in D.

rate Grid step rate, start with 0.1 which usually is a good compromise, try also 0.01,
1, 10.

maxit Maximum number of iterations.

tol Tolerace for R-square convergence.

samplesize When there are over 100 points to represent, the gradiend descent step size is
determined using a fraction samplesize of the original data points. By default
0.01 with a minimum of 100 points, which typically gives very stable results.
Setting large samplesize can significantly increase the computational cost.

verbose Give details of the gains in R-square and step size.

scale Whether to scale the MDS coordinates in the output MDS.

seed A random seed to be used in the resampling process if samplesize < 1.

plt Whether to plot the intermediate solutions or not.

mc.cores Number of cores to use in parallelized grid step size search.

Value

The function returns a matrix with the coordinates of a valid MDS solution for distance matrix D
where the R-square correlation has been improved. However, have in mind that an MDS solution
with better R-square does not necessarily mean the solution is easier to interpret. As with any MDS
approach, a balance must be found between pure ’technical’ goodness-of-fit and usefulness of the
delivered solution in terms of answering the original hypothesis.

References

boostMDS is based on hitMDS (High-Throughput Multidimensional Scaling, see see http://dig.ipk-
gatersleben.de/hitmds/hitmds.html for details)

6 clusGPS

Examples

Not run, see also chroGPS-manual.pdf file for examples
#data(geneSample)
#d = distGPS(geneSample,uniqueRows=TRUE)
#m = mds(d,type='isoMDS')
#m
#plot(m)
#m = boostMDS(d@d,m@points)
#plot(m)

clusGPS Computation of cluster density estimates for cluster contour repre-
sentation and correct-classification rates (cluster robustness). A pre-
computed clustering of elements used in the map has to be given as
an input, which is useful to explore results using different clustering
algorithms and methodologies (top-down, bottom-up, etc).

Description

After performing a pre-merging step so that all clusters have a minimum size, semiparametric
bayesian density is estimated using a Dirichlet process mixture of normals. This is used both to
compute bayesian mis-classification posterior probabilities (correct classification rates) and to esti-
mate probability contours which can be visualized on the MDS map.

The functions contour2dDP and plotContour functions can be used to compute bayesian density
estimates for a given set of elements (points) from a pre-generated 2D MDS object. These functions
are used internally by clusGPS to draw cluster contours but are also useful to visualize other type
of contours over the map (ie genes from a given Gene Ontology term, having a specific epigenetic
mark of interest, etc).

The S4 accessors clusNames,tabClusters and clusterID retrieve information stored within a
clusGPS object.

Usage

clusGPS(d, m, h, sel=NULL, id=NULL, grid, ngrid=1000, densgrid=FALSE, preMerge=TRUE, type = "hclust", method =
"average", samplesize = 1, p.adjust = TRUE, k, mc.cores = 1,
set.seed = 149, verbose=TRUE, minpoints=70,...)
contour2dDP(x, ngrid, grid = NULL, probContour = 0.5, xlim, ylim,

labels = "", labcex = 0.01, col = colors()[393], lwd = 4,
lty = 1, contour.type = "single", contour.fill = FALSE,

minpoints=100, ...)
clusNames(clus)
tabClusters(clus,name)
clusterID(clus,name)

Arguments

d Object of class distGPS with the pairwise observed dissimilarities between ele-
ments.

clusGPS 7

m (Optional). Object of class mds with a MDS object generated from the distances
in d. Only MDS type "boostMDS" is available. The mds function performs an
optimization of the approximated distances in m in order to improve R-square
correlation between them and the observed dissimilarities en d, maximizing
goodness of fit.

h (Optional). Object of class hclust with a pre-calculated clustering for the ele-
ments in d.

sel (Optional). Logical vector indicating which elements from d will be used for
performing hierarchical clustering with average linkage. This is useful if we
want to focus on a given set of points only (i.e. those from a big cluster which
we want to study in more detail).

id (Optional). Label of the cluster which we want to further subdivide, ignoring
points from all other clusters. Deprecated, use parameter sel specified above.

grid Matrix of dimension ngrid*nvar giving the diagonal points of the grid where the
density estimate is evaluated. The default value is NULL: grid dimensions are
chosen according to the range of the data, and granularity is automatically deter-
mined according to data density, in order to provide a more accurate estimation
in high density areas, where more resolution is needed.

ngrid Number of grid points where the density estimate is evaluated. This argument
is ignored if a grid is specified. The default value is 1000. Higher values are
recommended if data presents very high density areas.

densgrid Set to true to generate grid points from the quantile distribution of the data using
the grid size defined by ngrid. This is useful if the data presents areas of very
different density, ranging from very sparse to extremely dense areas, optimizing
grid granularity where is necessary, therefore improving resolution of density
estimation and reducing computation time.

preMerge If TRUE will perform a first pre-merging step so that any cluster smaller than
minpoints gets merged with its closest cluster based on their centroid distances.
This is performed until no clusters < minpoints exist.

type Type of clustering to be performed. Currently only "hclust" (Agglomerative
Nesting) is supported, but any other clustering type can be used by providing a
pre-calculated object h. This variable is to become deprecated, since clusGPS
will only work with a precomputed clustering.

method Clustering method. See hclust for details. This variable is to become depre-
cated, since clusGPS will only work with a precomputed clustering.

samplesize Proportion of elements to sample for computing clustering and density estima-
tion. This is useful to generate density contours from a subset of the data, speed-
ing up computation.

p.adjust Set to TRUE to adjust the bayesian posterior probabilities of mis-classification.

k Integer vector indicating the number of clusters on which density estimation will
be computed for mis-classification or contour calculation.

mc.cores Number of cores to be used for parallel computation with the parallel package.

set.seed If samplesize<1, random seed to be used to perform random sampling of the
data.

verbose Set to TRUE to output clustering process information.

minpoints If preMerge is FALSE, then the algorithm will ignore clusters with fewer than
minpoints elements. This is useful if the clustering method used tends to gen-
erate many very small clusters of limited use and difficult interpretation and for

8 clusGPS

which density estimates may not be correctly computed. The default method
is to preMerge clusters since this ensures density estimation is available for all
clusters and helps interpreting the map, since no elements are ignored.

x Numeric matrix indicating coordinates of the points for which a probability con-
tour is calculated in contour2dDP.

probContour Numeric matrix indicating coordinates of the points for which a probability con-
tour is calculated in contour2dDP.

contour.type For contour2dDP, type of contour, either ’single’ (surrounding the points within
the given probContour probability) or ’multiple’ to generate terrain-like density
contour lines.

contour.fill Deprecated.
xlim,ylim,labels,labcex,col,lwd,lty

Graphical parameters given to contour2dDP.

clus A valid clusGPS object from which we want to extract information.

name Character indicating a valid name within a clusGPS object, from which we want
to extract information.

... Additional parameters.

Value

The function clusGPS returns an object of class clusGPS. See help for clusGPS-methods for de-
tails. contour2dDP returns a DPdensity object with density contour information which can be
plotted as 2D contours with our plotContour function, as well as with the plot function from the
DPpackage package.

Methods

signature(d=’distGPS’,m=’mds’) Hierarchical clustering is performed for the elements whose
pairwise distances are given in d. For each cluster partition given in k, cluster identity for each
element is returned, and semiparametric bayesian density estimation is computed using the
point density information from m.

plot signature(m = "clusGPS"): S4 plot method for clusGPS objects.

clusNames signature(m = "clusGPS"): Retrieves names of the clustering configurations stored
in clusGPS objects, one for each distance threshold indicated in k, that get automatically
named accordingly.

tabClusters signature(m = "clusGPS"): Returns a table with the number of elements in each of
the clusters found for an existing clustering configuration with name name within the clusGPS
object.

clusterID signature(m = "clusGPS"): Returns a vector of cluster assignments for all the ele-
ments in an existing clustering configuration name within the clusGPS object.

Author(s)

Oscar Reina

Examples

Not run
data(s2)
Computing distances

clusGPS-class 9

d <- distGPS(s2.tab,metric='tanimoto',uniqueRows=TRUE)
Creating MDS object
mds1 <- mds(d,type='isoMDS')
mds1
plot(mds1)
Precomputing clustering
h <- hclust(as.dist(d@d),method='average')
Calculating densities (contours and probabilities), takes a while
clus <- clusGPS(d,mds1,preMerge=TRUE,k=max(cutree(h,h=0.5)))
clus contains information for contours and probabilities
plot(clus,type='contours',k=125,lwd=3,probContour=.75)
plot(clus,type='stats',k=125,ylim=c(0,1))
plot(clus,type='avgstat')
plot(clus,type='density',k=3,ask=TRUE,xlim=range(mds1@points),ylim=range(mds1@points))

clusGPS-class Class "clusGPS"

Description

Agglomerative Nesting for a distGPS object. Contains probability contours and bayesian posterior
probability of mis-classification for the clusters evaluated.

Details

Parameters for the S4 plot method for mds objects.

Object of class "mds" with a 2D or 3D Multidimensional Scaling to be plotted.

x:drawlabels: TRUE to use rownames of the MDS points as text labels.

labels: Alternative character vector giving the text labels for the MDS points.

plantar: If a 3D MDS is used, set plantar to TRUE to plot projected views of the MDS using XY,
YZ and XZ axis decomposition.

point.cex: Size of the points / spheres for the MDS plot.

text.cex: Size of text labels for the MDS points.

text.pos: Alignment position of the text labels respective to its points (1,2,3,4).

point.col: Color for the MDS points / spheres.

text.col: Color for the MDS text labels.

point.pch: PCH type for the MDS points.

type.3d: Use ’p’ for points, ’s’ for spheres.

radius: Radius for the spheres on a 3D MDS plot. Automatically generated from point.cex and
the number of points in the MDS.

app: Appearance of the 3D spheres on a 3D MDS plot, can be ’fill’, ’lines’, ’grid’.

alpha: Number between 0 and 1 with the level of transparency to be used on spheres on a 3D
MDS.

scalecol: Set to TRUE to use a color scale for points, for instance to color points (genes) accord-
ing to their expression level on a chroGPS-genes MDS plot.

scale: Scale to use to generate scale colors (for instance normalized gene expression for each
element (gene) on chroGPS-genes MDS).

palette: Color palette to be used for scale colors.

10 combineGenesMatrix

Objects from the Class

Objects can be created by calls of the form new("clusGPS",...).

Slots

h: Object of class "hclust" with Agglomerative Nesting or user-provided cluster object.

clus: Object of class "list" with probability contour and bayesian posterior probability of mis-
classification information for the clusters evaluated.

adjusted: Object of class "logical" indicating if bayesian posterior probabilities of mis-classification
are adjusted for multiple testing.

Author(s)

Oscar Reina

Examples

showClass("clusGPS")

combineGenesMatrix Combine two datasets with epigenetic factor profiles at gene level in
order to produce a differential chroGPS-genes map.

Description

Combine two datasets with epigenetic factor profiles at gene level in order to produce a differential
chroGPS-genes map.

Usage

combineGenesMatrix(x, y, label.x, label.y, minFactors = 10, minGenes = 1000)

Arguments

x Data frame or matrix with genes (rows) and epigenetic factors (columns), and
values of 0/1 to indicate binding of a given epigenetic factor over genes.

y Same as x, containing the second dataset to compare. Column names have to
match between both datasets, with at least a minimum number of common ones.

label.x Name for the x dataset.

label.y Name for the y dataset.

minFactors Minimum number of common factors between both datasets.

minGenes Minimum number of genes in each dataset with epigenetic information (that is,
minimum number of rows where all values are not zeros).

Value

A matrix with the combined epigenetic profile dataset to perform differential analysis.

diffFactors 11

Author(s)

Oscar Reina.

See Also

See also distGPS,mds,diffGenes.

Examples

Not run
See example in diffGenes function.

diffFactors Performs differential analysis of chroGPS-factors maps based on Pro-
crustes analysis.

Description

The function uses Procrustes analysis to compare two chroGPS-factors MDS solutions, providing
a visual map highlighting differences and a ranked list of Procrustes squared errors between analog
replicated factors in both maps.

Usage

diffFactors(m1,m2,name1='mds1',name2='mds2',minPoints=10,poslegend='topleft',plot=TRUE,pointcol.m1='red',pointcol.m2='green',textcol.m1='black',textcol.m2='grey',pch.m1=19,pch.m2=19,cex.m1=1,cex.m2=1,segcol='blue',...)

Arguments

m1 A mds object, containing a chroGPS-factors MDS map.

m2 A mds object, containing a chroGPS-factors MDS map, must be conformable
with m1 (same number of elements and in the same order in the MDS points).

name1 Name for m1, by default ’mds1’

name2 Name for m2, by default ’mds2’

minPoints Minimum number of points in each of the MDS objects.

poslegend Position for the map legend, passed on to legend function.

plot Wether to plot the differential map or not (in case we only want to retrieve Pro-
crustes errors).

pointcol.m1 Color vector for points in MDS1.

pointcol.m2 Color vector for points in MDS2.

textcol.m1 Color vector for labels in MDS1. Labels are taken from MDS points rownames.

textcol.m2 Color vector for labels in MDS2. Labels are taken from MDS points rownames.

pch.m1 Pch for MDS1 points.

pch.m2 Pch for MDS2 points.

cex.m1 Cex for MDS1 points.

cex.m2 Cex for MDS2 points.

segcol Color for segments joining replicates from both MDS.

... Further arguments passed on to the plot function.

12 diffGenes

Value

The function returns a data frame with Procrustes errors between paired replicates in both chroGPS-
factors MDS maps.

Author(s)

Oscar Reina.

See Also

See functions distGPS,mds for generating chroGPS-factors maps.

Examples

Not run

data(s2)
data(repliSeq)
library(gplots)

Modify colors and add some transparency
fnames <- s2names$Factor
s2names$Color[s2names$Color=='grey'] <- 'orange'
fcolors <- paste(col2hex(s2names$Color),'BB',sep='')
bcolors <- paste(col2hex(s2names$Color),'FF',sep='')

Select time points to compare
m1 <- m.origs[['Early.Mid']]
m2 <- m.origs[['Late']]

Perform differential Procrustes analysis
pp <- diffFactors(m1,m2)

Plot both maps before and after adjustment
m3 <- pp$mds3
plot(0,xlim=c(-1,1),ylim=c(-1,1),xlab='',ylab='',xaxt='n',yaxt='n',col='NA')
segments(m1@points[,1],m1@points[,2],m3@points[,1],m3@points[,2],col='red')
par(new=TRUE)
plot(m1,drawlabels=TRUE,labels=s2names$Factor,point.pch=19,point.cex=4,text.cex=0.75,point.col=s2names$Color,main=sprintf('S2@Origins, adjusted (Avgdist-isoMDS)'),font=2,xlim=c(-1,1),ylim=c(-1,1))
par(new=TRUE)
plot(m3,drawlabels=TRUE,labels=s2names$Factor,point.pch=19,point.cex=4,text.cex=0.75,point.col=s2names$Darkcolor,text.col='grey',main='',xaxt='n',yaxt='n',font=2,xlim=c(-1,1),ylim=c(-1,1))

Plot Procrustes errors
pp <- pp$procrustes
par(las=1,mar=c(4,12,4,4)); barplot(sort(residuals(pp),decr=TRUE),horiz=TRUE,xlim=c(0,max(residuals(pp))+.1),col=heat.colors(length(residuals(pp))),main='Procrustes errors')
hist(residuals(pp),breaks=50)

diffGenes Performs differential analysis of chroGPS-genes maps based on
Bayesian Correct Classification Rates.

diffGenes 13

Description

The function uses Bayesian posterior probability of correct classification (CCR) of chroGPS-genes
maps as computed by the clusGPS function to identify statistically significant epigenetic changes
between two different backgrounds (technical and/or biological). The functions find.fdr and
find.threshold are used internally to compute approximated FDRs from a vector of input poste-
rior probabilities of correct classification (CCRs).

Usage

diffGenes(xy,m,clus,label.x,label.y,clusName=NULL,fdr=TRUE,mc.cores=1)

Arguments

xy A matrix or data.frame object, containing a combined matrix with whole-
genome epigenetic information for backgrounds X and Y, as obtained by the
combineGenesMatrix function.

m A mds object, containing a chroGPS-genes MDS map, obtained for the com-
bined matrix xy.

clus A clusGPS object, containing a chroGPS-genes cluster solution, obtained for
the provided background via the clusGPS and mergeClusters functions.

label.x Name for background X, by default ’mds1’

label.y Name for background Y, by default ’mds2’

clusName If clus contains more than one clustering solution (i.e. cutree dendrogram
height cut), the name of the selected one. If no name is provided, the first ele-
ment is used.

fdr Set to TRUE (default) to compute False Discovery Rate of cluster correct clas-
sification from posterior probabilities.

mc.cores Number of cores to use for parallel computations.

Value

The function returns a data frame with posterior probabilities and FDRs of cluster classifications
for all genes in backgrounds X and Y, so that significant changes can be traced and reported easily.

Author(s)

Oscar Reina.

See Also

See functions distGPS,mds,clusGPS,profileClusters for generating chroGPS-genes maps. See
function plotTransitions for examples on how to visualize differential gene maps results.

Examples

Summarize factor replicates with method 'any' so that 1 replicate
having the mark is enough
Assuming s2.tab and bg3.tab contain the full datasets for dm3 genome
and all factors used in Font-Burgada et al.
s2.tab <- mergeReplicates(s2.tab,s2names$Factor,'any')
bg3.tab <- mergeReplicates(bg3.tab,bg3names$Factor,'any')

14 diffGenes

Join, use common factors. Then use common genes only from those that
have at least one mark in both s2 and bg3
x <- combineGenesMatrix(s2.tab,bg3.tab,'S2','BG3')

Build map and cluster as always
d <- distGPS(x,metric='tanimoto',uniqueRows=TRUE)

Not run
m <- mds(d,type='classic',splitMDS=TRUE,split=0.16,mc.cores=4)
mm <- mds(d,m,type='boostMDS',samplesize=0.005,mc.cores=6)
unique(rownames(m@points)==rownames(mm@points)) # sanity check
This should be incorporated in the function code...
#m@points <- m@points[rownames(d@d),]
#mm@points <- mm@points[rownames(d@d),]

Cluster
h <- hclust(as.dist(d@d),method='average')
clus <-
clusGPS(d,mm,h,k=max(cutree(h,h=0.5)),ngrid=10000,mc.cores=8,recalcDist=FALSE,verbose=FALSE)
clus.merged <- mergeClusters(clus,brake=0,mc.cores=8)
clus
clus.merged

Use new function to profile clusters
pc <- profileClusters2(x,clus.merged,normalize=TRUE)
pheatmap(pc,trace='none',scale='none',col=bluered(100))

Perform differential analysis
x.diff <- res <-
diffGPS.clus(x,mm,clus.merged,label.x='S2',label.y='BG3',clusName=clusNames(clus.merged)[1],fdr=TRUE,mc.cores=8)
write.csv(x.diff,'diffgenes_fdrest.csv')

Select genes changing clusters with FDR 0.05
xx.diff <- x.diff[x.diff$ClusID.S2!=x.diff$ClusID.BG3 &
x.diff$FDR.S2<0.25 & x.diff$FDR.BG3<0.25,]
xx.diff$CC <- paste(xx.diff$ClusID.S2,xx.diff$ClusID.BG3,sep='.')
head(sort(table(xx.diff$CC),decreasing=TRUE))
write.csv(xx.diff,'kk_fdrest2.csv')

Perform enrichment test using getEnrichedGO from chippeakanno package
library(ChIPpeakAnno)
library(org.Dm.eg.db)

enriched.GO <- lapply(c('2.9','5.2'),function(cc) {
fbid <- as.character(xx.diff$geneid[xx.diff$CC==cc])
if (length(fbid)>=25)
ans <-
getEnrichedGO(annotatedPeak=fbid,orgAnn='org.Dm.eg.db',maxP=0.05,multiAdjMethod='BH')
else ans <- NULL
return(ans)
})

names(enriched.GO) <- c('2.9','5.2')
enriched.GO <- enriched.GO[unlist(lapply(enriched.GO,length))>0]
enriched.GO <- lapply(enriched.GO,function(x) lapply(x,function(y)

distGPS 15

unique(y[,-ncol(y)])))
lapply(enriched.GO,head)

Plot results with diffGPS.plot function
res.sel <- res[res$ClusID.S2!=res$ClusID.BG3,]

Plot
diffGenes.plot(x,mm,clus.merged,res.sel,transitions='10.2',label.x='S2',label.y='BG3',fdr1=0.25,fdr2=0.25)

distGPS Compute matrix with pairwise distances between objects. Several GPS
metrics are available.

Description

The function computes pairwise distances between invididuals (e.g. samples or genes) according to
a user-specified metric. Several metrics are available. The precise definition of each metric depends
on the class of the first argument (see details section).

Usage

distGPS(x, metric='tanimoto', weights, uniqueRows=FALSE, genomelength=NULL, mc.cores=1)

Arguments

x Object for which we want to compute distances

metric Desired distance metric. Valid options for chroGPS-factors map are ’tanimoto’,
’avgdist’, ’chisquare’ and ’chi’ (see details). For chroGPS-genes maps, metrics
’wtanimoto’, ’euclidean’ and ’manhattan’ are also available.

weights For signature(x=’matrix’), an unnamed numeric vector with weights applied to
every sample (column) in the original data. The typical example is when we
have a sample (epigenetic factor) with several replicates available (biological
or technical replicate, different antibody, etc.), and we want to treat them to-
gether (for instance giving a 1/nreplicates weight to each one). If not supplied,
each replicate is considered as an individual sample (using 1 as weight for every
sample).

uniqueRows If set to TRUE and x is a matrix or data.frame, duplicated rows are removed
prior to distance calculation. This can save substantial computing time and
memory. Notice however that the dimension of the distance matrix is equal
to the number of unique rows in x, instead of nrow.. (x).

genomelength For ’chi’ and ’chisquare’ metrics, numeric value indicating the length of the
genome. If not given the function uses the minimum length necessary to fit the
total length of the result.

mc.cores If mc.cores>1 and parallel package is loaded, computations are performed in
parallel with mc.cores processors when possible.

16 distGPS

Details

For GRangesList objects, distances are defined as follows.

Let a1 and a2 be two GRanges objects. Define as n1 the number of a1 intervals overlapping with
some interval in a2. Define n2 analogously. The Tanimoto distance between a1 and a2 is de-
fined as (n1+n2)/(nrow(z1)+nrow(z2)). The average distance between a1 and a2 is defined as
.5*(n1/nrow(z1) + n2/nrow(z2)). The wtanimoto distance in chroGPS-genes weights each epi-
genetic factor (table columns) according to its frequency (table rows). The chi-square distance is
defined as the usual chi-square distance on a binary matrix B which is automatically computed by
distGPS. The binary matrix B is the matrix with length(x) rows and number of columns equal to
the genome length, where B[i,j]==1 indicates that element i has a binding site at base pair j. The
chi distance is simply defined as the square root of the chi-square distance. Finally, euclidean and
manhattan metrics have the same definition than in the base R function dist.

When choosing a metric one should consider the effect of outliers, i.e. samples with large distance
to all other samples. Tanimoto and Average Distance take values between 0 and 1, and therefore
outlying distances have a limited effect. Chi-square and Chi distances are not limited between 0
and 1, i.e. some distances may be much larger than others. The Chi metric is slightly more robust
to outliers than the Chi-square metric.

For matrix or data.frame objects, x must be a matrix with 0’s and 1’s (or FALSE and TRUE). The
usual definitions are used for Tanimoto (which is equivalent to Jaccard’s index), Chi-square and Chi.
Average overlap between rows i and j is simply the average between the proportion of elements in
i also in j and the proportion of elements in j also in i.

Value

Object of class distGPS, with matrix of pairwise dissimilarities (distances) between objects.

Methods

distGPS:

Each element in x is assumed to indicate the binding sites for a different sample, e.g. epige-
netic factor. Typically space(x) indicates the chromosome, start(x) the start position and
end(x) the end position (in bp). Strand information is ignored.

signature(x=’GRangesList’)signature(x=’matrix’) Rows in x contain individuals for which we want
to compute distances. Columns in x contain the variables, and should only contain either 0’s
and 1’s or FALSE and TRUE.
splitDistGPS:
This is a set of internal classes and functions to be used in the parallel computation of Multi-
dimensional Scaling.
uniqueCount:
This function collapses a chroGPS-genes matrix or data frame so that elements with the same
combination of variables are aggregated into a single entry. Elements become then identified
by their unique pattern and a frequency count is also returned.
as.matrix:
Returns the raw distance matrix within the object.

See Also

mds to create MDS-oriented objects, procrustesAdj for Procrustes adjustment.

distGPS-class 17

Examples

x <- rbind(c(rep(0,15),rep(1,5)),c(rep(0,15),rep(1,5)),c(rep(0,19),1),c(rep(1,5),rep(0,15)))
rownames(x) <- letters[1:4]
d <- distGPS(x,metric='tanimoto')
du <- distGPS(x,metric='tanimoto',uniqueRows=TRUE)
mds1 <- mds(d)
mds1
plot(mds1)
d <- distGPS(x,metric='chisquare')
mds1 <- mds(d)
mds1
plot(mds1)

distGPS-class Class "distGPS"

Description

Pairwise distances between elements. Function distGPS creates objects of this class. splitDistGPS
in an private class used internally for parallel Multidimensional Scaling.

Objects from the Class

Objects can be created by calls of the form new("distGPS",...) to generate chroGPS-compliant
distance matrices with user-defined metrics. The internal distance matrix can be extracted with the
function "as.matrix"

Slots

d: Object of class "matrix" with pairwise dissimilarities (distances) between elements.

metric: Object of class "character" indicating the metric type used for calculating distances.
See function "distGPS".

type: Object of class "character", deprecated.

Author(s)

Oscar Reina

Examples

showClass("distGPS")
data(s2)
data(toydists)
d
class(as.matrix(d))
as.matrix(d)[1:5,1:5]

18 domainDist

domainDist Overview of intra and inter-domain distances.

Description

Given a distance of pairwise distances or dissimilarities between elements, return intra and inter-
group sets of distances based on a given group definition. This is useful to get an insight on domain
robustness for functional related genes or factors.

Usage

domainDist(d, gps='factors', domain, type='intra', col='white', avg=FALSE,
plot=TRUE, ...)

Arguments

d Distance/Dissimilarities matrix, usually the slot d on a distGPS object, but any
distance matrix can be given as input.

gps ’factors’ for a chroGPS-factors distance matrix, ’genes’ for a chroGPS-genes
one.

domain Character vector with group identity for each element d. It can be a functional
domain classification (i.e. ’Activation’, ’Repression’, etc), given for each factor
on a chroGPS-factors map or for each gene in a chroGPS-genes map. However,
any classification of interest can be used (pathways, gene ontology, etc.)

type Intradomain (’intra’) or Interdomain (’inter’) distance overview.

col Character vector with colors to be passed to plot.

avg TRUE to return also the average inter or intra domain distance.

plot TRUE to generate inter/intra domain boxplots.

... Additional parameters given to the generic function plot.

Value

List of inter or intra domain distances.

Examples

Not run
data(s2)
d <- distGPS(s2,metric='avgdist',mc.cores=1)
d.intra <- domainDist(as.matrix(d),domain=s2names$Color,type='intra',plot=TRUE)
d.inter <- domainDist(as.matrix(d),domain=s2names$Color,type='inter',plot=TRUE)

geneSetGPS 19

geneSetGPS Highlight point (gene) position over a Multi-dimensional Scaling plot.

Description

Given a list of genes of interest, the function highlights their position over a Multi-dimensional
Scaling plot.

Usage

geneSetGPS(x, m, genes, uniqueCount = TRUE, ...)

Arguments

x Matrix or data frame of observations x variables (tipically genes x epigenetic
factors), with gene identifiers as rownames.

m Object of class mds with a valid Multidimensional Scaling representation for the
elements in x.

genes Character vector containing gene identifiers, matching those on rownames(x).

uniqueCount Set to FALSE if the MDS has been generated directly from the data in x, other-
wise set to TRUE to match gene identifiers with their unique pattern of observed
variables.

... Additional parameters given to the generic function plot.

Value

Matrix with coordinates on the given input MDS object for the genes selected.

Author(s)

Oscar Reina

Examples

Not run
data(s2)
d <- distGPS(s2.tab,metric='tanimoto',uniqueRows=TRUE)
mds1 <- mds(d)
set.seed(149)
sampleGenes <- rownames(s2.tab)[sample(1:nrow(s2.tab),10,rep=FALSE)]
pts <- geneSetGPS(s2.tab,mds1,genes=sampleGenes,uniqueCount=TRUE)
plot(mds1)
points(getPoints(pts),col='red',cex=3)

20 gff2RDList

getURL Retrieve file from URL.

Description

A function that can be used to retrieve any file of interest from the internet, in our case, mod-
Encode binding site information GFF files into the working directory. See also help for function
gff2RDList.

Usage

getURL(urls, filenames, extension='.gff3', method='internal')

Arguments

urls Character vector with one or more target URLs to download.

filenames Character vector with the filename for each URL target.

extension If desired, an extension to append to filenames.

method Either ’internal’ to use the system’s default or ’wget’ if it is installed.

Value

Message indicating the path to downloaded file(s).

Examples

Not run
#getURL('http://www.google.com/index.html','index','.html')

gff2RDList Retrieve binding site information from GFF3 files.

Description

An auxiliary function to retrieve binding site information from GFF3 format files (for instance those
downloaded from modEncode, see function getURL).

Usage

gff2RDList(filenames,listnames,dir,quote=NULL,chrprefix='')

Arguments

filenames GFF3 filenames to read.

listnames Names for each read filename, will be used as names of the returned GRangesList.
If not given, filenames will be used as listnames.

dir Directory where the GFF3 files are located.

quote Quote character used in the GFF3 files around fields, if any.

chrprefix Prefix to be placed before the chromosome names if desired, for instance ’chr’.

gps2xgmml 21

Value

A list with Enriched and Depleted binding sites, each one is an object of class GRangesList with
the GRanges objects containing the respective enriched or depleted binding sites from each GFF3
file.

Examples

Not run
#getURL('http://intermine.modencode.org/release-30/features.do?type=submission&action=export&format=gff3&submission=modENCODE_2984&feature=BindingSite&UCSC','test')
#test <- gff2RDList('test.gff3',dir=getwd())
#test
#test$Enriched[[1]]
#test$Depleted[[1]]

gps2xgmml Export an ’mds’ object to Cytoscape .xgmml format

Description

gps2xgmml creates a .xgmml file for visualizing MDS results in Cytoscape. Two-dimensional
MDS maps can be visualized in Cytoscape as usual. For three-dimensional maps Cytoscape’s 3D
Renderer (http://wiki.cytoscape.org/Cytoscape_3/3D_Renderer) is required.

Usage

gps2xgmml(x, fname='out.xgmml', names.arg, fontSize=4, col=gplots::col2hex('steelblue'), cex)

Arguments

x Object of class mds

fname Name of output file

names.arg Names for each point. If missing, they’re taken from x.

fontSize Font size

col Fill colour(s) for the plotting symbols. Should be given in hexadecimal, e.g. as
returned by function col2hex from gplots. Tips: col2hex(’steelblue’) looks
nice in 2D/3D plots, col2hex(’steelblue’) looks nice in 2D plots and a bit faded
on 3D plots.

cex Expansion factor for plotting symbols. By default, cex=12 for 2D plots and
cex=100 for 3D plots.

Details

The .xgmml file contains the map co-ordinates in 2 or 3 dimensions, depending on the number of
dimensions stored in the input mds object. To visualize properly a file with 3D co-ordinates, you
need to install Cytoscape’s 3D Renderer (http://wiki.cytoscape.org/Cytoscape_3/3D_Renderer) and
start Cytoscape following the instructions provided therein.

An .xgmml file with 3D co-ordinates can still be visualized in regular Cytoscape but the z-axis will
be ignored.

22 mds

Value

Generates an .xgmml file that can be opened in Cytoscape (File -> Import -> Network).

Examples

#See help(mds) for an example

mds Metric and non-metric Multidimensional Scaling for a distGPS object.

Description

Generation of Multidimensional Scaling objects for the dissimilarities between elements given as an
input in a distGPS object. Metric and non-metric algorithms are available, as well as an optimiza-
tion algorithm for improving r-square correlation between observed and approximated distances.
The MDS calculation for a given distance matrix can be splitted into smaller individual tasks and
run in parallel, greatly improving CPU time and system memory usage. The S4 accessor functions
getR2,getStress,getPoints retrieve R-square correlation, stress and points stored within a mds
object respectively. The function is.adj is useful to know if a certain chroGPS MDS map has been
adjusted by Procrustes or not (see help for procrustesAdj for details.)

Usage

mds(d, m = NULL, k = 2, type = "classic", add = FALSE, cor.method = "pearson", splitMDS = FALSE, split = 0.26, overlap = 0.025, stepSize=0.01, reshuffle = TRUE, set.seed = 149, mc.cores = 1, ...)
getR2(m)
getStress(m)
getPoints(m)

Arguments

d Object of class distGPS with the pairwise observed dissimilarities between ele-
ments, a distance matrix.

m (Optional). Object of class mds with a MDS object generated from the distances
in d. Only MDS type "boostMDS" is available. The mds function performs an
optimization of the approximated distances in m in order to improve r-square cor-
relation between them and the observed dissimilarities en d, maximizing good-
ness of fit.

k Dimensionality of the reconstructed space, typically set to 2 or 3.

type Set to "classic" to perform classical MDS (uses function cmdscale from pack-
age stats). Set to "isoMDS" to use Kruskal’s non-metric MDS (uses function
isoMDS from package MASS) Set to "boostMDS" to perform r-square optimiza-
tion of a pre-computed input MDS for that distance matrix.

add Logical indicating if an additive constant c* should be computed, and added to
the non-diagonal dissimilarities such that all n-1 eigenvalues are non-negative in
cmdscale.

cor.method A character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman", can be ab-
breviated.

mds 23

splitMDS Set to TRUE to perform computation of the MDS in parallel (see parameters
below).

split Proportion of elements to include in each (but last) distance submatrix.

overlap Proportion of elements to be used as common anchor points between two ad-
jacent distance submatrixes. These points will be used as spatial references to
stitch each two adjacent MDS objects by Procrustes.

stepSize Size for the quadratic search step to be used for R-square optimization if boostMDS
is called, see specific help function for details.

reshuffle Set to TRUE to perform random resampling of the input distance matrix be-
fore splitting it for parallel computation. This is often necessary to sufficiently
capture the inherent variability of the data in each distance submatrix so that the
stitching process can work properly, as the original data may present an arbitrary
sorting of some kind. If a previous resampling of the data has been performed,
this is not necessary.

set.seed Random seed to perform the resampling.

mc.cores Number of cores to be passed to the mclapply function from the parallel
package, used to perform the parallel MDS computations.

... Additional parameters passed to cmdscale, isoMDS or boostMDS, see each indi-
vidual help file for details.

Value

The function returns a mds object. See help ("mds-Class") for details.

Methods

mds signature(d = "distGPS",m = "missing"): Creates a mds object with points in a k-dimensional
space approximating the pairwise distances in d.

mds signature(d = "distGPS",m = "mds"): For the observed dissimilarities in d and a valid spa-
tial representation of them in m, the function returns a mds object with an optimized repre-
sentation of d in terms of R-square. The MDS stress measure is also returned. See help for
boostMDS for details.

plot signature(m = "mds"): S4 plot method for mds objects.

Author(s)

Oscar Reina

See Also

See functions cmdscale, isoMDS from package MASS.

Examples

x <- rbind(c(rep(0,15),rep(1,5)),c(rep(0,15),rep(1,5)),c(rep(0,19),1),c(rep(1,5),rep(0,15)))
rownames(x) <- letters[1:4]
d <- distGPS(x,metric='tanimoto',uniqueRows=TRUE)
mds1 <- mds(d)
mds1
plot(mds1)
#gps2xgmml(mds1, fname='chroGPS_factors.xgmml', fontSize=4,col=col2hex('red'), cex=8)

24 mds-class

mds-class Class "mds"

Description

Multidimensional Scaling. Function mds creates object of this class.

Details

Parameters for the S4 plot method for mds objects.

Object of class "mds" with a 2D or 3D Multidimensional Scaling to be plotted.

x:drawlabels: TRUE to use rownames of the MDS points as text labels.

labels: Alternative character vector giving the text labels for the MDS points.

plantar: If a 3D MDS is used, set plantar to TRUE to plot projected views of the MDS using XY,
YZ and XZ axis decomposition.

point.cex: Size of the points / spheres for the MDS plot.

text.cex: Size of text labels for the MDS points.

text.pos: Alignment position of the text labels respective to its points (1,2,3,4).

point.col: Color for the MDS points / spheres.

text.col: Color for the MDS text labels.

point.pch: PCH type for the MDS points.

type.3d: Use ’p’ for points, ’s’ for spheres.

radius: Radius for the spheres on a 3D MDS plot. Automatically generated from point.cex and
the number of points in the MDS.

app: Appearance of the 3D spheres on a 3D MDS plot, can be ’fill’, ’lines’, ’grid’.

alpha: Number between 0 and 1 with the level of transparency to be used on spheres on a 3D
MDS.

scalecol: Set to TRUE to use a color scale for points, for instance to color points (genes) accord-
ing to their expression level on a chroGPS-genes MDS plot.

scale: Scale to use to generate scale colors (for instance normalized gene expression for each
element (gene) on chroGPS-genes MDS).

palette: Color palette to be used for scale colors.

xlim: Graphical limit for the X axis.

ylim: Graphical limit for the Y axis.

zlim: Graphical limit for the Z axis for 3D plots.

Objects from the Class

Objects can be created by calls of the form new("mds",...).

mergeClusters 25

Slots

points: Object of class "matrix" with coordinates in the approximated space.

Type: Object of class "character" with the type of MDS (classicMDS, isoMDS).

Adj: Object of class "logical" indicating if the MDS object has been adjusted by Procrustes or
not.

R.square: Object of class "numeric" with the percentage of variability from the original dissimi-
larities captured in the approximated distances.

stress: Object of class "numeric" with the stress for the returned MDS configuration.

Author(s)

Oscar Reina

See Also

cmdscale from package base. isoMDS from package MASS.

Examples

showClass("mds")

mergeClusters Unsupervised cluster merging based on their observed overlap with
automatic changepoint detection.

Description

The function uses contour density estimation as computed by the clusGPS function to merge signif-
icantly overlapping clusters in an unsupervised manner. In each step, clusters with highest overlap
are merged, their individual density estimates are updated in a computational feasible manner, and
the process continues until the maximum overlap between any given pair of clusters drops swiftly,
as detected by the cpt.mean function in the changepoint package.

Usage

mergeClusters(clus, clus.method = "unweighted", cpt.method = "mean", logscale = TRUE, brake = rep(1, length(clus@clus)), plt = TRUE, mc.cores = 1)

Arguments

clus A clusGPS object from which we want to merge clusters with a significant over-
lap when visualized on a chroGPS MDS map. This is quite useful when a clus-
tering method (i.e. hierarchical clustering with average linkage) tends to return
a high number of overlapping clusters.

clus.method Currently only ’unweighted’ method is supported, that is, cluster overlap is com-
puted based on spatial location of contours, but the computed overlaps are not
weighted for cluster size.

cpt.method Use ’mean’ for using cpt.mean function in changepoint package for comput-
ing overlap changepoint. Use ’var’ for cpt.var. See specific function help for
details.

26 mergeReplicates

logscale Defaults to TRUE. Whether to use decimal or log scale values for computing
overlap changepoint.

brake (Optional). By default, the function returns the clusters from the optimal merg-
ing step as detected by the changepoint functions (brake=1). By using smaller
values (0, -1, -2, ...) or bigger ones (2, 3, 4, ...) the algorithm can be forced to
return the result from any previous or later merging step respectively.

plt Set to TRUE to visualize maximum cluster overlap for each merging step and
changepoint detection (optimal merging step).

mc.cores Numbers of cores to use in parallel computation.

Value

A clusGPS object where significantly overlapping clusters are merged, highly improving visualiza-
tion, cluster robustness and further study of the epigenetic configuration of the chroGPS map.

Author(s)

Oscar Reina.

References

Changepoint package from Killick et al, 2012.

See Also

See documentation for package changepoint, clusGPS for epigenetic cluster generation.

Examples

Not run
data(s2)
Computing distances
d <- distGPS(s2.tab,metric='tanimoto',uniqueRows=TRUE)
Creating MDS object
mds1 <- mds(d,type='isoMDS')
mds1
plot(mds1)
Precomputing clustering
h <- hclust(as.dist(d@d),method='average')
Calculating densities (contours and probabilities), takes a while
clus <- clusGPS(d,mds1,preMerge=TRUE,k=300) # Generating a high number of clusters
clus <- mergeClusters(clus)

mergeReplicates Merges information from epigenetic replicates at factor, gene and
chroGPS MDS map level.

Description

The function performs effectively merging of epigenetic replicate information, either as genomic
intervals or as gene epigenetic profiles. It also allows merging of final chroGPS MDS factor maps so
that multiple points for the same epigenetic factor (i.e. different antibodies or experimental sources)
are returned as a single location in the map (centroid).

mergeReplicates 27

Usage

mergeReplicates(x,id,mergeBy='any',mc.cores=1)

Arguments

x Object containing the epigenetic information used to generate either factors or
gene maps. Can also be a final chroGPS-factors MDS map object.

id Identifier for epigenetic factors (list elements for x=’GRangesList’, column names
for x=’matrix’ or ’data.frame’, row names for x=’mds’). This information will
be used to identify valid replicates to be merged.

mergeBy Either a character vector with possible values ’any’ or ’all’ to merge replicate
genomic intervals or gene epigenetic profiles based on a logical ’OR’ or ’AND’
fashion, or a decimal number between (0,1] indicating the minimum proportion
of replicates needed to consider.

mc.cores Number of cores to use in calls to parallel::mclapply

Value

An object from the same class as x, containing a data set with merged replicates as specified by the
’mergeBy’ argument.

Methods

signature(x=’GRangesList’) Each element in x is assumed to indicate the binding sites for a
different sample, e.g. epigenetic factor. Typically space(x) indicates the chromosome,
start(x) the start position and end(x) the end position (in bp). Strand information is ig-
nored.

signature(x=’matrix’) Rows in x contain individuals for which we want to compute distances.
Columns in x contain the variables, and should only contain either 0’s and 1’s or FALSE and
TRUE.

signature(x=’mds’) A MDS object containing a chroGPS-factors map.

See Also

mds to create MDS-oriented objects

Examples

Not run

#data(s2)
#data(bg3)

#names(s2)
#names(bg3)

Unify replicates
#mnames <- sort(unique(intersect(s2names$Factor,bg3names$Factor)))
#sel <- s2names$Factor %in% mnames
#s2.repset <- mergeReplicateList(s2[sel],id=s2names$Factor[sel],mergeBy='any')
#sel <- bg3names$Factor %in% mnames
#bg3.repset <- mergeReplicateList(bg3[sel],id=bg3names$Factor[sel],mergeBy='any')

28 procrustesAdj

#names(s2.repset)
#names(bg3.repset)

procrustesAdj Use Procrustes to adjust an MDS map containing samples obtained
under different conditions, e.g. technology or genetic backgrounds.

Description

The function adjusts a previous mds to take into account that samples were obtained under differ-
ent conditions, e.g. technological or genetic. Pairwise adjustments are performed by identifying
samples present in both conditions and using Procrustes. When there are more than two conditions,
sequential pairwise adjustments are applied (in the order that maximizes the number of common
samples in each pairwise adjustment).

Usage

procrustesAdj(mds1, d, adjust, sampleid)

Arguments

mds1 Object of class mds with a Multi-dimensional scaling analysis on a distance ma-
trix, typically obtained by a previous call to mds.

d Object of class distGPS with the matrix used to create the Multidimensional
Scaling object usually through a call to mds.

adjust Vector indicating the adjustment factor, i.e. the condition under which each
sample has been obtained.

sampleid Vector containing the sample identifier. sampleid should take the same value
for samples obtained under different conditions, as this is used to detect the
samples to be used for Procrustes adjustment.

Details

We implement the Procrustes adjustment as follows. First we identify common samples, i.e. those
obtained both under conditions A and B. Second, we use Procrustes to estimate the shift, scale
and rotation that best matches the position of the samples in B to those in A. If only 1 sample
was obtained under both conditions, only the shift is estimated. Last, we apply the estimated shift,
scale and rotation to all B samples. That is, the Procruses parameters are estimated using common
samples only, which are then applied to all samples to perform the adjustment.

Notice that the R square of the adjusted mds is typically improved after Procrustes adjustment, since
distances between samples obtained under different conditions are set to NA and therefore MDS
needs to approximate distances between less points.

When several replicates are available for a given sampleid under the same condition (adjust), the
average position of all replicates is used.

Value

Adjusted mds object. Have in mind that only original distances between samples obtained under the
same condition should be conserved, as the adjusted distances manipulated by Procrustes no longer
correlate with the distances between their points in the adjusted MDS.

profileClusters 29

Methods

signature(x=’mds’) x is a mds object with the results of an MDS analysis.

See Also

distGPS for computing distances, mds to create MDS-oriented objects.

Examples

Unadjusted map
data(s2)
data(s2Seq)
data(toydists) # precomputed distances
d2 <- distGPS(c(reduce(s2),reduce(s2Seq)),metric='avgdist') # not run
mds2 <- mds(d2,k=2,type='isoMDS')
cols <- c(as.character(s2names$Color),as.character(s2SeqNames$Color))
sampleid <-

c(as.character(s2names$Factor),as.character(s2SeqNames$Factor))
pchs <- rep(c(20,17),c(length(s2),length(s2Seq)))
point.cex <- rep(c(8,5),c(length(s2),length(s2Seq)))
par(mar=c(2,2,2,2))
plot(mds2,drawlabels=TRUE,point.pch=pchs,point.cex=point.cex,text.cex=.7,
point.col=cols,text.col='black',labels=sampleid,font=2)
#legend('topleft',legend=sprintf('R2=%.3f - %stress=%.3f',getR2(mds2),getStress(mds2)),bty='n',cex=1)
legend('topright',legend=c('ChIP-Chip','ChIP-Seq'),pch=c(20,17),pt.cex=c(1.5,1))

Procrustes Adjusted map
adjust <- rep(c('chip','seq'),c(length(s2),length(s2Seq)))
sampleid <-
c(as.character(s2names$Factor),as.character(s2SeqNames$Factor))
mds3 <- procrustesAdj(mds2,d2,adjust=adjust,sampleid=sampleid)
par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
plot(mds3,drawlabels=TRUE,point.pch=pchs,point.cex=point.cex,text.cex=.7,
point.col=cols,text.col='black',labels=sampleid,font=2)
#legend('topleft',legend=sprintf('R2=%.3f - %stress=%.3f',getR2(mds3),getStress(mds3)),bty='n',cex=1)
legend('topright',legend=c('ChIP-Chip','ChIP-Seq'),pch=c(20,17),pt.cex=c(1.5,1))

Peak Width Adjusted map
s2.pAdj <-
adjustPeaks(c(reduce(s2),reduce(s2Seq)),adjust=adjust,sampleid=sampleid,logscale=TRUE)
d3 <- distGPS(s2.pAdj,metric='avgdist')
mds4 <- mds(d3,k=2,type='isoMDS')
par(mar=c(0,0,0,0),xaxt='n',yaxt='n')
plot(mds4,drawlabels=TRUE,point.pch=pchs,point.cex=point.cex,text.cex=.7,
point.col=cols,text.col='black',labels=sampleid,font=2)
#legend('topleft',legend=sprintf('R2=%.3f - %s=%.3f',getR2(mds4),getStress(mds4)),bty='n',cex=1)
legend('topright',legend=c('ChIP-Chip','ChIP-Seq'),pch=c(20,17),pt.cex=c(1.5,1))

profileClusters Assess epigenetic profiles for genes present in each cluster as obtained
by the clusGPS function.

30 rankFactorsbyDomain

Description

Assess epigenetic profiles for genes present in each cluster as obtained by the clusGPS function.

Usage

profileClusters(x, clus, clusName = NULL, normalize = FALSE, mc.cores = 1, ...)

Arguments

x Matrix or data.frame with epigenetic profiles used to generate chroGPS-genes
map. See distGPS.

clus A valid clusGPS object from the chroGPS-genes map generated from x.

clusName If desired, the name of a clustering solution within the clusGPS object. See
clusNames.

normalize Normalize epigenetic profile information with respect to whole genome (to as-
sess enrichments/depletions).

mc.cores Cores to use in call to parallel::mclapply.

... Additional arguments.

Value

Data frame with epigenetic enrichment profiles for all clusters (rows) and epigenetic factors (columns),
to be used for downstream assessments or visualization (heatmaps).

Author(s)

Oscar Reina.

See Also

distGPS, clusGPS.

Examples

Not run

rankFactorsbyDomain Function to help selecting candidate epigenetic factors based on Epi-
genetic Domain cohesion/separation.

Description

Function to help selecting candidate epigenetic factors based on Epigenetic Domain cohesion/separation.
This function ranks all combinations of a certain size of epigenetic factors in the selected domain
based on how much they contribute to provide a good cohesion and separation of the points of their
epigenetic domain against the rest. This allows selection of the ’best’ combination of epigenetic
factors in a certain domain to generate informative epigenetic maps.

Usage

rankFactorsbyDomain(d, sampleinfo, ranktype = "domainDist", selName = "Color", selValue, k = NULL, mc.cores = 1)

rankFactorsbyDomain 31

Arguments

d A distGPS object with the epigenetic distances, see function distGPS.

sampleinfo A data.frame object with at least the domain information for the epigenetic fac-
tors in the provided distance matrix. Sampleinfo rownames need to match row
and colnames in the distance matrix.

ranktype Character vector indicating the method to use. Currently only supporting ’do-
mainDist’ method.

selName Name of the column containing the epigenetic domain information in the sam-
pleinfo dataframe.

selValue Character indicating the name of the domain to be evaluated.

k Size of the factor combination to be evaluated.

mc.cores Cores to use in calls to parallel::mclapply.

Value

Named list with each evaluated combination of factors and:

inter Their resulting average inter-domain distance.

intra Their resulting average intra-domain distance.

Author(s)

Oscar Reina.

See Also

distGPS, domainDist

Examples

Rank Factors by Domain, using intra/inter domain distance

data(s2)
data(toydists)
#d <- distGPS(s2,metric='avgdist',mc.cores=8) # Compute distances
rownames(s2names) <- s2names$ExperimentName

Known domains
Call rankFactorsbyDomain for HP1a repression domain, select a combination of 4
factors
library(caTools)
rank.factors.4 <- rankFactorsbyDomain(d,s2names,ranktype='domainDist',selName='Color',selValue='lightblue',k=3,mc.cores=1) # Test HP1a repression
ddd <- as.data.frame(do.call(rbind,lapply(rank.factors.4,unlist)))
ddd <- ddd[order(ddd$intra,decreasing=FALSE),]
head(ddd)

32 rankFactorsbyProfile

rankFactorsbyProfile Function to help selecting candidate epigenetic factors based on their
predictive capabilities.

Description

Function to help selecting candidate epigenetic factors based on their predictive capabilities. This
function evaluates how information from a certain set of epigenetic factors can be used to accurately
predict information from the rest using linear and logistic regression.

Usage

rankFactorsbyProfile(x,minFactors=5,ranktype='glm',glm.threshold=0.5,verbose=TRUE,maxIter=ncol(x),mc.cores=1)

Arguments

x A genes x factors table as used in the distGPS function for generation of epige-
netic gene maps.

minFactors Minimum set of ’core’ factors to retain. Factors are removed based on how
accurately they can be predicted by others.

ranktype Either ’lm’ for using linear regression, or ’glm’ for logistic.
glm.threshold For ’glm’, threshold to round values obtained from the predict function so that

they are compared with the real values. Defaults to 0.5.
verbose Informs about progression of the linear or logistic regression steps.
maxIter Deprecated.
mc.cores Cores to use in calls to parallel::mclapply.

Value

A data frame with the epigenetic factors in the order they are removed and their prediction accuracy.

Author(s)

Oscar Reina.

See Also

distGPS, domainDist, rankFactorsbyDomain

Examples

Not run

data(s2)

Unknown domains
Perform computation
glm.rank <- rankFactorsbyProfile(s2.tab,ranktype='glm',glm.threshold=0.75,mc.cores=1)

Returned objects are lists named by the factor with highest prediction accuracy in each iteration
names(glm.rank)

s2 33

s2 Sample binding site and related data from S2 and BG3 cell lines in
Drosophila melanogaster.

Description

chroGPS example dataset including ChIP-CHIP (modEncode) and ChIP-Seq (NCBI GEO GSE19325)
data for Drosophila melanogaster S2 and BG3 cell lines as well as S2 wildtype gene expression
values coming from Affymetrix Drosophila2 arrays. The object toydists stores precomputed
distGPS objects (called d,d2,d3) for the epigenetic factors used in the dynamic vignette that comes
with the package. The objects d.origs,m.origs, contain the distGPS and mds objects for the 76
S2 epigenetic factors used in Font-Burgada et al. 2014, computed over modENCODE Origins of
Replication at four different replication time points.

Usage

data(s2)
data(s2Seq)
data(bg3)
data(repliSeq)

Source

http://www.modencode.org http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19325

References

http://www.modencode.org http://www.ncbi.nlm.nih.gov/geo/

Examples

data(s2)
class(s2)
s2
s2names$Factor

data(s2Seq)
s2Seq

data(bg3)
names(bg3)

data(repliSeq)
class(d.origs)
class(m.origs)
names(d.origs)
d.origs[[1]]
m.origs[[1]]

See vignette examples for several uses of these datasets.

34 splitDistGPS-class

splitDistGPS-class Class "splitDistGPS"

Description

Set of pairwise distances between elements. This is an internal class to be used with the parallel
version of mds, and should not be used on its own.

Objects from the Class

Objects from this class are used internally for parallel Multidimensional Scaling. See mds for de-
tails.

Slots

d: List of distGPS objects.

size: Object of class "numeric" indicating the size of the individual distGPS objects in the list.
See function mds.

o: Object of class "numeric" with the overlap (anchor points) between adjacent distGPS objects.
See function mds.

shuffle: Object of class "numeric", deprecated.

Author(s)

Oscar Reina

Examples

showClass("splitDistGPS")

Index

∗Topic ~changepoint
mergeClusters, 25

∗Topic ~clustering
diffGenes, 12
mergeClusters, 25

∗Topic ~mds
diffFactors, 11
diffGenes, 12

∗Topic classes
clusGPS-class, 9
distGPS-class, 17
mds-class, 24
splitDistGPS-class, 34

∗Topic clustering
distGPS, 15
mergeReplicates, 26

∗Topic cluster
clusGPS, 6

∗Topic datasets
bg3, 4
s2, 33

∗Topic graphics
geneSetGPS, 19

∗Topic graphs
mds, 22

∗Topic manip
gps2xgmml, 21

∗Topic mds
mds, 22

∗Topic modEncode
bg3, 4
s2, 33

∗Topic multivariate,cluster
addVar, 2
adjustPeaks, 3
boostMDS, 5
domainDist, 18
getURL, 20
gff2RDList, 20
procrustesAdj, 28

∗Topic multivariate
distGPS, 15
mergeReplicates, 26

addVar, 2
adjustPeaks, 3
adjustPeaks,GRangesList-method

(adjustPeaks), 3
adjustPeaks-methods (adjustPeaks), 3
as.matrix,distGPS-method

(distGPS-class), 17

bg3, 4
bg3names (bg3), 4
boostMDS, 5

clusGPS, 6
clusGPS,distGPS,mds-method (clusGPS), 6
clusGPS-class, 9
clusGPS-method (clusGPS-class), 9
clusGPS-methods (clusGPS), 6
clusNames (clusGPS), 6
clusNames,clusGPS-method (clusGPS), 6
clusterID (clusGPS), 6
clusterID,clusGPS-method (clusGPS), 6
combineGenesMatrix, 10
contour2dDP (clusGPS), 6

d (s2), 33
d2 (s2), 33
d3 (s2), 33
diffFactors, 11
diffFactors-methods (diffFactors), 11
diffGenes, 12
diffGenes-methods (diffGenes), 12
distGPS, 4, 15, 29, 31, 32
distGPS,data.frame-method (distGPS), 15
distGPS,GRangesList-method (distGPS), 15
distGPS,matrix-method (distGPS), 15
distGPS-class, 17
distGPS-methods (distGPS), 15
domainDist, 18, 31, 32

find.fdr (diffGenes), 12
find.threshold (diffGenes), 12

geneSetGPS, 19
geneSetGPS,data.frame,mds,character-method

(geneSetGPS), 19

35

36 INDEX

geneSetGPS,matrix,mds,character-method
(geneSetGPS), 19

geneSetGPS-methods (geneSetGPS), 19
getPoints (mds), 22
getPoints,mds-method (mds), 22
getR2 (mds), 22
getR2,mds-method (mds), 22
getStress (mds), 22
getStress,mds-method (mds), 22
getURL, 20
gff2RDList, 20
gps2xgmml, 21
gps2xgmml,mds,ANY-method (gps2xgmml), 21
gps2xgmml,mds-method (gps2xgmml), 21

hclust, 7
hclust-class (clusGPS-class), 9

is.adj (mds), 22
is.adj,mds-method (mds), 22

m.origs (s2), 33
mds, 4, 16, 22, 27, 29
mds,distGPS,mds-method (mds-class), 24
mds,distGPS,missing-method (mds), 22
mds,splitDistGPS,missing-method (mds),

22
mds-class, 24
mds-methods (mds), 22
mergeClusters, 25
mergeClusters,clusGPS-method

(mergeClusters), 25
mergeClusters,list-method

(mergeClusters), 25
mergeClusters-methods (mergeClusters),

25
mergeReplicateList (mergeReplicates), 26
mergeReplicateMatrix (mergeReplicates),

26
mergeReplicateMDS (mergeReplicates), 26
mergeReplicates, 26
mergeReplicates,data.frame-method

(mergeReplicates), 26
mergeReplicates,GRangesList-method

(mergeReplicates), 26
mergeReplicates,list-method

(mergeReplicates), 26
mergeReplicates,matrix-method

(mergeReplicates), 26
mergeReplicates,mds-method

(mergeReplicates), 26
mergeReplicates-methods

(mergeReplicates), 26

plot,clusGPS,ANY-method
(clusGPS-class), 9

plot,clusGPS-method (clusGPS-class), 9
plot,mds,ANY-method (mds), 22
plot,mds-method (mds-class), 24
plotContour (clusGPS), 6
plotDiffGenes (diffGenes), 12
procrustesAdj, 4, 16, 28
procrustesAdj,mds,distGPS-method

(procrustesAdj), 28
procrustesAdj-methods (procrustesAdj),

28
profileClusters, 29

rankFactorsbyDomain, 30, 32
rankFactorsbyDomain,data.frame-method

(rankFactorsbyDomain), 30
rankFactorsbyDomain,distGPS-method

(rankFactorsbyDomain), 30
rankFactorsbyDomain,matrix-method

(rankFactorsbyDomain), 30
rankFactorsbyDomain-methods

(rankFactorsbyDomain), 30
rankFactorsbyProfile, 32
repliSeq (s2), 33

s2, 33
s2names (s2), 33
s2Seq (s2), 33
s2SeqNames (s2), 33
show,clusGPS-method (clusGPS-class), 9
show,distGPS-method (distGPS-class), 17
show,mds-method (mds-class), 24
show,splitDistGPS-method

(splitDistGPS-class), 34
splidDistGPS-class

(splitDistGPS-class), 34
splitDistGPS,data.frame-method

(distGPS), 15
splitDistGPS,distGPS-method

(splitDistGPS-class), 34
splitDistGPS,matrix-method (distGPS), 15
splitDistGPS-class, 34
splitDistGPS-class (distGPS-class), 17

tabClusters (clusGPS), 6
tabClusters,clusGPS-method (clusGPS), 6
toydists (s2), 33

uniqueCount (distGPS), 15

	addVar
	adjustPeaks
	bg3
	boostMDS
	clusGPS
	clusGPS-class
	combineGenesMatrix
	diffFactors
	diffGenes
	distGPS
	distGPS-class
	domainDist
	geneSetGPS
	getURL
	gff2RDList
	gps2xgmml
	mds
	mds-class
	mergeClusters
	mergeReplicates
	procrustesAdj
	profileClusters
	rankFactorsbyDomain
	rankFactorsbyProfile
	s2
	splitDistGPS-class
	Index

