Package 'SpacePAC'

October 16, 2019
Type Package
Title Identification of Mutational Clusters in 3D Protein Space viaSimulation.
Version 1.22.0
Date 2018-08-20
Author Gregory Ryslik, Hongyu Zhao
Maintainer Gregory Ryslik gregory.ryslik@yale.edu
Description Identifies clustering of somatic mutations in proteins via a simulation ap-proach while considering the protein's tertiary structure.
biocViews Clustering, Proteomics
License GPL-2
Depends R(>= 2.15),iPAC
Suggests RUnit, BiocGenerics, rgl
Repository Bioconductor
git_url https://git.bioconductor.org/packages/SpacePAC
git_branch RELEASE_3_9
git_last_commit 0bfdf2b
git_last_commit_date 2019-05-02
Date/Publication 2019-10-15
R topics documented:
SpacePAC-package 2
make.3D.Sphere 3
SpaceClust 4
Index 8

SpacePAC-package Identifying mutational clusters in $3 D$ protein space using simulation.

Description

The SpacePAC package identifies non-random amino acid clusters in proteins in 3D space and is a sister package to $i P A C$ and GraphPAC. SpacePAC considers 1, 2 or 3 non-overlapping spheres with radii specified by the user and through simulation, attempts to identify spheres where there are more mutations than expected by random chance alone. These results are then outputted in the form of a list with p-values.

Details

Please see get. Positions and get.AlignedPositions in the iPAC package for information about obtaining positional data.

Author(s)

Gregory Ryslik, Yuwei Cheng, Hongyu Zhao
Maintainer: Gregory Ryslik gregory.ryslik@yale.edu

References

Gregory Ryslik and Hongyu Zhao (2012). iPAC: Identification of Protein Amino acid Clustering. R package version 1.1.3. http://www.bioconductor.org/.
Gregory Ryslik and Hongyu Zhao (2013). GraphPAC: Identification of Mutational Clusters in Proteins via a Graph Theoretical Approach. R Package version 1.0.0 http: //www.bioconductor . org/.
Bioconductor: Open software development for computational biology and bioinformatics R. Gentleman, V. J. Carey, D. M. Bates, B.Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, and others 2004, Genome Biology, Vol. 5, R80

See Also

```
get.Positions SpaceClust
```


Examples

```
## Not run:
CIF <- "https://files.rcsb.org/view/3GFT.cif"
Fasta <- "https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions <- get.Positions(CIF, Fasta, "A")
data(KRAS.Mutations)
#Calculate the required clusters
SpaceClust(KRAS.Mutations, KRAS.Positions$Positions, radii.vector = c(1,2,3,4))
## End(Not run)
```

```
make.3D.Sphere Plots a sphere centered at the specified amino acid with a specified
radius.
```


Description

Plots a sphere of radius r centered at a specific residue. Currently only 1 sphere can be plotted. The rgl pckage is required.

Usage

make.3D.Sphere(position.matrix, center, radius, alpha = 0.5)

Arguments

```
position.matrix
                    A dataframe consisting of six columns: 1) Residue Name, 2) Amino Acid
                        number in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6)
                        Z-coordinate. Please see get.Positions and get.AlignedPositions in the
                        iPAC package.
center The residue number you want the sphere centered at. Use the number from the
                                "Can.Count" column in the position matrix.
radius The radius of the sphere you would like to draw.
alpha The "darkness" of the sphere.
```


Value

The rgl package is called and a graph is shown.

Note

This function is made for ease of use in preliminary analysis only. For more sophisticated graphing packages, consider using PyMol at: http://www.pymol.org

References

Daniel Adler and Duncan Murdoch (2013). rgl: 3D visualization device system (OpenGL). R package version 0.93.935. http://CRAN.R-project.org/package=rgl

See Also

get.Positions

Examples

```
## Not run:
#Plots a sphere centered around amino acid 12 with radius 3.
library(rgl)
#loads the data
CIF <- "https://files.rcsb.org/view/3GFT.cif"
Fasta <- "https://www.uniprot.org/uniprot/P01116-2.fasta"
```

```
KRAS.Positions <- get.Positions(CIF, Fasta, "A")
#generates the plot
make.3D.Sphere(KRAS.Positions$Positions, 12, 3)
## End(Not run)
```

SpaceClust SpaceClust

Description

Finds mutational clusters via simulation. There are two options currently avaiable. The first is "SimMax" and the second is "Poisson". The Poisson method is faster and finds the 1 sphere with the largest number of mutations at each radius. A bonferroni adjustment is then used to account for multiple radii. The SimMax method uses the "simMaxspheres" parameter to find the 1,2 or 3 (non-overlapping) spheres that together have the most number of mutations. A simulation approach is then used to find the most significant clusters. Please see the vignette for further details.

Usage

```
SpaceClust(mutation.data, position.matrix, method = "SimMax", numsims = 1000,
    simMaxSpheres = 3, radii.vector, multcomp = "bonferroni", alpha = 0.05)
```


Arguments

mutation. data A matrix of 0's (no mutation) and 1's (mutation) where each column represents an amino acid in the protein and each row represents an individual sample (test subject, cell line, etc). Thus if row i in column j had a 1 , that would mean that the jth amino acid for person i had a nonsynonomous mutation. Please note that getting the mutation matrix is the responsibility of the user. Further, the column names of the matrix must be in the format V1, V2, .., Vn where n is the total number of residues. One source of information is the COSMIC database http: //cancer.sanger.ac.uk/cancergenome/projects/cosmic/. However, extraction from this (or any other database) is not trivial and often requires preprocessing work. In the case of COSMIC, a local SQL server must be set up and query of the user's design must be run to pull the correct mutational data. This data must then be manipulated by the user into the matrix described. Please note, that the mutational data should come from a whole gene or a whole genome study and can not be selectively chosen as that will violate the uniformity assumption that the algorithm is based on.

position.matrix

A dataframe consisting of six columns: 1) Residue Name, 2) Amino Acid number in the protein, 3) Side Chain, 4) X-coordinate, 5) Y-coordinate and 6) Z-coordinate. Please see get.Positions and get.AlignedPositions in the iPAC package.
method Either "SimMax" or "Poisson". Please see the vignette for further details on the difference.
numsims The number of times to simulate the mutations on the protein. For each simulation, the mutations are uniformly distributed on the protein.
simMaxSpheres The maximum number of spheres to consider. Currently, the implementation allows for simMaxspheres to be either 1,2 or 3 .
radii.vector A vector of radii. For each radius, we find the best sphere combination. If the positional data is obtained from the pdb, the radii are measured in Angstroms as the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates in the PDB are in Angstroms. Thus, for instance, a radius of " 5 " means that all residues with their carbon-alpha atom within 5 Angstroms of the center are included in the sphere.
multcomp If the Poisson method is used, a multiple comparison adjustment is required to account for the multiple sphere. As the sphere iterates through the protein (centered at each amino acid), a p-value is calculated for each sphere. Options are: "Bonferroni", "BH", or "none". The "BH" method stands for the BenjaminiHochberg FDR correction. Please see p.adjust for a full description.
alpha If the Poisson method is used, alpha is used as the cutoff value after the appropriate multiple comparison adjustment.

Details

For the SimMax method, no multiple comparison is required for different radii sizes and sphere positions. See the vignette for more information. Furthermore, note that on average, residues are 3 Angstroms apart.

Value

If the method is Poisson, the result is a list with the following components:
result.poisson A data frame of the most significant clusters. The data frame has the following columns for each cluster (clusters shown as rows): Center: The amino acid at which the sphere is centered. Start: The smallest numbered residue in the sphere. End: The largest numbered residue in the sphere. Positions: The mutated positions in the sphere. MutsCount: The total number of mutations in the sphere. P.Value: The p-value for the cluster. Within.Range: The residues within the sphere. Line.Length: End-Start.
best.radii The radii at which the lowest p -value for the most significant cluster was found. Only the matrix for this p -value is shown.

If the method is SimMax, the result is a list with the following components.
p.value The smallest p.value when considering 1,2 or 3 spheres. Will match the p-value for the optimal sphere configuration.
optimal.num.spheres
The number of spheres with the most statistically significant p-value.
optimal.radius The radius at which the most statistically significant p -value is identified.
optimal.sphere This presents the sphere results with the most statistically significant p-value. It will automatically display whether 1,2 or 3 spheres is best. In the very unlikely event that more than one sphere result has the same z-score (for instance the z -score is the same whether you consider 2 or 3 spheres), the result that uses the minimum number of spheres will be displayed.
best.1.sphere This shows the orientation of the most statistically significant sphere. It will display the following items: 1) Center: The amino acid at which the sphere is centered. 2) Start: The smallest numbered residue in the sphere. 3) End: The largest numbered residue in the sphere. 4) Positions: The mutated positions in
the sphere. 5) MutsCount: The total number of mutations in the sphere. 6) ZScore: The normalized z-score as defined in the vignette. 7) Within.Range: The residues within the sphere. 8) Line.Length: End-Start.
best.2.sphere This shows the orientation of the most statistically significant 2 spheres. The entries are the same as the items for "best.1.sphere" except for a " 1 " or " 2 " appended to each column name. A " 1 " means that the information presented in the column belongs to the first sphere while a " 2 " means that the information in the column belongs to the second sphere. The "MutsCountTotal" column shows how many mutations are in both spheres and is just the sum of "MutsCount1" and "MutsCount2". Finally, the "Intersection" column is the intersection of "Within.Range1" and "Within.Range2" and should be blank unless an error occurs.
best. 3 .sphere This shows the orientation of the most statistically significant 3 spheres. The entries are the same as in "best2.sphere" except now there is a " 1 ", " 2 " or " 3 " appended to each column to signify whether the 1 st, 2 nd or 3 rd sphere is being considered.
best. 1. sphere.radius
The radius that provides the most statistically significant result when only 1 sphere is considered.
best. 2. sphere.radius
The radius that provides the most statistically significant result when only 2 spheres are considered.
best. 3. sphere.radius
The radius that provides the most statistically signifificant result when only 3 spheres are considered.
bad. 2. sphere.message
If finding the optimal 2 spheres caused an error (possibly because no nonoverlapping spheres or all the mutations are on one residue) a message is shown here with more details.
bad.3sphere.message
If finding the optimal 3 spheres caused an error (possibly because no nonoverlapping spheres or all the mutations are on one or two residues) a message is shown here with more details.
bad.2sphere.radii
If finding the optimal 2 spheres caused an error, the radii at which errors occurred are displayed.
bad.3sphere.radii
If finding the optimal 3 spheres caused an error, the radii at which errors occurred are displayed.

Note
See the 'multcomp' package on CRAN for a description of how the multiple comparison adjustment is made.

If you use the Poisson method, a Bonferroni correction is used to adjust for all the radii. As an example, supposing that the most significant cluster is found at radius 5 , and the radii vector was $(1,2,3,4,5)$, the p -values displayed in the result matrix would be the p-value_b*5 where p-value_b is the p-value if algorithm was run with radii vector $=c(5)$.

References

Torsten Hothorn, Frank Bretz and Peter Westfall (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal 50(3), 346-363.

See Also

get.Positions SpaceClust

Examples

CIF <- "https://files.rcsb.org/view/3GFT.cif"
Fasta <- "https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions <- get.Positions(CIF, Fasta, "A")
data(KRAS.Mutations)
\#Calculate the required clusters using SimMax
SpaceClust(KRAS.Mutations, KRAS.Positions\$Positions, radii. vector $=c(1,2,3,4)$)
\#Calculate the required clusters using Poisson
SpaceClust(KRAS.Mutations, KRAS.Positions\$Positions, radii. vector $=c(1,2,3,4)$, method $=$ "Poisson")

Index

```
*Topic Clusters
    SpaceClust, 4
*Topic Mutations
    SpaceClust,4
*Topic plot
    make.3D.Sphere, 3
get.AlignedPositions, 2-4
get.Positions, 2-4,7
make.3D.Sphere, 3
p.adjust,5
SpaceClust, 2, 4, 7
SpacePAC (SpacePAC-package), 2
SpacePAC-package, 2
```

