
Package ‘ORFik’
October 16, 2019

Type Package

Title Open Reading Frames in Genomics

Version 1.4.1

Encoding UTF-8

Description Tools for manipulation of RiboSeq, RNASeq and CageSeq data. ORFik
is extremely fast through use of C, data.table and GenomicRanges. Package
allows to reassign starts of the transcripts with the use of CageSeq data,
automatic shifting of RiboSeq reads, finding of Open Reading Frames for
whole genomes and much more.

biocViews ImmunoOncology, Software, Sequencing, RiboSeq, RNASeq,
FunctionalGenomics, Coverage, Alignment, DataImport

License MIT + file LICENSE

LazyData TRUE

BugReports https://github.com/JokingHero/ORFik/issues

URL https://github.com/JokingHero/ORFik

Depends R (>= 3.6.0), IRanges (>= 2.17.1), GenomicRanges (>= 1.35.1),
GenomicAlignments (>= 1.19.0)

Imports S4Vectors (>= 0.21.3), GenomeInfoDb (>= 1.15.5),
GenomicFeatures (>= 1.31.10), AnnotationDbi (>= 1.45.0),
rtracklayer (>= 1.43.0), Rcpp (>= 1.0.0), data.table (>=
1.11.8), Biostrings (>= 2.51.1), stats, tools, Rsamtools (>=
1.35.0), BiocGenerics (>= 0.29.1), ggplot2 (>= 2.2.1), methods
(>= 3.6.0)

RoxygenNote 6.1.1

Suggests testthat, rmarkdown, knitr, BiocStyle, BSgenome,
BSgenome.Hsapiens.UCSC.hg19

LinkingTo Rcpp

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ORFik

git_branch RELEASE_3_9

git_last_commit 3ae9f3b

git_last_commit_date 2019-06-06

Date/Publication 2019-10-15

1

https://github.com/JokingHero/ORFik/issues
https://github.com/JokingHero/ORFik

2 R topics documented:

Author Haakon Tjeldnes [aut, dtc],
Kornel Labun [aut, cre, cph],
Katarzyna Chyzynska [ctb, dtc],
Evind Valen [ths, fnd]

Maintainer Kornel Labun <kornellabun@gmail.com>

R topics documented:
ORFik-package . 4
addCdsOnLeaderEnds . 5
addNewTSSOnLeaders . 6
allFeaturesHelper . 6
assignAnnotations . 7
assignFirstExonsStartSite . 8
assignLastExonsStopSite . 8
assignTSSByCage . 9
asTX . 10
bedToGR . 11
changePointAnalysis . 11
checkRFP . 12
checkRNA . 12
codonSumsPerGroup . 13
computeFeatures . 13
computeFeaturesCage . 14
convertToOneBasedRanges . 16
coverageGroupings . 17
coverageHeatMap . 18
coveragePerTiling . 19
coverageScorings . 20
defineIsoform . 21
defineTrailer . 22
detectRibosomeShifts . 23
disengagementScore . 24
distToCds . 25
distToTSS . 26
downstreamFromPerGroup . 27
downstreamN . 28
downstreamOfPerGroup . 28
entropy . 29
extendLeaders . 30
extendsTSSexons . 31
filterCage . 31
filterTranscripts . 32
findFa . 33
findMapORFs . 33
findMaxPeaks . 34
findNewTSS . 35
findORFs . 35
findORFsFasta . 37
firstEndPerGroup . 38
firstExonPerGroup . 38

R topics documented: 3

firstStartPerGroup . 39
floss . 40
fpkm . 41
fpkm_calc . 42
fractionLength . 43
fread.bed . 44
gcContent . 44
groupGRangesBy . 45
groupings . 46
gSort . 47
hasHits . 47
initiationScore . 48
insideOutsideORF . 49
is.grl . 50
is.gr_or_grl . 51
is.ORF . 51
isInFrame . 52
isOverlapping . 53
isPeriodic . 53
kozakSequenceScore . 54
lastExonEndPerGroup . 55
lastExonPerGroup . 56
lastExonStartPerGroup . 56
loadRegion . 57
loadTxdb . 58
longestORFs . 58
makeExonRanks . 59
makeORFNames . 59
mapToGRanges . 60
matchNaming . 61
metaWindow . 61
numCodons . 62
numExonsPerGroup . 63
optimizeReads . 63
orfID . 64
orfScore . 64
overlapsToCoverage . 66
parseCigar . 66
pmapFromTranscriptF . 67
pSitePlot . 68
rankOrder . 69
readWidths . 70
reassignTSSbyCage . 70
reassignTxDbByCage . 72
reduceKeepAttr . 73
remakeTxdbExonIds . 74
removeMetaCols . 74
removeTxdbExons . 75
removeTxdbTranscripts . 75
restrictTSSByUpstreamLeader . 76
ribosomeReleaseScore . 76
ribosomeStallingScore . 77

4 ORFik-package

savePlot . 78
scaledWindowPositions . 79
seqnamesPerGroup . 80
shiftFootprints . 80
sortPerGroup . 81
startCodons . 82
startDefinition . 83
startRegion . 84
startRegionCoverage . 85
startRegionString . 86
startSites . 86
stopCodons . 87
stopDefinition . 88
stopSites . 88
strandBool . 89
strandPerGroup . 90
subsetCoverage . 90
subsetToFrame . 91
tile1 . 91
translationalEff . 92
txNames . 93
txSeqsFromFa . 94
uniqueGroups . 95
uniqueOrder . 95
unlistGrl . 96
uORFSearchSpace . 97
updateTxdbRanks . 98
updateTxdbStartSites . 98
upstreamFromPerGroup . 99
upstreamOfPerGroup . 99
validGRL . 100
validSeqlevels . 100
widthPerGroup . 101
windowCoveragePlot . 101
windowPerGroup . 102
windowPerReadLength . 103
windowPerTranscript . 104

Index 106

ORFik-package ORFik for analysis of open reading frames.

Description

Main goals:

1. Finding Open Reading Frames (very fast) in the genome of interest or on the set of tran-
scripts/sequences.

2. Utilities for metaplots of RiboSeq coverage over gene START and STOP codons allowing to
spot the shift.

addCdsOnLeaderEnds 5

3. Shifting functions for the RiboSeq data.

4. Finding new Transcription Start Sites with the use of CageSeq data.

5. Various measurements of gene identity e.g. FLOSS, coverage, ORFscore, entropy that are
recreated based on many scientific publications.

6. Utility functions to extend GenomicRanges for faster grouping, splitting, tiling etc.

Author(s)

Maintainer: Kornel Labun <kornellabun@gmail.com> [copyright holder]

Authors:

• Haakon Tjeldnes <hauken_heyken@hotmail.com> [data contributor]

Other contributors:

• Katarzyna Chyzynska <katchyz@gmail.com> [contributor, data contributor]

• Evind Valen <eivind.valen@gmail.com> [thesis advisor, funder]

See Also

Useful links:

• https://github.com/JokingHero/ORFik

• Report bugs at https://github.com/JokingHero/ORFik/issues

addCdsOnLeaderEnds Extends leaders downstream

Description

When finding uORFs, often you want to allow them to end inside the cds.

Usage

addCdsOnLeaderEnds(fiveUTRs, cds, onlyFirstExon = FALSE)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

cds If you want to extend 5’ leaders downstream, to catch uorfs going into cds,
include it.

onlyFirstExon logical (F), include whole cds or only first exons.

Details

This is a simple way to do that

Value

a GRangesList of cds exons added to ends

https://github.com/JokingHero/ORFik
https://github.com/JokingHero/ORFik/issues

6 allFeaturesHelper

addNewTSSOnLeaders add cage max peaks as new transcript start sites for each 5’ leader (*)
strands are not supported, since direction must be known.

Description

add cage max peaks as new transcript start sites for each 5’ leader (*) strands are not supported,
since direction must be known.

Usage

addNewTSSOnLeaders(fiveUTRs, maxPeakPosition, removeUnused)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList
maxPeakPosition

The max peak for each 5’ leader found by cage

removeUnused logical (FALSE), remove leaders that did not have any cage support. (standard
is to set them to original annotation)

Value

a GRanges object of first exons

allFeaturesHelper Calculate the features in computeFeatures

Description

Not used directly, calculates all features.

Usage

allFeaturesHelper(grl, RFP, RNA, tx, fiveUTRs, cds, threeUTRs, faFile,
riboStart, riboStop, orfFeatures, includeNonVarying, grl.is.sorted)

Arguments

grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs, etc.

RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

RNA RnaSeq reads as GAlignment, GRanges or GRangesList object

tx a GrangesList of transcripts, normally called from: exonsBy(Gtf, by = "tx",
use.names = T) only add this if you are not including Gtf file You do not need to
reassign these to the cage peaks, it will do it for you.

fiveUTRs fiveUTRs as GRangesList, if you used cage-data to extend 5’ utrs, remember to
input CAGE assigned version and not original!

assignAnnotations 7

cds a GRangesList of coding sequences

threeUTRs a GrangesList of transcript 3’ utrs, normally called from: threeUTRsByTran-
script(Gtf, use.names = T)

faFile a FaFile or BSgenome from the fasta file, see ?FaFile

riboStart usually 26, the start of the floss interval, see ?floss

riboStop usually 34, the end of the floss interval

orfFeatures a logical, is the grl a list of orfs?

includeNonVarying

a logical, if TRUE, include all features not dependent on RiboSeq data and
RNASeq data, that is: Kozak, fractionLengths, distORFCDS, isInFrame, isOver-
lapping and rankInTx

grl.is.sorted logical (F), a speed up if you know argument grl is sorted, set this to TRUE.

Value

a data.table with features

assignAnnotations Overlaps GRanges object with provided annotations.

Description

It will return same list of GRanges, but with metdata columns: trainscript_id - id of transcripts
that overlap with each ORF gene_id - id of gene that this transcript belongs to isoform - for coding
protein alignment in relation to cds on coresponding transcript, for non-coding transcripts alignment
in relation to the transcript.

Usage

assignAnnotations(ORFs, con)

Arguments

ORFs - GRanges or GRangesList object of your ORFs.

con - Path to gtf file with annotations.

Value

A GRanges object of your ORFs with metadata columns ’gene’, ’transcript’, isoform’ and ’biotype’.

8 assignLastExonsStopSite

assignFirstExonsStartSite

Reassign the start positions of the first exons per group in grl

Description

make sure your grl is sorted, since start of "-" strand objects should be the max end in group, use
ORFik:::sortPerGroup(grl) to get sorted grl.

Usage

assignFirstExonsStartSite(grl, newStarts)

Arguments

grl a GRangesList object

newStarts an integer vector of same length as grl, with new start values

Value

the same GRangesList with new start sites

See Also

Other GRanges: assignLastExonsStopSite, downstreamFromPerGroup, downstreamOfPerGroup,
upstreamFromPerGroup, upstreamOfPerGroup

assignLastExonsStopSite

Reassign the stop positions of the last exons per group

Description

make sure your grl is sorted, since stop of "-" strand objects should be the min start in group, use
ORFik:::sortPerGroup(grl) to get sorted grl.

Usage

assignLastExonsStopSite(grl, newStops)

Arguments

grl a GRangesList object

newStops an integer vector of same length as grl, with new start values

Value

the same GRangesList with new stop sites

assignTSSByCage 9

See Also

Other GRanges: assignFirstExonsStartSite, downstreamFromPerGroup, downstreamOfPerGroup,
upstreamFromPerGroup, upstreamOfPerGroup

assignTSSByCage Input a txdb and add a 5’ leader for each transcript, that does not have
one.

Description

For all cds in txdb, that does not have a 5’ leader: Start at 1 base upstream of cds and use CAGE,
to assign leader start. All these leaders will be 1 exon based, if you really want exon splicings, you
can use exon prediction tools, or run sequencing experiments.

Usage

assignTSSByCage(txdb, cage, extension = 1000, filterValue = 1,
restrictUpstreamToTx = FALSE, removeUnused = FALSE)

Arguments

txdb a TxDb file or a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite)

cage Either a filePath for CageSeq file, or already loaded CageSeq peak data as
GRanges.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

restrictUpstreamToTx

a logical (FALSE), if you want to restrict leaders to not extend closer than 5
bases from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), remove leaders that did not have any cage support. (standard
is to set them to original annotation)

Details

Given a TxDb object, reassign the start site per transcript using max peaks from CageSeq data. A
max peak is defined as new TSS if it is within boundary of 5’ leader range, specified by ‘extension‘
in bp. A max peak must also be higher than minimum CageSeq peak cutoff specified in ‘filter-
Value‘. The new TSS will then be the positioned where the cage read (with highest read count in
the interval).

Value

a TxDb obect of reassigned transcripts

See Also

Other CAGE: reassignTSSbyCage, reassignTxDbByCage

10 asTX

Examples

Not run:
library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")
cagePath <- system.file("extdata", "cage-seq-heart.bed.bgz",
package = "ORFik")
reassignTxDbByCage(txdbFile, cagePath)

End(Not run)

asTX Map genomic to transcript coordinates by reference

Description

Similar to GenomicFeatures’ pmapToTranscripts, but in this version the grl ranges are compared to
reference ranges with same name, not by index. And it has a security fix.

Usage

asTX(grl, reference)

Arguments

grl a GRangesList of ranges within the reference, grl must have column called
names that gives grouping for result

reference a GrangesList of ranges that include and are bigger or equal to grl ig. cds is grl
and gene can be reference

Value

a GRangesList in transcript coordinates

See Also

Other ExtendGenomicRanges: coveragePerTiling, overlapsToCoverage, reduceKeepAttr, tile1,
txSeqsFromFa, windowPerGroup

bedToGR 11

bedToGR Converts different type of files to Granges

Description

column 5 will be set to score Only Accepts bed files for now, standard format from Fantom5

Usage

bedToGR(x, bed6 = TRUE)

Arguments

x An data.frame from imported bed-file, to convert to GRanges

bed6 If bed6, no meta column is added

Value

a GRanges object from bed

See Also

Other utils: convertToOneBasedRanges, findFa, fread.bed, is.gr_or_grl, is.grl, validGRL

changePointAnalysis Get the offset for specific RiboSeq read width

Description

Get the offset for specific RiboSeq read width

Usage

changePointAnalysis(x, feature = "start")

Arguments

x a vector with count per position to analyse, assumes the zero is in the middle +
1 (position 0)

feature (character) either "start" or "stop"

Value

a single numeric offset

See Also

Other pshifting: detectRibosomeShifts, shiftFootprints

12 checkRNA

checkRFP Helper Function to check valid RFP input

Description

Helper Function to check valid RFP input

Usage

checkRFP(class)

Arguments

class, the given class of RFP object

Value

NULL, stop if invalid object

checkRNA Helper Function to check valid RNA input

Description

Helper Function to check valid RNA input

Usage

checkRNA(class)

Arguments

class, the given class of RNA object

Value

NULL, stop if unvalid object

codonSumsPerGroup 13

codonSumsPerGroup Get hits per codon

Description

Helper for entropy function, normally not used directly Seperate each group into tuples (abstract
codons) Gives sum for each tuple within each group

Usage

codonSumsPerGroup(grl, reads)

Arguments

grl a GRangesList

reads a GRanges or GAlignment

Details

Example: counts c(1,0,0,1), with reg_len = 2, gives c(1,0) and c(0,1), these are summed and re-
turned as data.table 10 bases, will give 3 codons, 1 base codons does not exist.

Value

a data.table with codon sums

computeFeatures Get all possible features in ORFik

Description

If you want to get all the features easily, you can use this function. Each feature have a link to an
article describing its creation and idea behind it. Look at the functions in the feature family to see
all of them.

Usage

computeFeatures(grl, RFP, RNA = NULL, Gtf, faFile = NULL,
riboStart = 26, riboStop = 34, orfFeatures = TRUE,
includeNonVarying = TRUE, grl.is.sorted = FALSE)

Arguments

grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs, etc.

RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

RNA RnaSeq reads as GAlignment, GRanges or GRangesList object

Gtf a TxDb object of a gtf file or path to gtf, gff .sqlite etc.

14 computeFeaturesCage

faFile a FaFile or BSgenome from the fasta file, see ?FaFile

riboStart usually 26, the start of the floss interval, see ?floss

riboStop usually 34, the end of the floss interval

orfFeatures a logical, is the grl a list of orfs?
includeNonVarying

a logical, if TRUE, include all features not dependent on RiboSeq data and
RNASeq data, that is: Kozak, fractionLengths, distORFCDS, isInFrame, isOver-
lapping and rankInTx

grl.is.sorted logical (F), a speed up if you know argument grl is sorted, set this to TRUE.

Details

If you used CageSeq to reannotate your leaders, your txDB object must contain the reassigned
leaders. Use [reassignTxDbByCage()] to get the txdb.

Value

a data.table with scores, each column is one score type, name of columns are the names of the
scores, i.g [floss()] or [fpkm()]

See Also

Other features: computeFeaturesCage, disengagementScore, distToCds, distToTSS, entropy,
floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF, isInFrame,
isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

Here we make an example from scratch
Usually the ORFs are found in orfik, which makes names for you etc.
gtf <- system.file("extdata", "annotations.gtf",
package = "ORFik") ## location of the gtf file
suppressWarnings(txdb <-

GenomicFeatures::makeTxDbFromGFF(gtf, format = "gtf"))
use cds' as ORFs for this example
ORFs <- GenomicFeatures::cdsBy(txdb, by = "tx", use.names = TRUE)
ORFs <- makeORFNames(ORFs) # need ORF names
make Ribo-seq data,
RFP <- unlistGrl(firstExonPerGroup(ORFs))
suppressWarnings(computeFeatures(ORFs, RFP, Gtf = txdb))
For more details see vignettes.

computeFeaturesCage Get all possible features in ORFik

Description

If you have a txdb with correctly reassigned transcripts, use: [computeFeatures()]

computeFeaturesCage 15

Usage

computeFeaturesCage(grl, RFP, RNA = NULL, Gtf = NULL, tx = NULL,
fiveUTRs = NULL, cds = NULL, threeUTRs = NULL, faFile = NULL,
riboStart = 26, riboStop = 34, orfFeatures = TRUE,
includeNonVarying = TRUE, grl.is.sorted = FALSE)

Arguments

grl a GRangesList object with usually ORFs, but can also be either leaders, cds’,
3’ utrs, etc.

RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

RNA RnaSeq reads as GAlignment, GRanges or GRangesList object

Gtf a TxDb object of a gtf file or path to gtf, gff .sqlite etc.

tx a GrangesList of transcripts, normally called from: exonsBy(Gtf, by = "tx",
use.names = T) only add this if you are not including Gtf file You do not need to
reassign these to the cage peaks, it will do it for you.

fiveUTRs fiveUTRs as GRangesList, if you used cage-data to extend 5’ utrs, remember to
input CAGE assigned version and not original!

cds a GRangesList of coding sequences

threeUTRs a GrangesList of transcript 3’ utrs, normally called from: threeUTRsByTran-
script(Gtf, use.names = T)

faFile a FaFile or BSgenome from the fasta file, see ?FaFile

riboStart usually 26, the start of the floss interval, see ?floss

riboStop usually 34, the end of the floss interval

orfFeatures a logical, is the grl a list of orfs?
includeNonVarying

a logical, if TRUE, include all features not dependent on RiboSeq data and
RNASeq data, that is: Kozak, fractionLengths, distORFCDS, isInFrame, isOver-
lapping and rankInTx

grl.is.sorted logical (F), a speed up if you know argument grl is sorted, set this to TRUE.

Details

A specialized version if you don’t have a correct txdb, for example with CAGE reassigned leaders
while txdb is not updated. It is 2x faster for tested data. The point of this function is to give you the
ability to input transcript etc directly into the function, and not load them from txdb. Each feature
have a link to an article describing feature, try ?floss

Value

a data.table with scores, each column is one score type, name of columns are the names of the
scores, i.g [floss()] or [fpkm()]

See Also

Other features: computeFeatures, disengagementScore, distToCds, distToTSS, entropy, floss,
fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

16 convertToOneBasedRanges

Examples

a small example without cage-seq data:
we will find ORFs in the 5' utrs
and then calculate features on them
Not run:
if (requireNamespace("BSgenome.Hsapiens.UCSC.hg19")) {
library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")
txdb <- loadDb(txdbFile)

Extract sequences of fiveUTRs.
fiveUTRs <- fiveUTRsByTranscript(txdb, use.names = TRUE)[1:10]
faFile <- BSgenome.Hsapiens.UCSC.hg19::Hsapiens
need to suppress warning because of bug in GenomicFeatures, will
be fixed soon.
tx_seqs <- suppressWarnings(extractTranscriptSeqs(faFile, fiveUTRs))

Find all ORFs on those transcripts and get their genomic coordinates
fiveUTR_ORFs <- findMapORFs(fiveUTRs, tx_seqs)
unlistedORFs <- unlistGrl(fiveUTR_ORFs)
group GRanges by ORFs instead of Transcripts
fiveUTR_ORFs <- groupGRangesBy(unlistedORFs, unlistedORFs$names)

make some toy ribo seq and rna seq data
starts <- unlistGrl(ORFik:::firstExonPerGroup(fiveUTR_ORFs))
RFP <- promoters(starts, upstream = 0, downstream = 1)
score(RFP) <- rep(29, length(RFP)) # the original read widths

set RNA seq to duplicate transcripts
RNA <- unlistGrl(exonsBy(txdb, by = "tx", use.names = TRUE))

computeFeaturesCage(grl = fiveUTR_ORFs, orfFeatures = TRUE, RFP = RFP,
RNA = RNA, Gtf = txdb, faFile = faFile)

}
See vignettes for more examples

End(Not run)

convertToOneBasedRanges

Convert a GRanges Object to 1 width reads

Description

There are 4 ways of doing this 1. Take 5’ ends, reduce away rest (5prime) 2. Take 3’ ends, reduce
away rest (3prime) 3. Tile and include all (tileAll) 4. Take middle point per GRanges (middle)

Usage

convertToOneBasedRanges(gr, method = "5prime", addScoreColumn = FALSE,
addSizeColumn = FALSE)

coverageGroupings 17

Arguments

gr GRanges, GAlignment Object to reduce

method the method to reduce, see info. (5prime defualt)

addScoreColumn logical (FALSE), if TRUE, add a score column that sums up the hits per position.

addSizeColumn logical (FALSE), if TRUE, add a size column that for each read, that gives orig-
inal width of read.

Details

Many other ways to do this have their own functions, like startCodons and stopCodons.

Value

Converted GRanges object

See Also

Other utils: bedToGR, findFa, fread.bed, is.gr_or_grl, is.grl, validGRL

coverageGroupings Get grouping for a coverage table in ORFik

Description

Either of two groupings: GF: Gene, fraction FGF: Fraction, position, feature It finds which of these
exists, and auto groups

Usage

coverageGroupings(logicals, grouping = "GF")

Arguments

logicals size 2 logical vector, the is.null checks for each column,

grouping which grouping to perform

Details

Normally not used directly

Value

a quote of the grouping to pass to data.table

18 coverageHeatMap

coverageHeatMap Create a heatmap of coverage

Description

Coverage rows in heat map is fraction Coverage column in heat map is score, default zscore of
counts

Usage

coverageHeatMap(coverage, output = NULL, scoring = "zscore")

Arguments

coverage a data.table, output of scaledWindowCoverage

output character string (NULL), if set, saves the plot as pdf or png to path given. If no
format is given, is save as pdf.

scoring character vector (zscore), either of zScore, transcriptNormalized, sum, mean,
median, NULL. Set NULL if already scored.

Details

See vignette for example

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other coveragePlot: pSitePlot, savePlot, windowCoveragePlot

Examples

An ORF
grl <- GRangesList(tx1 = GRanges("1", IRanges(1, 6), "+"))
Ribo-seq reads
range <- IRanges(c(rep(1, 3), 2, 3, rep(4, 2), 5, 6), width = 1)
reads <- GRanges("1", range, "+")
reads$size <- c(rep(28, 5), rep(29, 4)) # read size
coverage <- ORFik:::windowPerReadLength(grl, reads = reads, upstream = 0,

downstream = 5)

ORFik:::coverageHeatMap(coverage)

See vignette for more examples

coveragePerTiling 19

coveragePerTiling Get coverage per group

Description

It tiles each GRangesList group, and finds hits per position

Usage

coveragePerTiling(grl, reads, is.sorted = FALSE, keep.names = TRUE,
as.data.table = FALSE, withFrames = FALSE)

Arguments

grl a GRangesList of 5’ utrs or transcripts.

reads a GAlignment or GRanges object of RiboSeq, RnaSeq etc.

is.sorted logical (F), is grl sorted.

keep.names logical (T), keep names or not.

as.data.table a logical (FALSE), return as data.table with 2 columns, position and count.

withFrames a logical (FALSE), only available if as.data.table is TRUE, return the ORF
frame, 1,2,3, where position 1 is 1, 2 is 2 and 4 is 1 etc.

Details

This is a safer speedup of coverageByTranscript from GenomicFeatures. It also gives the possibility
to return as data.table, for faster computations.

Value

a RleList, one integer-Rle per group with # of hits per position. Or data.table if as.data.table is
TRUE.

See Also

Other ExtendGenomicRanges: asTX, overlapsToCoverage, reduceKeepAttr, tile1, txSeqsFromFa,
windowPerGroup

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+")
coveragePerTiling(grl, RFP, is.sorted = TRUE)
now as data.table with frames
coveragePerTiling(grl, RFP, is.sorted = TRUE, as.data.table = TRUE,

withFrames = TRUE)

20 coverageScorings

coverageScorings Add a coverage scoring scheme

Description

Different scorings and groupings of a coverage representation.

Usage

coverageScorings(coverage, scoring = "zscore")

Arguments

coverage a data.table containing at least columns (count, position), it is possible to have
additionals: (genes, fraction, feature)

scoring a character, one of (zscore, transcriptNormalized, mean, median, sum, sum-
Length, meanPos and frameSum, periodic, NULL)

Details

Usually output of metaWindow or scaledWindowCoverage is input in this function.

Content of coverage data.table: It must contain the count and position columns.

genes column: If you have multiple windows, the genes column must define which gene/transcript
grouping the different counts belong to. If there is only a meta window or only 1 gene/transcript,
then this column is not needed.

fraction column: If you have coverage of i.e RNA-seq and Ribo-seq, or TCP -seq of large and small
subunite, divide into fractions. Like factor(RNA, RFP)

feature column: If gene group is subdivided into parts, like gene is transcripts, and feature column
can be c(leader, cds, trailer) etc.

Given a data.table coverage of counts, add a scoring scheme. per: the grouping given, if genes is
defined, group by per gene in scoring. Scorings: 1. zscore (count-windowMean)/windowSD per)
2. transcriptNormalized (sum(count / sum of counts per)) 3. mean (mean(count per)) 4. median
(median(count per)) 5. sum (count per) 6. sumLength (count per) / number of windows 7. meanPos
(mean per position per gene) used in scaledWindowPositions 8. sumPos (sum per position per
gene) used in scaledWindowPositions 9. frameSum (sum per frame per gene) used in ORFScore
10. fracPos (fraction of counts per position per gene) 11. periodic (Fourier transform periodicity of
meta coverage per fraction) 12. NULL (return input directly)

Value

a data.table with new scores

See Also

Other coverage: metaWindow, scaledWindowPositions, windowPerReadLength

defineIsoform 21

Examples

dt <- data.table::data.table(count = c(4, 1, 1, 4, 2, 3),
position = c(1, 2, 3, 4, 5, 6))

coverageScorings(dt, scoring = "zscore")

with grouping gene
dt$genes <- c(rep("tx1", 3), rep("tx2", 3))
coverageScorings(dt, scoring = "zscore")

defineIsoform Overlaps GRanges object with provided annotations.

Description

Overlaps GRanges object with provided annotations.

Usage

defineIsoform(rel_orf, tran, isoform_names = c("perfect_match",
"elong_START_match", "trunc_START_match", "elong_STOP_match",
"trunc_STOP_match", "overlap_inside", "overlap_both", "overlap_upstream",
"overlap_downstream", "upstream", "downstram", "none"))

Arguments

rel_orf - GRanges object of your ORF.

tran - GRanges object of annotation (transcript or cds) that overlapped in some way
rel_orf.

isoform_names - A vector of strings that will be used instead of these defaults: ’perfect_match’
- start and stop matches the tran object strand wise ’elong_START_match’ -
rel_orf is extension from the STOP side of the tran ’trunc_START_match’ -
rel_orf is truncation from the STOP side of the tran ’elong_STOP_match’ -
rel_orf is extension from the START side of the tran ’trunc_STOP_match’ -
rel_orf is truncation from the START side of the tran ’overlap_inside’ - rel_orf
is inside tran object ’overlap_both’ - rel_orf contains tran object inside ’over-
lap_upstream’ - rel_orf is overlaping upstream part of the tran ’overlap_downstream’
- rel_orf is overlaping downstream part of the tran ’upstream’ - rel_orf is up-
stream towards the tran ’downstream’ - rel_orf is downstream towards the tran
’none’ - when none of the above options is true

Value

A string object of defined isoform towards transcript.

22 defineTrailer

defineTrailer Defines trailers for ORF.

Description

Creates GRanges object as a trailer for ORFranges representing ORF, maintaining restrictions of
transcriptRanges. Assumes that ORFranges is on the transcriptRanges, strands and seqlevels are in
agreement. When lengthOFtrailer is smaller than space left on the transcript than all available space
is returned as trailer.

Usage

defineTrailer(ORFranges, transcriptRanges, lengthOftrailer = 200)

Arguments

ORFranges GRanges object of your Open Reading Frame.
transcriptRanges

GRanges object of transtript.
lengthOftrailer

Numeric. Default is 10.

Details

It assumes that ORFranges and transcriptRanges are not sorted when on minus strand. Should be
like: (200, 600) (50, 100)

Value

A GRanges object of trailer.

See Also

Other ORFHelpers: longestORFs, mapToGRanges, orfID, startCodons, startSites, stopCodons,
stopSites, txNames, uniqueGroups, uniqueOrder

Examples

ORFranges <- GRanges(seqnames = Rle(rep("1", 3)),
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

transcriptRanges <- GRanges(seqnames = Rle(rep("1", 5)),
ranges = IRanges(start = c(1, 10, 20, 30, 40),

end = c(5, 15, 25, 35, 45)),
strand = "+")

defineTrailer(ORFranges, transcriptRanges)

detectRibosomeShifts 23

detectRibosomeShifts Detect ribosome shifts

Description

Utilizes periodicity measurement (fourier transform) and change point analysis to detect ribosomal
footprint shifts for each of the ribosomal read lengths. Returns subset of read lengths and their
shifts for which top covered transcripts follow periodicity measure. Each shift value assumes 5’
anchoring of the reads, so that output offsets values will shift 5’ anchored footprints to be on the
p-site of the ribosome.

Usage

detectRibosomeShifts(footprints, txdb, start = TRUE, stop = FALSE,
top_tx = 10L, minFiveUTR = 30L, minCDS = 150L, minThreeUTR = 30L,
firstN = 150L, tx = NULL)

Arguments

footprints (GAlignments) object of RiboSeq reads - footprints

txdb a TxDb file or a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite)

start (logical) Whether to include predictions based on the start codons. Default
TRUE.

stop (logical) Whether to include predictions based on the stop codons. Default
FASLE. Only use if there exists 3’ UTRs for the annotation.

top_tx (integer) Specify which transcripts to use for estimation of the shifts. By default
we take top 10 top covered transcripts as they represent less noisy dataset. This
is only applicable when there are more than 1000 transcripts.

minFiveUTR (integer) minimum bp for 5’ UTR during filtering for the transcripts. Set to
NULL if no 5’ UTRs exists for annotation.

minCDS (integer) minimum bp for CDS during filtering for the transcripts

minThreeUTR (integer) minimum bp for 3’ UTR during filtering for the transcripts. Set to
NULL if no 3’ UTRs exists for annotation.

firstN (integer) Represents how many bases of the transcripts downstream of start
codons to use for initial estimation of the periodicity.

tx a GRangesList, if you do not have 5’ UTRs in annotation, send your own ver-
sion. Example: extendLeaders(tx, 30) Where 30 bases will be new "leaders".
Since each original transcript was either only CDS or non-coding (filtered out).

Details

Check out vignette for the examples of plotting RiboSeq metaplots over start and stop codons, so
that you can verify visually whether this function detects correct shifts.

NOTE: It will remove softclips from valid width, the CIGAR 3S30M is qwidth 33, but will remove
3S so final read width is 30 in ORFik.

Value

a data.frame with lengths of footprints and their predicted coresponding offsets

24 disengagementScore

See Also

Other pshifting: changePointAnalysis, shiftFootprints

Examples

Not run:
gtf_file <- system.file("extdata", "annotations.gtf", package = "ORFik")
riboSeq_file <- system.file("extdata", "ribo-seq.bam", package = "ORFik")
footprints <- GenomicAlignments::readGAlignments(

riboSeq_file, param = ScanBamParam(flag = scanBamFlag(
isDuplicate = FALSE, isSecondaryAlignment = FALSE)))

detectRibosomeShifts(footprints, gtf_file, stop = TRUE)

Without 5' Annotation
library(GenomicFeatures)

txdb <- loadTxdb(gtf_file)
tx <- exonsBy(txdb, by = "tx", use.names = TRUE)
tx <- extendLeaders(tx, 30)
Now run function, without 5' and 3' UTRs
detectRibosomeShifts(footprints, txdb, start = TRUE, minFiveUTR = NULL,

minCDS = 150L, minThreeUTR = NULL, firstN = 150L,
tx = tx)

Your own tx here, with "fake" leaders

End(Not run)

disengagementScore Disengagement score (DS)

Description

Disengagement score is defined as

(RPFs over ORF)/(RPFs downstream to tx end)

A pseudo-count of one is added to both the ORF and downstream sums.

Usage

disengagementScore(grl, RFP, GtfOrTx, RFP.sorted = FALSE)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.

RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

GtfOrTx If it is TxDb object transcripts will be extracted using exonsBy(Gtf,by = "tx",use.names
= TRUE). Else it must be GRangesList

RFP.sorted logical (F), an optimizer, have you ran this line: RFP <-sort(RFP[countOverlaps(RFP,tx,type
= "within") > 0]) Normally not touched, for internal optimization purposes.

distToCds 25

Value

a named vector of numeric values of scores

References

doi: 10.1242/dev.098344

See Also

Other features: computeFeaturesCage, computeFeatures, distToCds, distToTSS, entropy, floss,
fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF, isInFrame, isOverlapping,
kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
RFP <- GRanges("1", IRanges(c(1,10,20,30,40), width = 3), "+")
disengagementScore(grl, RFP, tx)

distToCds Get distances between ORF ends and starts of their transcripts cds.

Description

Will calculate distance between each ORF end and begining of the corresponding cds (main ORF).
Matching is done by transcript names. This is applicable practically to the upstream (fiveUTRs)
ORFs only. The cds start site, will be presumed to be on + 1 of end of fiveUTRs.

Usage

distToCds(ORFs, fiveUTRs, cds = NULL)

Arguments

ORFs orfs as GRangesList, names of orfs must be transcript names

fiveUTRs fiveUTRs as GRangesList, remember to use CAGE version of 5’ if you did
CAGE reassignment!

cds cds’ as GRangesList, only add if you have ORFs going into CDS.

Value

an integer vector, +1 means one base upstream of cds, -1 means 2nd base in cds, 0 means orf stops
at cds start.

26 distToTSS

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToTSS,
entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1, 10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1, 20), "+"))
distToCds(grl, fiveUTRs)

distToTSS Get distances between ORF Start and TSS of its transcript

Description

Matching is done by transcript names. This is applicable practically to any region in Transcript If
ORF is not within specified search space in tx, this function will crash.

Usage

distToTSS(ORFs, tx)

Arguments

ORFs orfs as GRangesList, names of orfs must be txname_[rank]

tx transcripts as GRangesList.

Value

an integer vector, 1 means on TSS, 2 means second base of Tx.

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, subsetCoverage, translationalEff

downstreamFromPerGroup 27

Examples

grl <- GRangesList(tx1_1 = GRanges("1", IRanges(5, 10), "+"))
tx <- GRangesList(tx1 = GRanges("1", IRanges(2, 20), "+"))
distToTSS(grl, tx)

downstreamFromPerGroup

Get rest of objects downstream (inclusive)

Description

Per group get the part downstream of position. downstreamFromPerGroup(tx, startSites(threeUTRs,
asGR = TRUE)) will return the 3’ utrs per transcript as GRangesList, usually used for interesting
parts of the transcripts.

Usage

downstreamFromPerGroup(tx, downstreamFrom)

Arguments

tx a GRangesList, usually of Transcripts to be changed

downstreamFrom a vector of integers, for each group in tx, where is the new start point of first
valid exon.

Details

If you don’t want to include the points given in the region, use downstreamOfPerGroup

Value

a GRangesList of downstream part

See Also

Other GRanges: assignFirstExonsStartSite, assignLastExonsStopSite, downstreamOfPerGroup,
upstreamFromPerGroup, upstreamOfPerGroup

28 downstreamOfPerGroup

downstreamN Restrict GRangesList

Description

Will restrict GRangesList to ‘N‘ bp downstream from the first base.

Usage

downstreamN(grl, firstN = 150L)

Arguments

grl (GRangesList)
firstN (integer) Allow only this many bp downstream, maximum.

Value

a GRangesList of reads restricted to firstN and tiled by 1

downstreamOfPerGroup Get rest of objects downstream (exclusive)

Description

Per group get the part downstream of position. downstreamOfPerGroup(tx, stopSites(cds, asGR =
TRUE)) will return the 3’ utrs per transcript as GRangesList, usually used for interesting parts of
the transcripts.

Usage

downstreamOfPerGroup(tx, downstreamOf)

Arguments

tx a GRangesList, usually of Transcripts to be changed
downstreamOf a vector of integers, for each group in tx, where is the new start point of first

valid exon.

Details

If you want to include the points given in the region, use downstreamFromPerGroup

Value

a GRangesList of downstream part

See Also

Other GRanges: assignFirstExonsStartSite, assignLastExonsStopSite, downstreamFromPerGroup,
upstreamFromPerGroup, upstreamOfPerGroup

entropy 29

entropy Calucalte entropy value of overlapping input reads per GRanges.

Description

Calculates entropy of the ‘reads‘ coverage over each ‘grl‘ group. The entropy value per group is a
real number in the interval (0:1), where 0 indicates no variance in reads over group. For example
c(0,0,0,0) has 0 entropy, since no reads overlap.

Usage

entropy(grl, reads)

Arguments

grl a GRangesList that the reads will be overlapped with

reads a GAlignment object or GRanges or GRangesList, usualy data from RiboSeq or
RnaSeq

Value

A numeric vector containing one entropy value per element in ‘grl‘

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

a toy example with ribo-seq p-shifted reads
ORF <- GRanges("1", ranges = IRanges(start = c(1, 12, 22),

end = c(10, 20, 32)),
strand = "+",
names = rep("tx1_1", 3))

names(ORF) <- rep("tx1", 3)
grl <- GRangesList(tx1_1 = ORF)
reads <- GRanges("1", IRanges(c(25, 35), c(25, 35)), "+")
grl must have same names as cds + _1 etc, so that they can be matched.
entropy(grl, reads)
or on cds
cdsORF <- GRanges("1", IRanges(35, 44), "+", names = "tx1")
names(cdsORF) <- "tx1"
cds <- GRangesList(tx1 = cdsORF)
entropy(cds, reads)

30 extendLeaders

extendLeaders Extend the leaders transcription start sites.

Description

Will extend the leaders or transcripts upstream by extension. Remember the extension is general
not relative, that means splicing will not be taken into account. Requires the grl to be sorted
beforehand, use sortPerGroup to get sorted grl.

Usage

extendLeaders(grl, extension = 1000L, cds = NULL)

Arguments

grl usually a GRangesList of 5’ utrs or transcripts. Can be used for any extension
of groups.

extension an integer, how much to extend the leaders. Or a GRangesList where start / stops
by strand are the positions to use as new starts.

cds If you want to extend 5’ leaders downstream, to catch upstream ORFs going into
cds, include it. It will add first cds exon to grl matched by names. Do not add
for transcripts, as they are already included.

Value

an extended GRangeslist

Examples

library(GenomicFeatures)
samplefile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package = "GenomicFeatures")
txdb <- loadDb(samplefile)
fiveUTRs <- fiveUTRsByTranscript(txdb) # <- extract only 5' leaders
tx <- exonsBy(txdb, by = "tx", use.names = TRUE)
cds <- cdsBy(txdb,"tx",use.names = TRUE)
now try(extend upstream 1000, downstream 1st cds exons):
extendLeaders(fiveUTRs, extension = 1000, cds)

when extending transcripts, don't include cds' of course,
since they are already there
extendLeaders(tx, extension = 1000)

extendsTSSexons 31

extendsTSSexons Extend first exon of each transcript with length specified

Description

Extend first exon of each transcript with length specified

Usage

extendsTSSexons(fiveUTRs, extension = 1000)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

extension The number of basses to extend transcripts upstream

Value

GRangesList object of fiveUTRs

filterCage Filter peak of cage-data by value

Description

Filter peak of cage-data by value

Usage

filterCage(cage, filterValue = 1, fiveUTRs = NULL)

Arguments

cage The raw cage-data, as GRanges. Must contain a score column, with the count
hits per position.

filterValue The integer of counts(score) to filter on for a tss to pass as hit

fiveUTRs a GRangesList (NULL), if added will filter out cage reads by these following
rules: all reads in region (-5:-1, 1:5) for each tss will be removed, removes
noise.

Value

the filtered Granges object

32 filterTranscripts

filterTranscripts Get the transcripts with accepted lengths of leaders, cds and trailer.

Description

Filter transcripts to those who have leaders, CDS, trailers of some lengths, you can also pick the
longest per gene.

Usage

filterTranscripts(txdb, minFiveUTR = 30L, minCDS = 150L,
minThreeUTR = 30L, longestPerGene = TRUE, stopOnEmpty = TRUE)

Arguments

txdb a TxDb file or a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite)

minFiveUTR (integer) minimum bp for 5’ UTR during filtering for the transcripts. Set to
NULL if no 5’ UTRs exists for annotation.

minCDS (integer) minimum bp for CDS during filtering for the transcripts

minThreeUTR (integer) minimum bp for 3’ UTR during filtering for the transcripts. Set to
NULL if no 3’ UTRs exists for annotation.

longestPerGene logical (TRUE), return only longest valid transcript per gene.

stopOnEmpty logical TRUE, stop if no valid names are found ?

Details

If a transcript does not have a trailer, then the length is 0, so they will be filtered out. So only
transcripts with leaders, cds and trailers will be returned. You can set the integer to 0, that will
return all within that group.

If your annotation does not have leaders or trailers, set them to NULL.

Value

a character vector of valid tramscript names

Examples

gtf_file <- system.file("extdata", "annotations.gtf", package = "ORFik")
txdb <- GenomicFeatures::makeTxDbFromGFF(gtf_file)
txNames <- filterTranscripts(txdb)

findFa 33

findFa Convenience wrapper for Rsamtools FaFile

Description

Convenience wrapper for Rsamtools FaFile

Usage

findFa(faFile)

Arguments

faFile FaFile, BSgenome or fasta/index file path used to find the transcripts

Value

a FaFile or BSgenome

See Also

Other utils: bedToGR, convertToOneBasedRanges, fread.bed, is.gr_or_grl, is.grl, validGRL

findMapORFs Find ORFs and immediately map them to their genomic positions.

Description

Finds ORFs on the sequences of interest, but returns relative positions to the positions of ‘grl‘
argument. For example, ‘grl‘ can be exons of known transcripts (with genomic coordinates), and
‘seq‘ sequences of those transcripts, in that case, this function will return genomic coordinates of
ORFs found on transcript sequences.

Usage

findMapORFs(grl, seqs, startCodon = startDefinition(1),
stopCodon = stopDefinition(1), longestORF = TRUE,
minimumLength = 0, groupByTx = TRUE)

Arguments

grl (GRangesList) of sequences to search for ORFs, probably in genomic coordi-
nates

seqs (DNAStringSet or character vector) - DNA/RNA sequences to search for Open
Reading Frames. Can be both uppercase or lowercase. Easiest call to get
seqs if you want only regions from a fasta/fasta index pair is: seqs = OR-
Fik:::txSeqsFromFa(grl, faFile), where grl is a GRanges/List of regions and
faFile is a FaFile.

startCodon (character vector) Possible START codons to search for. Check startDefinition
for helper function.

34 findMaxPeaks

stopCodon (character vector) Possible STOP codons to search for. Check stopDefinition
for helper function.

longestORF (logical) Default TRUE. Keep only the longest ORF per unique (seqname, strand,
stopcodon) combination, you can also use function longestORFs after creation
of ORFs for same result.

minimumLength (integer) Default is 0. Which is START + STOP = 6 bp. Minimum length of
ORF, without counting 3bp for START and STOP codons. For example mini-
mumLength = 8 will result in size of ORFs to be at least START + 8*3 (bp) +
STOP = 30 bases. Use this param to restrict search.

groupByTx logical (T), should output GRangesList be grouped by orfs per transcript (T) or
by exons per ORF (F)?

Details

This function assumes that ‘seq‘ is in widths relative to ‘grl‘, and that their orders match. 1st seq is
1st grl object, etc.

Value

A GRangesList of ORFs.

See Also

Other findORFs: findORFsFasta, findORFs, startDefinition, stopDefinition

Examples

This sequence has ORFs at 1-9 and 4-9
seqs <- c("ATGATGTAA") # the dna sequence
findORFs(seqs)
lets assume that this sequence comes from two exons as follows
gr <- GRanges(seqnames = rep("1", 2), # chromosome 1

ranges = IRanges(start = c(21, 10), end = c(23, 15)),
strand = rep("-", 2), names = rep("tx1", 2))

grl <- GRangesList(tx1 = gr)
findMapORFs(grl, seqs) # ORFs are properly mapped to its genomic coordinates

grl <- c(grl, grl)
names(grl) <- c("tx1", "tx2")
findMapORFs(grl, c(seqs, seqs))

findMaxPeaks Find max peak for each transcript, returns as data.table, without
names, but with index

Description

Find max peak for each transcript, returns as data.table, without names, but with index

Usage

findMaxPeaks(cageOverlaps, filteredCage)

findNewTSS 35

Arguments

cageOverlaps The cageOverlaps between cage and extended 5’ leaders

filteredCage The filtered raw cage-data used to reassign 5’ leaders

Value

a data.table of max peaks

findNewTSS Finds max peaks per trancsript from reads in the cagefile

Description

Finds max peaks per trancsript from reads in the cagefile

Usage

findNewTSS(fiveUTRs, cageData, extension, restrictUpstreamToTx)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList

cageData The CAGE as GRanges object

extension The number of basses upstream to add on transcripts
restrictUpstreamToTx

a logical (FALSE), if you want to restrict leaders to not extend closer than 5
bases from closest upstream leader, set this to TRUE.

Value

a Hits object

findORFs Find Open Reading Frames.

Description

Find all Open Reading Frames (ORFs) on the input sequences in ONLY 5’- 3’ direction (+), but
within all three possible reading frames. For each sequence of the input vector IRanges with START
and STOP positions (inclusive) will be returned as IRangesList. Returned coordinates are relative
to the input sequences.

Usage

findORFs(seqs, startCodon = startDefinition(1),
stopCodon = stopDefinition(1), longestORF = TRUE,
minimumLength = 0)

36 findORFs

Arguments

seqs (DNAStringSet or character vector) - DNA/RNA sequences to search for Open
Reading Frames. Can be both uppercase or lowercase. Easiest call to get
seqs if you want only regions from a fasta/fasta index pair is: seqs = OR-
Fik:::txSeqsFromFa(grl, faFile), where grl is a GRanges/List of regions and
faFile is a FaFile.

startCodon (character vector) Possible START codons to search for. Check startDefinition
for helper function.

stopCodon (character vector) Possible STOP codons to search for. Check stopDefinition
for helper function.

longestORF (logical) Default TRUE. Keep only the longest ORF per unique (seqname, strand,
stopcodon) combination, you can also use function longestORFs after creation
of ORFs for same result.

minimumLength (integer) Default is 0. Which is START + STOP = 6 bp. Minimum length of
ORF, without counting 3bp for START and STOP codons. For example mini-
mumLength = 8 will result in size of ORFs to be at least START + 8*3 (bp) +
STOP = 30 bases. Use this param to restrict search.

Details

If you want antisence strand too, do: #positive strands pos <-findORFs(seqs) #negative
strands (DNAStringSet only if character) neg <-findORFs(reverseComplement(DNAStringSet(seqs)))
relist(c(GRanges(pos,strand = "+"),GRanges(neg,strand = "-")),skeleton = merge(pos,neg))

Value

(IRangesList) of ORFs locations by START and STOP sites grouped by input seqeunces. In a list
of sequences, only the indices of the sequences that had ORFs will be returned, e.g. 3 sequences
where only 1 and 3 has ORFs, will return size 2 IRangesList with names c("1", "3"). If there are a
total of 0 ORFs, an empty IRangesList will be returned.

See Also

Other findORFs: findMapORFs, findORFsFasta, startDefinition, stopDefinition

Examples

findORFs("ATGTAA")
findORFs("ATGTTAA") # not in frame anymore

findORFs("ATGATGTAA") # two ORFs
findORFs("ATGATGTAA", longestORF = TRUE) # only longest of two above

findORFs(c("ATGTAA", "ATGATGTAA"))

findORFsFasta 37

findORFsFasta Finds Open Reading Frames in fasta files.

Description

Should be used for procaryote genomes or transcript sequences as fasta. Makes no sence for eu-
karyote whole genomes, since it contains splicing. Searches through each fasta header and reports
all ORFs found for BOTH sense (+) and antisense strand (-) in all frames. Name of the header will
be used as seqnames of reported ORFs. Each fasta header is treated separately, and name of the
sequence will be used as seqname in returned GRanges object. This supports circluar genomes.

Usage

findORFsFasta(filePath, startCodon = startDefinition(1),
stopCodon = stopDefinition(1), longestORF = TRUE,
minimumLength = 0, is.circular = FALSE)

Arguments

filePath (character) Path to the fasta file. Can be both uppercase or lowercase.

startCodon (character vector) Possible START codons to search for. Check startDefinition
for helper function.

stopCodon (character vector) Possible STOP codons to search for. Check stopDefinition
for helper function.

longestORF (logical) Default TRUE. Keep only the longest ORF per unique (seqname, strand,
stopcodon) combination, you can also use function longestORFs after creation
of ORFs for same result.

minimumLength (integer) Default is 0. Which is START + STOP = 6 bp. Minimum length of
ORF, without counting 3bp for START and STOP codons. For example mini-
mumLength = 8 will result in size of ORFs to be at least START + 8*3 (bp) +
STOP = 30 bases. Use this param to restrict search.

is.circular (logical) Whether the genome in filePath is circular. Prokaryotic genomes are
usually circular. Be carefull if you want to extract sequences, remember that
seqlengths must be set, else it does not know what last base in sequence is before
loop ends!

Details

Remember if you have a fasta file of transcripts (transcript coordinates), delete all negative stranded
ORFs afterwards by: orfs <- orfs[strandBool(orfs)] # negative strand orfs make no sense then.
Seqnames are created from header by format: >name info, so name must be first after "biggern
than" and space between name and info.

Value

(GRanges) object of ORFs mapped from fasta file. Positions are relative to the fasta file.

See Also

Other findORFs: findMapORFs, findORFs, startDefinition, stopDefinition

38 firstExonPerGroup

Examples

location of the example fasta file
example_genome <- system.file("extdata", "genome.fasta", package = "ORFik")
findORFsFasta(example_genome)

firstEndPerGroup Get first end per granges group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstEndPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

a Rle(keep.names = T), or integer vector(F)

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstEndPerGroup(grl)

firstExonPerGroup Get first exon per GRangesList group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstExonPerGroup(grl)

Arguments

grl a GRangesList

firstStartPerGroup 39

Value

a GRangesList of the first exon per group

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstExonPerGroup(grl)

firstStartPerGroup Get first start per granges group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

firstStartPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

a Rle(keep.names = TRUE), or integer vector(FALSE)

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
firstStartPerGroup(grl)

40 floss

floss Fragment Length Organization Similarity Score

Description

This feature is usually calcualted only for RiboSeq reads. For reads of width between ‘start‘ and
‘end‘, sum the fraction of RiboSeq reads (per widths) that overlap ORFs and normalize by CDS.

Usage

floss(grl, RFP, cds, start = 26, end = 34)

Arguments

grl a GRangesList object with ORFs

RFP ribosomal footprints, given as Galignment or GRanges object, must be already
shifted and resized to the p-site

cds a GRangesList of coding sequences, cds has to have names as grl so that they
can be matched

start usually 26, the start of the floss interval

end usually 34, the end of the floss interval

Details

Pseudo explanation of the function:

SUM[start to stop]((grl[start:end][name]/grl) / (cds[start:end][name]/cds))

Please read more in the article.

Value

a vector of FLOSS of length same as grl

References

doi: 10.1016/j.celrep.2014.07.045

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, subsetCoverage, translationalEff

fpkm 41

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 12, 22),
end = c(10, 20, 32)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP is 1 width position based GRanges
RFP <- GRanges("1", IRanges(c(1, 25, 35, 38), width = 1), "+")
score(RFP) <- c(28, 28, 28, 29) # original width in score col
cds <- GRangesList(tx1 = GRanges("1", IRanges(35, 44), "+"))
grl must have same names as cds + _1 etc, so that they can be matched.
floss(grl, RFP, cds)
or change ribosome start/stop, more strict
floss(grl, RFP, cds, 28, 28)

fpkm Create normalizations of overlapping read counts.

Description

FPKM is short for "Fragments Per Kilobase of transcript per Million fragments". When calculating
RiboSeq data FPKM over ORFs, use ORFs as ‘grl‘. When calculating RNASeq data FPKM, use
full transcripts as ‘grl‘.

Usage

fpkm(grl, reads, pseudoCount = 0)

Arguments

grl a GRangesList object can be either transcripts, 5’ utrs, cds’, 3’ utrs or ORFs as
a special case (uORFs, potential new cds’ etc).

reads a GAlignment, GRanges or GRangesList object, usually of RiboSeq, RnaSeq,
CageSeq, etc.

pseudoCount an integer, by default is 0, set it to 1 if you want to avoid NA and inf values.

Value

a numeric vector with the fpkm values

References

doi: 10.1038/nbt.1621

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, subsetCoverage, translationalEff

42 fpkm_calc

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25),"+")
fpkm(grl, RFP)

fpkm_calc Create normalizations of counts

Description

A helper for [fpkm()] Normally use function [fpkm()], if you want unusual normalization , you can
use this. Short for: Fragments per kilobase of transcript per million fragments Normally used in
Translations efficiency calculations

Usage

fpkm_calc(counts, lengthSize, librarySize)

Arguments

counts a list, # of read hits per group

lengthSize a list of lengths per group

librarySize a numeric of size 1, the # of reads in library

Value

a numeric vector

References

doi: 10.1038/nbt.1621

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, subsetCoverage, translationalEff

fractionLength 43

fractionLength Fraction Length

Description

Fraction Length is defined as

(widths of grl)/tx_len

so that each group in the grl is divided by the corresponding transcript.

Usage

fractionLength(grl, tx_len)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs. ORFs
are a special case, see argument tx_len

tx_len the transcript lengths of the transcripts, a named (tx names) vector of integers.
If you have the transcripts as GRangesList, call ‘ORFik:::widthPerGroup(tx,
TRUE)‘.
If you used CageSeq to reannotate leaders, then the tss for the the leaders have
changed, therefore the tx lengths have changed. To account for that call: ‘tx_len
<- widthPerGroup(extendLeaders(tx, cageFiveUTRs))‘ and calculate fraction
length using ‘fractionLength(grl, tx_len)‘.

Value

a numeric vector of ratios

References

doi: 10.1242/dev.098343

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, initiationScore, insideOutsideORF, isInFrame,
isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
grl must have same names as cds + _1 etc, so that they can be matched.
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
fractionLength(grl, ORFik:::widthPerGroup(tx, keep.names = TRUE))

44 gcContent

fread.bed Load bed file as GRanges.

Description

Wraps around rtracklayer::import.bed and tries to speed up loading with the use of data.table. Sup-
ports gzip, gz, bgz and bed formats.

Usage

fread.bed(filePath)

Arguments

filePath The location of the bed file

Value

a GRanges object

See Also

Other utils: bedToGR, convertToOneBasedRanges, findFa, is.gr_or_grl, is.grl, validGRL

Examples

path to example CageSeq data from hg19 heart sample
cageData <- system.file("extdata", "cage-seq-heart.bed.bgz",

package = "ORFik")
fread.bed(cageData)

gcContent Get GC content

Description

0.5 means 50

Usage

gcContent(seqs, fa)

Arguments

seqs a character vector of ranges, or ranges as GRangesList

fa fasta index file .fai file, either path to it, or the loaded FaFile, default (NULL),
only set if you give ranges as GRangesList

groupGRangesBy 45

Value

a numeric vector of gc content scores

Examples

Usually the ORFs are found in orfik, which makes names for you etc.
Here we make an example from scratch
seqName <- "Chromosome"
ORF1 <- GRanges(seqnames = seqName,

ranges = IRanges(c(1007, 1096), width = 60),
strand = c("+", "+"))

ORF2 <- GRanges(seqnames = seqName,
ranges = IRanges(c(400, 100), width = 30),
strand = c("-", "-"))

ORFs <- GRangesList(tx1 = ORF1, tx2 = ORF2)
ORFs <- makeORFNames(ORFs) # need ORF names
get path to FaFile for sequences
faFile <- system.file("extdata", "genome.fasta", package = "ORFik")
gcContent(ORFs, faFile)

groupGRangesBy Group GRanges

Description

It will group / split the GRanges object by the argument ‘other‘. For example if you would like to
to group GRanges object by gene, set other to gene names.

Usage

groupGRangesBy(gr, other = NULL)

Arguments

gr a GRanges object

other a vector of unique names to group by

Details

If ‘other‘ is not specified function will try to use the names of the GRanges object. It will then be
similar to ‘split(gr, names(gr))‘.

It is important that all groups in ‘other‘ are unique, otherwise duplicates will be grouped together.

Value

a GRangesList named after names(Granges) if other is NULL, else names are from unique(other)

46 groupings

Examples

ORFranges <- GRanges(seqnames = Rle(rep("1", 3)),
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

ORFranges2 <- GRanges("1",
ranges = IRanges(start = c(20, 30, 40),

end = c(25, 35, 45)),
strand = "+")

names(ORFranges) = rep("tx1_1", 3)
names(ORFranges2) = rep("tx1_2", 3)
grl <- GRangesList(tx1_1 = ORFranges, tx1_2 = ORFranges2)
gr <- unlist(grl, use.names = FALSE)
now recreate the grl
group by orf
grltest <- groupGRangesBy(gr) # using the names to group
identical(grl, grltest) ## they are identical

group by transcript
names(gr) <- txNames(gr)
grltest <- groupGRangesBy(gr)
identical(grl, grltest) ## they are not identical

groupings Get number of ranges per group as an iterator

Description

Get number of ranges per group as an iterator

Usage

groupings(grl)

Arguments

grl GRangesList

Value

an integer vector

Examples

grl <- GRangesList(GRanges("1", c(1, 3, 5), "+"),
GRanges("1", c(19, 21, 23), "+"))

ORFik:::groupings(grl)

gSort 47

gSort Sort a GRangesList, helper.

Description

A helper for [sortPerGroup()]. A faster, more versatile reimplementation of GenomicRanges::sort()
Normally not used directly. Groups first each group, then either decreasing or increasing (on starts
if byStarts == T, on ends if byStarts == F)

Usage

gSort(grl, decreasing = FALSE, byStarts = TRUE)

Arguments

grl a GRangesList

decreasing should the first in each group have max(start(group)) ->T or min-> default(F) ?

byStarts a logical T, should it order by starts or ends F.

Value

an equally named GRangesList, where each group is sorted within group.

hasHits Hits from reads

Description

Finding GRanges groups that have overlap hits with reads Similar to

Usage

hasHits(grl, reads, keep.names = FALSE)

Arguments

grl a GRanges or GRangesList

reads a GAlignment or GRanges object with reads

keep.names logical (F), keep names or not

Value

a list of logicals, T == hit, F == no hit

48 initiationScore

initiationScore Get initiation score for a GRangesList of ORFs

Description

initiationScore tries to check how much each TIS region resembles, the average of the CDS TIS
regions.

Usage

initiationScore(grl, cds, tx, reads, pShifted = TRUE)

Arguments

grl a GRangesList object with ORFs

cds a GRangesList object with coding sequences

tx a GrangesList of transcripts covering grl.

reads ribosomal footprints, given as Galignment object or Granges

pShifted a logical (TRUE), are riboseq reads p-shifted?

Details

Since this features uses a distance matrix for scoring, values are distributed like this: As result there
is one value per ORF: 0.000: means that ORF had no reads -1.000: means that ORF is identical to
average of CDS 1.000: means that orf is maximum different than average of CDS

Value

an integer vector, 1 score per ORF, with names of grl

References

doi: 10.1186/s12915-017-0416-0

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, insideOutsideORF, isInFrame,
isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

Good hiting ORF
ORF <- GRanges(seqnames = "1",

ranges = IRanges(21, 40),
strand = "+")

names(ORF) <- c("tx1")
grl <- GRangesList(tx1 = ORF)
1 width p-shifted reads
reads <- GRanges("1", IRanges(c(21, 23, 50, 50, 50, 53, 53, 56, 59),

insideOutsideORF 49

width = 1), "+")
score(reads) <- 28 # original width
cds <- GRanges(seqnames = "1",

ranges = IRanges(50, 80),
strand = "+")

cds <- GRangesList(tx1 = cds)
tx <- GRanges(seqnames = "1",

ranges = IRanges(1, 85),
strand = "+")

tx <- GRangesList(tx1 = tx)

initiationScore(grl, cds, tx, reads, pShifted = TRUE)

insideOutsideORF Inside/Outside score (IO)

Description

Inside/Outside score is defined as

(reads over ORF)/(reads outside ORF and within transcript)

A pseudo-count of one was added to both the ORF and outside sums.

Usage

insideOutsideORF(grl, RFP, GtfOrTx, ds = NULL, RFP.sorted = FALSE)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs
RFP ribo seq reads as GAlignment, GRanges or GRangesList object
GtfOrTx if Gtf: a TxDb object of a gtf file that transcripts will be extracted with ‘ex-

onsBy(Gtf, by = "tx", use.names = TRUE)‘, if a GrangesList will use as is
ds numeric vector (NULL), disengagement score. If you have already calculated

disengagementScore, input here to save time.
RFP.sorted logical (F), have you ran this line: RFP <-sort(RFP[countOverlaps(RFP,tx,type

= "within") > 0]) Normally not touched, for internal optimization purposes.

Value

a named vector of numeric values of scores

References

doi: 10.1242/dev.098345

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, isInFrame,
isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

50 is.grl

Examples

Check inside outside score of a ORF within a transcript
ORF <- GRanges("1",

ranges = IRanges(start = c(20, 30, 40),
end = c(25, 35, 45)),

strand = "+")

grl <- GRangesList(tx1_1 = ORF)

tx1 <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20, 30, 40, 50),

end = c(5, 15, 25, 35, 45, 200)),
strand = "+")

tx <- GRangesList(tx1 = tx1)
RFP <- GRanges(seqnames = "1",

ranges = IRanges(start = c(1, 4, 30, 60, 80, 90),
end = c(30, 33, 63, 90, 110, 120)),

strand = "+")

insideOutsideORF(grl, RFP, tx)

is.grl Helper function to check for GRangesList

Description

Helper function to check for GRangesList

Usage

is.grl(class)

Arguments

class the class you want to check if is GRL, either a character from class or the object
itself.

Value

a boolean

See Also

Other utils: bedToGR, convertToOneBasedRanges, findFa, fread.bed, is.gr_or_grl, validGRL

is.gr_or_grl 51

is.gr_or_grl Helper function to check for GRangesList or GRanges class

Description

Helper function to check for GRangesList or GRanges class

Usage

is.gr_or_grl(class)

Arguments

class the class you want to check if is GRL or GR, either a character from class or the
object itself.

Value

a boolean

See Also

Other utils: bedToGR, convertToOneBasedRanges, findFa, fread.bed, is.grl, validGRL

is.ORF Check if all requirements for an ORFik ORF is accepted.

Description

Check if all requirements for an ORFik ORF is accepted.

Usage

is.ORF(grl)

Arguments

grl a GRangesList or GRanges to check

Value

a logical (TRUE/FALSE)

52 isInFrame

isInFrame Find frame for each orf relative to cds

Description

Input of this function, is the output of the function [distToCds()], or any other relative ORF frame.

Usage

isInFrame(dists)

Arguments

dists a vector of distances between ORF and cds

Details

possible outputs: 0: orf is in frame with cds 1: 1 shifted from cds 2: 2 shifted from cds

Value

a logical vector

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

simple example
isInFrame(c(3,6,8,11,15))

GRangesList example
grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1,10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1,20), "+"))
dist <- distToCds(grl, fiveUTRs)
isInFrame <- isInFrame(dist)

isOverlapping 53

isOverlapping Find frame for each orf relative to cds

Description

Input of this function, is the output of the function [distToCds()]

Usage

isOverlapping(dists)

Arguments

dists a vector of distances between ORF and cds

Value

a logical vector

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

simple example
isOverlapping(c(-3,-6,8,11,15))

GRangesList example
grl <- GRangesList(tx1_1 = GRanges("1", IRanges(1,10), "+"))
fiveUTRs <- GRangesList(tx1 = GRanges("1", IRanges(1,20), "+"))
dist <- distToCds(grl, fiveUTRs)
isOverlapping <- isOverlapping(dist)

isPeriodic Find if there is periodicity in the vector

Description

The values 2.9 and 3.1 as amplitude region, have beenchosen from testing for optimal values

Usage

isPeriodic(x)

54 kozakSequenceScore

Arguments

x (numeric) Vector of values to detect periodicity of 3 like in RiboSeq data.

Details

It uses Fourier transform for finding periodic vectors

Value

a logical, if it is periodic.

kozakSequenceScore Make a score for each ORFs start region by proximity to Kozak

Description

The closer the sequence is to the Kozak sequence the higher the score, based on the experimental
pwms from article referenced. Minimum score is 0 (worst correlation), max is 1 (the best base per
column was chosen).

Usage

kozakSequenceScore(grl, tx, faFile, species = "human",
include.N = FALSE)

Arguments

grl a GRangesList grouped by ORF

tx a GRangesList, the reference area for ORFs, each ORF must have a corespond-
ing tx.

faFile a FaFile from the fasta file, see ?FaFile. Can also be path to fastaFile with fai
file in same dir.

species ("human"), which species to use, currently supports human, zebrafish and mouse
(m. musculus). You can also specify a pfm for your own species. Syntax of pfm
is an rectangular integer matrix, where all columns must sum to the same value,
normally 100. See example for more information. Rows are in order: c("A",
"C", "G", "T")

include.N logical (F), if TRUE, allow N bases to be counted as hits, score will be average
of the other bases. If True, N bases will be added to pfm, automaticly, so dont
include them if you make your own pfm.

Details

Ranges that does not have minimum 15 length (the kozak requirement as a sliding window of size
15 around grl start), will be set to score 0. Since they should not have the posibility to make a
ribosome binding.

Value

a numeric vector with values between 0 and 1

an integer vector, one score per orf

lastExonEndPerGroup 55

References

doi: https://doi.org/10.1371/journal.pone.0108475

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, orfScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

Usually the ORFs are found in orfik, which makes names for you etc.
Here we make an example from scratch
seqName <- "Chromosome"
ORF1 <- GRanges(seqnames = seqName,

ranges = IRanges(c(1007, 1096), width = 60),
strand = c("+", "+"))

ORF2 <- GRanges(seqnames = seqName,
ranges = IRanges(c(400, 100), width = 30),
strand = c("-", "-"))

ORFs <- GRangesList(tx1 = ORF1, tx2 = ORF2)
ORFs <- makeORFNames(ORFs) # need ORF names
tx <- extendLeaders(ORFs, 100)
get faFile for sequences
faFile <- FaFile(system.file("extdata", "genome.fasta", package = "ORFik"))
kozakSequenceScore(ORFs, tx, faFile)
For more details see vignettes.

lastExonEndPerGroup Get last end per granges group

Description

Get last end per granges group

Usage

lastExonEndPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

a Rle(keep.names = T), or integer vector(F)

56 lastExonStartPerGroup

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonEndPerGroup(grl)

lastExonPerGroup Get last exon per GRangesList group

Description

grl must be sorted, call ORFik:::sortPerGroup if needed

Usage

lastExonPerGroup(grl)

Arguments

grl a GRangesList

Value

a GRangesList of the last exon per group

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonPerGroup(grl)

lastExonStartPerGroup Get last start per granges group

Description

Get last start per granges group

Usage

lastExonStartPerGroup(grl, keep.names = TRUE)

loadRegion 57

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

a Rle(keep.names = T), or integer vector(F)

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
lastExonStartPerGroup(grl)

loadRegion Load transcript region

Description

Load if not already GRangesList

Usage

loadRegion(txdb, part = "tx")

Arguments

txdb a GRangesList or txdb object

part a character, one of: tx, leader, cds, trailer

Value

a GrangesList of region

58 longestORFs

loadTxdb General loader for txdb

Description

Useful to allow fast TxDb loader like .db

Usage

loadTxdb(txdb)

Arguments

txdb a TxDb file or a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite)

Value

a TxDb object

Examples

library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",

package = "GenomicFeatures")
txdb <- loadDb(txdbFile)

longestORFs Get longest ORF per stop site

Description

Rule: if seqname, strand and stop site is equal, take longest one. Else keep. If IRangesList or
IRanges, seqnames are groups, if GRanges or GRangesList seqnames are the seqlevels (e.g. chro-
mosomes/transcripts)

Usage

longestORFs(grl)

Arguments

grl a GRangesList/IRangesList, GRanges/IRanges of ORFs

Value

a GRangesList/IRangesList, GRanges/IRanges (same as input)

makeExonRanks 59

See Also

Other ORFHelpers: defineTrailer, mapToGRanges, orfID, startCodons, startSites, stopCodons,
stopSites, txNames, uniqueGroups, uniqueOrder

Examples

ORF1 = GRanges("1", IRanges(10,21), "+")
ORF2 = GRanges("1", IRanges(1,21), "+") # <- longest
grl <- GRangesList(ORF1 = ORF1, ORF2 = ORF2)
longestORFs(grl) # get only longest

makeExonRanks Make grouping for exon structures.

Description

Either by transcript or by original groupings. Must be ordered, so that same transcripts are ordered
together.

Usage

makeExonRanks(grl, byTranscript = FALSE)

Arguments

grl a GRangesList

byTranscript if ORfs are by transcript, check duplicates

Value

an integer vector of indices for exon ranks

makeORFNames Make ORF names per orf

Description

grl must be grouped by transcript If a list of orfs are grouped by transcripts, but does not have ORF
names, then create them and return the new GRangesList

Usage

makeORFNames(grl, groupByTx = TRUE)

Arguments

grl a GRangesList

groupByTx logical (T), should output GRangesList be grouped by transcripts (T) or by
ORFs (F)?

60 mapToGRanges

Value

(GRangesList) with ORF names, grouped by transcripts, sorted.

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
makeORFNames(grl)

mapToGRanges Map orfs to genomic coordinates

Description

Creates GRangesList from the results of ORFs_as_List and the GRangesList used to find the ORFs

Usage

mapToGRanges(grl, result, groupByTx = TRUE)

Arguments

grl A GRangesList of the original sequences that gave the orfs in Genomic coordi-
nates.

result IRangesList A list of the results of finding uorfs list syntax is: Per list group in
IRangesList is per grl index. In transcript coordinates. The names are grl index
as character.

groupByTx logical (T), should output GRangesList be grouped by transcripts (T) or by
ORFs (F)?

Details

There is no check on invalid matches, so be carefull if you use this function directly.

Value

A GRangesList of ORFs.

See Also

Other ORFHelpers: defineTrailer, longestORFs, orfID, startCodons, startSites, stopCodons,
stopSites, txNames, uniqueGroups, uniqueOrder

matchNaming 61

matchNaming Match naming of GRangesList

Description

Given a GRangesList and a reference, make the naming convention and the number of metacolumns
equal to reference

Usage

matchNaming(gr, reference)

Arguments

gr a GRangesList or GRanges object

reference a GRangesList of a reference

Value

a GRangesList

metaWindow Calculate meta-coverage of reads around input GRanges/List object.

Description

Sums up coverage over set of GRanges objects as a meta representation.

Usage

metaWindow(x, windows, scoring = "sum", withFrames = FALSE,
zeroPosition = NULL, scaleTo = 100, returnAs = "data.frame",
fraction = NULL, feature = NULL,
forceUniqueEven = !is.null(scoring))

Arguments

x GRangesList/GRanges object of your reads. Remember to resize them before-
hand to width of 1 to focus on 5’ ends of footprints, if that is wanted.

windows GRangesList or GRanges of your ranges

scoring a character, one of (zscore, transcriptNormalized, mean, median, sum, sum-
Length, NULL), see ?coverageScorings

withFrames a logical (TRUE), return positions with the 3 frames, relative to zeroPosition.
zeroPosition is frame 0.

zeroPosition an integer DEFAULT (NULL), the point if all windows are equal size, that
should be set to position 0. Like leaders and cds combination, then 0 is the
TIS and -1 is last base in leader. NOTE!: if windows have different widths, this
will be ignored.

62 numCodons

scaleTo an integer (100), if windows have different size, a meta window can not directly
be created, since a meta window must have equal size for all windows. Rescale
all windows to scaleTo. i.e c(1,2,3) -> size 2 -> c(1, sum(2,3)) etc.

returnAs a character (data.frame), do data.table for speed.
fraction a character/integer (NULL), the fraction i.e (27) for read length 27, or ("LSU")

for large sub-unit TCP-seq.
feature a character string, info on region. Usually either gene name, transcript part like

cds, leader, or CpG motifs etc.
forceUniqueEven,

a logical (TRUE), require that all windows are of same width and even. To avoid
bugs.

Value

A data.frame or data.table with scored counts (score) of reads mapped to positions (position) spec-
ified in windows along with frame (frame).

See Also

Other coverage: coverageScorings, scaledWindowPositions, windowPerReadLength

Examples

library(GenomicRanges)
windows <- GRangesList(GRanges("chr1", IRanges(c(50, 100), c(80, 200)),

"-"))
x <- GenomicRanges::GRanges(

seqnames = "chr1",
ranges = IRanges::IRanges(c(100, 180), c(200, 300)),
strand = "-")

metaWindow(x, windows, withFrames = FALSE)

numCodons Get number of codons

Description

Choose only whole codons, or with stubs. But usually there are no ORFs that are 17 bases etc.

Usage

numCodons(grl, as.integer = TRUE, keep.names = FALSE)

Arguments

grl a GRangesList object
as.integer a logical (TRUE), remove stub codons
keep.names a logical (FALSE)

Value

an integer vector

numExonsPerGroup 63

numExonsPerGroup Get list of the number of exons per group

Description

Can also be used generaly to get number of GRanges object per GRangesList group

Usage

numExonsPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

an integer vector of counts

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
numExonsPerGroup(grl)

optimizeReads Find optimized subset of valid reads

Description

Find optimized subset of valid reads

Usage

optimizeReads(grl, reads)

Arguments

grl a GRangesList or GRanges object

reads a GRanges or GAlignment object

Value

the reads as GRanges or GAlignment

64 orfScore

orfID Get id’s for each orf

Description

These id’s can be uniqued by isoform etc, this is not supported by GenomicRanges.

Usage

orfID(grl, with.tx = FALSE)

Arguments

grl a GRangesList

with.tx a boolean, include transcript names, if you want unique orfs, so that they dont
have multiple versions on different isoforms, set it to FALSE.

Value

a character vector of ids, 1 per orf

See Also

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, startCodons, startSites,
stopCodons, stopSites, txNames, uniqueGroups, uniqueOrder

orfScore Get ORFscore for a GRangesList of ORFs

Description

ORFscore tries to check whether the first frame of the 3 possible frames in an ORF has more reads
than second and third frame.

Usage

orfScore(grl, RFP, is.sorted = FALSE)

Arguments

grl a GRangesList object with ORFs

RFP ribosomal footprints, given as Galignment object, Granges or GRangesList

is.sorted logical (F), is grl sorted.

orfScore 65

Details

Pseudocode: assume rff - is reads fraction in specific frame

ORFScore = log(rrf1 + rrf2 + rrf3)

For all ORFs where rrf2 or rrf3 is bigger than rff1, negate the resulting value.

ORFScore[rrf1Smaller] <- ORFScore[rrf1Smaller] * -1

As result there is one value per ORF: Positive values say that the first frame have the most reads,
negative values say that the first frame does not have the most reads. NOTE: If reads are not of size
1, then a read from 1-4 on range of 1-4, will get scores frame1 = 2, frame2 = 1, frame3 = 1. What
could be logical is that only the 5’ end is important, so that only frame1 = 1, to get this, you first
resize reads to 5’end only.

Value

a data.table with 4 columns, the orfscore (ORFScores) and score of each of the 3 tiles (frame_zero_RP,
frame_one_RP, frame_two_RP)

References

doi: 10.1002/embj.201488411

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, rankOrder, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

names(ORF) <- c("tx1", "tx1", "tx1")
grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+") # 1 width position based
score(RFP) <- 28 # original width
orfScore(grl, RFP) # negative because more hits on frames 1,2 than 0.

example with positive result, more hits on frame 0 (in frame of ORF)
RFP <- GRanges("1", IRanges(c(1, 1, 1, 25), width = 1), "+")
score(RFP) <- c(28, 29, 31, 28) # original width
orfScore(grl, RFP)

66 parseCigar

overlapsToCoverage Get overlaps and convert to coverage list

Description

Get overlaps and convert to coverage list

Usage

overlapsToCoverage(gr, reads, keep.names = TRUE, type = "any")

Arguments

gr a GRanges object, to get coverage of.

reads a GAlignment or GRanges object of RiboSeq, RnaSeq etc.

keep.names logical (T), keep names or not.

type a string (any), argument for countOverlaps.

Value

a Rle, one list per group with # of hits per position.

See Also

Other ExtendGenomicRanges: asTX, coveragePerTiling, reduceKeepAttr, tile1, txSeqsFromFa,
windowPerGroup

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

names(ORF) <- "tx1"
reads <- GRanges("1", IRanges(25, 25), "+")
overlapsToCoverage(ORF, reads)

parseCigar Shift ribo-seq reads using cigar string

Description

Shift ribo-seq reads using cigar string

Usage

parseCigar(cigar, shift, is_plus_strand)

pmapFromTranscriptF 67

Arguments

cigar the cigar of the reads

shift the shift as integer

is_plus_strand logical

Value

the shifted read

pmapFromTranscriptF Faster pmapFromTranscript

Description

This version tries to fix the shortcommings of GenomicFeature’s version. Much faster and uses less
memory. Implemented as dynamic program optimized c++ code.

Usage

pmapFromTranscriptF(x, transcripts, removeEmpty = FALSE)

Arguments

x IRangesList/IRanges/GRanges to map to genomic coordinates

transcripts a GRangesList to map agains

removeEmpty a logical, remove non hit exons, else they are set to 0.

Details

The length of x must be the same as length of transcripts. Only exception is if x have integer names
like (1, 3, 3, 5), so that x[1] maps to 1, x[2] maps to transcript 3 etc.

Value

a GRangesList of mapped reads, names from ranges are kept.

Examples

ranges <- IRanges(start = c(5, 6), end = c(10, 10))
seqnames = rep("chr1", 2)
strands = rep("-", 2)
grl <- split(GRanges(seqnames, IRanges(c(85, 70), c(89, 82)), strands),

c(1, 1))
ranges <- split(ranges, c(1,1)) # both should be mapped to transcript 1
pmapFromTranscriptF(ranges, grl, TRUE)

68 pSitePlot

pSitePlot Plot area around TIS for p-shifted reads

Description

Usefull to validate p-shifting is correct Can be used for any coverage of region around a point, like
TIS, TSS, stop site etc.

Usage

pSitePlot(hitMap, length = 29, region = "start", output = NULL)

Arguments

hitMap a data.frame/data.table, given from metaWindow (must have columns: position,
(score or count) and frame)

length an integer (29), which length is this for?

region a character (start), either "start or "stop"

output character string (NULL), if set, saves the plot as pdf or png to path given. If no
format is given, is save as pdf.

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other coveragePlot: coverageHeatMap, savePlot, windowCoveragePlot

Examples

An ORF
grl <- GRangesList(tx1 = GRanges("1", IRanges(1, 6), "+"))
Ribo-seq reads
range <- IRanges(c(rep(1, 3), 2, 3, rep(4, 2), 5, 6), width = 1)
reads <- GRanges("1", range, "+")
coverage <- coveragePerTiling(grl, reads, TRUE, as.data.table = TRUE,

withFrames = TRUE)
ORFik:::pSitePlot(coverage)

See vignette for more examples

rankOrder 69

rankOrder ORF rank in transcripts

Description

Creates an ordering of ORFs per transcript, so that ORF with the most upstream start codon is 1,
second most upstream start codon is 2, etc. Must input a grl made from ORFik, txNames_2 -> 2.

Usage

rankOrder(grl)

Arguments

grl a GRangesList object with ORFs

Value

a numeric vector of integers

References

doi: 10.1074/jbc.R116.733899

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, ribosomeReleaseScore, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
grl <- ORFik:::makeORFNames(grl)
rankOrder(grl)

70 reassignTSSbyCage

readWidths Get RiboSeq widths

Description

Input a ribo-seq object and get width of reads, this is to avoid confusion between width, qwidth and
meta column containing original read width.

Usage

readWidths(reads, after.softclips = TRUE)

Arguments

reads a GRanges or GAlignment object.
after.softclips

logical (FALSE), include softclips in width

Details

If input is p-shifted and GRanges, the "$score" or "$size" colum" must exist, and contain the original
read widths. ORFik P-shifting creates a $size column, other softwares like shoelaces creates a score
column

Value

an integer vector of widths

Examples

gr <- GRanges("chr1", 1)
readWidths(gr)

GAlignment with hit (1M) and soft clipped base (1S)
ga <- GAlignments(seqnames = "1", pos = as.integer(1), cigar = "1M1S",
strand = factor("+", levels = c("+", "-", "*")))

readWidths(ga) # Without soft-clip bases

readWidths(ga, after.softclips = FALSE) # With soft-clip bases

reassignTSSbyCage Reassign all Transcript Start Sites (TSS)

Description

Given a GRangesList of 5’ UTRs or transcripts, reassign the start sites using max peaks from
CageSeq data. A max peak is defined as new TSS if it is within boundary of 5’ leader range,
specified by ‘extension‘ in bp. A max peak must also be higher than minimum CageSeq peak cutoff
specified in ‘filterValue‘. The new TSS will then be the positioned where the cage read (with highest
read count in the interval). If removeUnused is TRUE, leaders without cage hits, will be removed,
if FALSE the original TSS will be used.

reassignTSSbyCage 71

Usage

reassignTSSbyCage(fiveUTRs, cage, extension = 1000, filterValue = 1,
restrictUpstreamToTx = FALSE, removeUnused = FALSE)

Arguments

fiveUTRs (GRangesList) The 5’ leaders or transcript sequences
cage Either a filePath for CageSeq file, or already loaded CageSeq peak data as

GRanges.
extension The maximum number of basses upstream of the TSS to search for CageSeq

peak.
filterValue The minimum number of reads on cage position, for it to be counted as possible

new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

restrictUpstreamToTx

a logical (FALSE), if you want to restrict leaders to not extend closer than 5
bases from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), remove leaders that did not have any cage support. (standard
is to set them to original annotation)

Details

Note: If you used CAGEr, you will get reads of a probability region, with always score of 1.
Remember then to set filterValue to 0. And you should use the 5’ end of the read as input, use:
ORFik:::convertToOneBasedRanges(cage)

Value

a GRangesList of newly assigned TSS for fiveUTRs, using CageSeq data.

See Also

Other CAGE: assignTSSByCage, reassignTxDbByCage

Examples

example 5' leader, notice exon_rank column
fiveUTRs <- GenomicRanges::GRangesList(

GenomicRanges::GRanges(seqnames = "chr1",
ranges = IRanges::IRanges(1000, 2000),
strand = "+",
exon_rank = 1))

names(fiveUTRs) <- "tx1"

make fake CageSeq data from promoter of 5' leaders, notice score column
cage <- GenomicRanges::GRanges(

seqnames = "1",
ranges = IRanges::IRanges(500, width = 1),
strand = "+",
score = 10) # <- Number of tags (reads) per position

notice also that seqnames use different naming, this will be fixed by ORFik
finally reassign TSS for fiveUTRs
reassignTSSbyCage(fiveUTRs, cage)

72 reassignTxDbByCage

reassignTxDbByCage Input a txdb and reassign the TSS for each transcript by CAGE

Description

Given a TxDb object, reassign the start site per transcript using max peaks from CageSeq data. A
max peak is defined as new TSS if it is within boundary of 5’ leader range, specified by ‘extension‘
in bp. A max peak must also be higher than minimum CageSeq peak cutoff specified in ‘filter-
Value‘. The new TSS will then be the positioned where the cage read (with highest read count in
the interval).

Usage

reassignTxDbByCage(txdb, cage, extension = 1000, filterValue = 1,
restrictUpstreamToTx = FALSE, removeUnused = FALSE)

Arguments

txdb a TxDb file or a path to one of: (.gtf ,.gff, .gff2, .gff2, .db or .sqlite)

cage Either a filePath for CageSeq file, or already loaded CageSeq peak data as
GRanges.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

restrictUpstreamToTx

a logical (FALSE), if you want to restrict leaders to not extend closer than 5
bases from closest upstream leader, set this to TRUE.

removeUnused logical (FALSE), remove leaders that did not have any cage support. (standard
is to set them to original annotation)

Details

Note: If you used CAGEr, you will get reads of a probability region, with always score of 1.
Remember then to set filterValue to 0. And you should use the 5’ end of the read as input, use:
ORFik:::convertToOneBasedRanges(cage)

Value

a TxDb obect of reassigned transcripts

See Also

Other CAGE: assignTSSByCage, reassignTSSbyCage

reduceKeepAttr 73

Examples

Not run:
library(GenomicFeatures)
Get the gtf txdb file
txdbFile <- system.file("extdata", "hg19_knownGene_sample.sqlite",
package = "GenomicFeatures")
cagePath <- system.file("extdata", "cage-seq-heart.bed.bgz",
package = "ORFik")
reassignTxDbByCage(txdbFile, cagePath)

End(Not run)

reduceKeepAttr Reduce GRanges / GRangesList

Description

Extends function reduce by trying to keep names and meta columns, if it is a GRangesList. It also
does not lose sorting for GRangesList, since original reduce sorts all by ascending. If keep.names
== FALSE, it’s just the normal GenomicRanges::reduce with sorting negative strands descending
for GRangesList.

Usage

reduceKeepAttr(grl, keep.names = FALSE, drop.empty.ranges = FALSE,
min.gapwidth = 1L, with.revmap = FALSE,
with.inframe.attrib = FALSE, ignore.strand = FALSE)

Arguments

grl a GRangesList or GRanges object

keep.names (FALSE) keep the names and meta columns of the GRangesList
drop.empty.ranges

(FALSE) if a group is empty (width 0), delete it.

min.gapwidth (1L) how long gap can it be to say they belong together

with.revmap (FALSE) return info on which mapped to which
with.inframe.attrib

(FALSE) For internal use.

ignore.strand (FALSE), can different strands be reduced together.

Value

A reduced GRangesList

See Also

Other ExtendGenomicRanges: asTX, coveragePerTiling, overlapsToCoverage, tile1, txSeqsFromFa,
windowPerGroup

74 removeMetaCols

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 2, 3), end = c(1, 2, 3)),
strand = "+")

For GRanges
reduceKeepAttr(ORF, keep.names = TRUE)
For GRangesList
grl <- GRangesList(tx1_1 = ORF)
reduceKeepAttr(grl, keep.names = TRUE)

remakeTxdbExonIds Get new exon ids

Description

Get new exon ids

Usage

remakeTxdbExonIds(txList)

Arguments

txList a list, call of as.list(txdb)

Value

a new valid ordered list of exon ids (integer)

removeMetaCols Removes meta columns

Description

Removes meta columns

Usage

removeMetaCols(grl)

Arguments

grl a GRangesList or GRanges object

Value

same type and structure as input without meta columns

removeTxdbExons 75

removeTxdbExons Remove exons in txList that are not in fiveUTRs

Description

Remove exons in txList that are not in fiveUTRs

Usage

removeTxdbExons(txList, fiveUTRs)

Arguments

txList a list, call of as.list(txdb)

fiveUTRs a GRangesList of 5’ leaders

Value

a list, modified call of as.list(txdb)

removeTxdbTranscripts Remove specific transcripts in txdb List

Description

Remove all transcripts, except the ones in fiveUTRs.

Usage

removeTxdbTranscripts(txList, fiveUTRs)

Arguments

txList a list, call of as.list(txdb)

fiveUTRs a GRangesList of 5’ leaders

Value

a txList

76 ribosomeReleaseScore

restrictTSSByUpstreamLeader

Restrict extension of 5’ UTRs to closest upstream leader end

Description

Basicly this function restricts all startSites, to the upstream GRangesList objects end. Usually
leaders, for CAGE.

Usage

restrictTSSByUpstreamLeader(fiveUTRs, shiftedfiveUTRs)

Arguments

fiveUTRs The 5’ leader sequences as GRangesList
shiftedfiveUTRs

The 5’ leader sequences as GRangesList shifted by CAGE

Value

GRangesList object of restricted fiveUTRs

ribosomeReleaseScore Ribosome Release Score (RRS)

Description

Ribosome Release Score is defined as

(RPFs over ORF)/(RPFs over 3' utrs)

and additionaly normalized by lengths. If RNA is added as argument, it will normalize by RNA
counts to justify location of 3’ utrs. It can be understood as a ribosome stalling feature. A pseudo-
count of one was added to both the ORF and downstream sums.

Usage

ribosomeReleaseScore(grl, RFP, GtfOrThreeUtrs, RNA = NULL)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.

RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

GtfOrThreeUtrs if Gtf: a TxDb object of a gtf file transcripts is called from: ‘threeUTRsByTran-
script(Gtf, use.names = TRUE)‘, if object is GRangesList, it is presumed to be
the 3’ utrs

RNA RnaSeq reads as GAlignment, GRanges or GRangesList object

ribosomeStallingScore 77

Value

a named vector of numeric values of scores, NA means that no 3’ utr was found for that transcript.

References

doi: 10.1016/j.cell.2013.06.009

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeStallingScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
threeUTRs <- GRangesList(tx1 = GRanges("1", IRanges(40, 50), "+"))
RFP <- GRanges("1", IRanges(25, 25), "+")
RNA <- GRanges("1", IRanges(1, 50), "+")
ribosomeReleaseScore(grl, RFP, threeUTRs, RNA)

ribosomeStallingScore Ribosome Stalling Score (RSS)

Description

Is defined as

(RPFs over ORF stop sites)/(RPFs over ORFs)

and normalized by lengths A pseudo-count of one was added to both the ORF and downstream
sums.

Usage

ribosomeStallingScore(grl, RFP)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs.

RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

Value

a named vector of numeric values of RSS scores

78 savePlot

References

doi: 10.1016/j.cels.2017.08.004

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
startRegionCoverage, startRegion, subsetCoverage, translationalEff

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+")
ribosomeStallingScore(grl, RFP)

savePlot Helper function for writing plots to disc

Description

Helper function for writing plots to disc

Usage

savePlot(plot, output = NULL, width = 200, height = 150)

Arguments

plot the ggplot to save

output character string (NULL), if set, saves the plot as pdf or png to path given. If no
format is given, is save as pdf.

width width of output in mm

height height of output in mm

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other coveragePlot: coverageHeatMap, pSitePlot, windowCoveragePlot

scaledWindowPositions 79

scaledWindowPositions Scale windows to a meta window of size

Description

For example scale a coverage plot of a all human CDS to width 100

Usage

scaledWindowPositions(grl, reads, scaleTo = 100, scoring = "meanPos")

Arguments

grl GRangesList or GRanges of your ranges

reads GRanges object of your reads.

scaleTo an integer (100), if windows have different size, a meta window can not directly
be created, since a meta window must have equal size for all windows. Rescale
all windows to scaleTo. i.e c(1,2,3) -> size 2 -> c(1, mean(2,3)) etc. Can also be
a vector, 1 number per grl group.

scoring a character, one of (meanPos, sumPos)

Details

Nice for making metaplots, the score will be mean of merged positions.

Value

A data.table with scored counts (counts) of reads mapped to positions (position) specified in win-
dows along with frame (frame).

See Also

Other coverage: coverageScorings, metaWindow, windowPerReadLength

Examples

library(GenomicRanges)
windows <- GRangesList(GRanges("chr1", IRanges(1, 200), "-"))
x <- GenomicRanges::GRanges(

seqnames = "chr1",
ranges = IRanges::IRanges(c(1, 100, 199), c(2, 101, 200)),
strand = "-")

scaledWindowPositions(windows, x, scaleTo = 100)

80 shiftFootprints

seqnamesPerGroup Get list of seqnames per granges group

Description

Get list of seqnames per granges group

Usage

seqnamesPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

a character vector or Rle of seqnames(if seqnames == T)

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
seqnamesPerGroup(grl)

shiftFootprints Shift footprints by selected offsets

Description

Function shifts footprints (GRanges) using specified offsets for every of the specified lengths. Reads
that do not conform to the specified lengths are filtered out and rejected. Reads are resized to single
base in 5’ end fashion, treated as p site. This function takes account for junctions in cigars of the
reads. Length of the footprint is saved in size’ parameter of GRanges output. Footprints are also
sorted according to their genomic position, ready to be saved as a bed file.

Usage

shiftFootprints(footprints, shifts)

Arguments

footprints (GAlignments) object of RiboSeq reads

shifts a data.frame with minimum 2 columns, selected_lengths and selected_shifts.
Output from detectRibosomeShifts

sortPerGroup 81

Details

The two columns in shift are: - fraction Numeric vector of lengths of footprints you select for
shifting. - offsets_start Numeric vector of shifts for coresponding selected_lengths. eg. c(10, -10)
with selected_lengths of c(31, 32) means length of 31 will be shifted left by 10. Footprints of length
32 will be shifted right by 10.

NOTE: It will remove softclips from valid width, the CIGAR 3S30M is qwidth 33, but will remove
3S so final read width is 30 in ORFik.

Value

A GRanges object of shifted footprints, sorted and resized to 1bp of p-site, with metacolumn "size"
indicating footprint size before shifting and resizing, sorted in increasing order.

See Also

Other pshifting: changePointAnalysis, detectRibosomeShifts

Examples

Not run:
input path to gtf, or load it as TxDb.
gtf_file <- system.file("extdata", "annotations.gtf", package = "ORFik")
load reads
riboSeq_file <- system.file("extdata", "ribo-seq.bam", package = "ORFik")
footprints <- GenomicAlignments::readGAlignments(

riboSeq_file, param = ScanBamParam(flag = scanBamFlag(
isDuplicate = FALSE, isSecondaryAlignment = FALSE)))

detect the shifts automagically
shifts <- detectRibosomeShifts(footprints, gtf_file)
shift the RiboSeq footprints
shiftedReads <- shiftFootprints(footprints, shifts)

End(Not run)

sortPerGroup Sort a GRangesList

Description

A faster, more versatile reimplementation of sort.GenomicRanges for GRangesList, needed since
the original works poorly for more than 10k groups. This function sorts each group, where "+"
strands are increasing by starts and "-" strands are decreasing by ends.

Usage

sortPerGroup(grl, ignore.strand = FALSE)

Arguments

grl a GRangesList

ignore.strand a boolean, if FALSE: should minus strands be sorted from highest to lowest
ends. If TRUE: from lowest to highest ends.

82 startCodons

Details

Note: will not work if groups have equal names.

Value

an equally named GRangesList, where each group is sorted within group.

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(14, 7), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(1, 4), c(3, 9)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
sortPerGroup(grl)

startCodons Get the Start codons(3 bases) from a GRangesList of orfs grouped by
orfs

Description

In ATGTTTTGA, get the positions ATG. It takes care of exons boundaries, with exons < 3 length.

Usage

startCodons(grl, is.sorted = FALSE)

Arguments

grl a GRangesList object

is.sorted a boolean, a speedup if you know the ranges are sorted

Value

a GRangesList of start codons, since they might be split on exons

See Also

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, orfID, startSites, stopCodons,
stopSites, txNames, uniqueGroups, uniqueOrder

startDefinition 83

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
startCodons(grl, is.sorted = FALSE)

startDefinition Returns start definitions

Description

According to: <http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ index.cgi?chapter=tgencodes#SG1>
ncbi genetic code number for translation. This version is a cleaned up version, unknown indices
removed.

Usage

startDefinition(transl_table)

Arguments

transl_table numeric. NCBI genetic code number for translation.

Value

A string of START sies separatd with "|".

See Also

Other findORFs: findMapORFs, findORFsFasta, findORFs, stopDefinition

Examples

startDefinition
startDefinition(1)

84 startRegion

startRegion Start region as GRangesList

Description

Get the start region of each ORF. If you want the start codon only, set upstream = 0 or just use
startCodons. Standard is 2 upstream and 2 downstream, a width 5 window centered at start site.
since p-shifting is not 100 usually the reads from the start site.

Usage

startRegion(grl, tx = NULL, is.sorted = TRUE, upstream = 2L,
downstream = 2L)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

is.sorted logical (TRUE), is grl sorted.

upstream an integer (2), relative region to get upstream from.

downstream an integer (2), relative region to get downstream from

Details

If tx is null, then upstream will be forced to 0 and downstream to a maximum of grl width. Since
there is no reference for splicing.

Value

a GRanges, or GRangesList object if any group had > 1 exon.

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, subsetCoverage, translationalEff

startRegionCoverage 85

startRegionCoverage Start region coverage

Description

Get the number of reads in the start region of each ORF. If you want the start codon coverage only,
set upstream = 0. Standard is 2 upstream and 2 downstream, a width 5 window centered at start site.
since p-shifting is not 100 start site.

Usage

startRegionCoverage(grl, RFP, tx = NULL, is.sorted = TRUE,
upstream = 2L, downstream = 2L)

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs

RFP ribo seq reads as GAlignment, GRanges or GRangesList object

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

is.sorted logical (TRUE), is grl sorted.

upstream an integer (2), relative region to get upstream from.

downstream an integer (2), relative region to get downstream from

Details

If tx is null, then upstream will be force to 0 and downstream to a maximum of grl width. Since
there is no reference for splicing.

Value

a numeric vector of counts

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegion, subsetCoverage, translationalEff

86 startSites

startRegionString Get start region as DNA-strings per GRanges group

Description

One window per start site, if upstream and downstream are both 0, then only the startsite is returned.

Usage

startRegionString(grl, tx, faFile, upstream = 20, downstream = 20)

Arguments

grl a GRangesList of ranges to find regions in.

tx a GRangesList of transcripts or (container region), names of tx must contain all
gr names. The names of gr can also be the ORFik orf names. that is "txName_id"

faFile a FaFile from the fasta file, see ?FaFile. Can also be path to fastaFile with fai
file in same dir.

upstream an integer (0), relative region to get upstream from.

downstream an integer (0), relative region to get downstream from

Value

a character vector of start regions

startSites Get the start sites from a GRangesList of orfs grouped by orfs

Description

In ATGTTTTGG, get the position of the A.

Usage

startSites(grl, asGR = FALSE, keep.names = FALSE, is.sorted = FALSE)

Arguments

grl a GRangesList object

asGR a boolean, return as GRanges object

keep.names a logical (FALSE), keep names of input.

is.sorted a speedup, if you know the ranges are sorted

Value

if asGR is False, a vector, if True a GRanges object

stopCodons 87

See Also

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, orfID, startCodons, stopCodons,
stopSites, txNames, uniqueGroups, uniqueOrder

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
startSites(grl, is.sorted = FALSE)

stopCodons Get the Stop codons (3 bases) from a GRangesList of orfs grouped by
orfs

Description

In ATGTTTTGA, get the positions TGA. It takes care of exons boundaries, with exons < 3 length.

Usage

stopCodons(grl, is.sorted = FALSE)

Arguments

grl a GRangesList object

is.sorted a boolean, a speedup if you know the ranges are sorted

Value

a GRangesList of stop codons, since they might be split on exons

See Also

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, orfID, startCodons, startSites,
stopSites, txNames, uniqueGroups, uniqueOrder

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
stopCodons(grl, is.sorted = FALSE)

88 stopSites

stopDefinition Returns stop definitions

Description

According to: <http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ index.cgi?chapter=tgencodes#SG1>
ncbi genetic code number for translation. This version is a cleaned up version, unknown indices
removed.

Usage

stopDefinition(transl_table)

Arguments

transl_table numeric. NCBI genetic code number for translation.

Value

A string of STOP sies separatd with "|".

See Also

Other findORFs: findMapORFs, findORFsFasta, findORFs, startDefinition

Examples

stopDefinition
stopDefinition(1)

stopSites Get the stop sites from a GRangesList of orfs grouped by orfs

Description

In ATGTTTTGC, get the position of the C.

Usage

stopSites(grl, asGR = FALSE, keep.names = FALSE, is.sorted = FALSE)

Arguments

grl a GRangesList object

asGR a boolean, return as GRanges object

keep.names a logical (FALSE), keep names of input.

is.sorted a speedup, if you know the ranges are sorted

strandBool 89

Value

if asGR is False, a vector, if True a GRanges object

See Also

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, orfID, startCodons, startSites,
stopCodons, txNames, uniqueGroups, uniqueOrder

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
stopSites(grl, is.sorted = FALSE)

strandBool Get logical list of strands

Description

Helper function to get a logical list of True/False, if GRangesList group have + strand = T, if - strand
= F Also checks for * strands, so a good check for bugs

Usage

strandBool(grl)

Arguments

grl a GRangesList or GRanges object

Value

a logical vector

Examples

gr <- GRanges(Rle(c("chr2", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
IRanges(1:10, width = 10:1),
Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)))

strandBool(gr)

90 subsetCoverage

strandPerGroup Get list of strands per granges group

Description

Get list of strands per granges group

Usage

strandPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

a vector named/unnamed of characters

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
strandPerGroup(grl)

subsetCoverage Subset GRanges to get coverage.

Description

GRanges object should be beforehand tiled to size of 1. This subsetting takes account for strand.

Usage

subsetCoverage(cov, y)

Arguments

cov A coverage object from coverage()

y GRanges object for which coverage should be extracted

Value

numeric vector of coverage of input GRanges object

subsetToFrame 91

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, translationalEff

subsetToFrame Subset GRanges to get desired frame. GRanges object should be be-
forehand tiled to size of 1. This subsetting takes account for strand.

Description

Subset GRanges to get desired frame. GRanges object should be beforehand tiled to size of 1. This
subsetting takes account for strand.

Usage

subsetToFrame(x, frame)

Arguments

x A tiled to size of 1 GRanges object

frame A numeric indicating which frame to extract

Value

GRanges object reduced to only first frame

tile1 Tile each GRangesList group to 1-base resolution.

Description

Will tile a GRangesList into single bp resolution, each group of the list will be splited by positions
of 1. Returned values are sorted as the same groups as the original GRangesList, except they are in
bp resolutions. This is not supported originally by GenomicRanges.

Usage

tile1(grl, sort.on.return = TRUE, matchNaming = TRUE)

Arguments

grl a GRangesList object with names

sort.on.return logical (T), should the groups be sorted before return.

matchNaming logical (T), should groups keep unlisted names and meta data.(This make the
list very big, for > 100K groups)

92 translationalEff

Value

a GRangesList grouped by original group, tiled to 1

See Also

Other ExtendGenomicRanges: asTX, coveragePerTiling, overlapsToCoverage, reduceKeepAttr,
txSeqsFromFa, windowPerGroup

Examples

gr1 <- GRanges("1", ranges = IRanges(start = c(1, 10, 20),
end = c(5, 15, 25)),

strand = "+")
gr2 <- GRanges("1", ranges = IRanges(start = c(20, 30, 40),

end = c(25, 35, 45)),
strand = "+")

names(gr1) = rep("tx1_1", 3)
names(gr2) = rep("tx1_2", 3)
grl <- GRangesList(tx1_1 = gr1, tx1_2 = gr2)
tile1(grl)

translationalEff Translational efficiency

Description

Uses RnaSeq and RiboSeq to get translational efficiency of every element in ‘grl‘. Translational
efficiency is defined as:

(density of RPF within ORF) / (RNA expression of ORFs transcript)

Usage

translationalEff(grl, RNA, RFP, tx, with.fpkm = FALSE, pseudoCount = 0)

Arguments

grl a GRangesList object can be either transcripts, 5’ utrs, cds’, 3’ utrs or ORFs as
a special case (uORFs, potential new cds’ etc).

RNA RnaSeq reads as GAlignment, GRanges or GRangesList object

RFP RiboSeq reads as GAlignment, GRanges or GRangesList object

tx a GRangesList of the transcripts. If you used cage data, then the tss for the the
leaders have changed, therefor the tx lengths have changed. To account for that
call: ‘ translationalEff(grl, RNA, RFP, tx = extendLeaders(tx, cageFiveUTRs))
‘ where cageFiveUTRs are the reannotated by CageSeq data leaders.

with.fpkm logical F, if true return the fpkm values together with translational efficiency

pseudoCount an integer, 0, set it to 1 if you want to avoid NA and inf values. It also helps
against bias from low depth libraries.

txNames 93

Value

a numeric vector of fpkm ratios, if with.fpkm is TRUE, return a data.table with te and fpkm values

References

doi: 10.1126/science.1168978

See Also

Other features: computeFeaturesCage, computeFeatures, disengagementScore, distToCds,
distToTSS, entropy, floss, fpkm_calc, fpkm, fractionLength, initiationScore, insideOutsideORF,
isInFrame, isOverlapping, kozakSequenceScore, orfScore, rankOrder, ribosomeReleaseScore,
ribosomeStallingScore, startRegionCoverage, startRegion, subsetCoverage

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20), end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
RFP <- GRanges("1", IRanges(25, 25), "+")
RNA <- GRanges("1", IRanges(1, 50), "+")
tx <- GRangesList(tx1 = GRanges("1", IRanges(1, 50), "+"))
grl must have same names as cds + _1 etc, so that they can be matched.
te <- translationalEff(grl, RNA, RFP, tx, with.fpkm = TRUE, pseudoCount = 1)
te$fpkmRFP
te$te

txNames Get transcript names from orf names

Description

names must either be a column called names, or the names of the grl object

Usage

txNames(grl, unique = FALSE)

Arguments

grl a GRangesList grouped by ORF or GRanges object

unique a boolean, if true unique the names, used if several orfs map to same transcript
and you only want the unique groups

Value

a character vector of transcript names, without _* naming

94 txSeqsFromFa

See Also

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, orfID, startCodons, startSites,
stopCodons, stopSites, uniqueGroups, uniqueOrder

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1_1 = gr_plus, tx2_1 = gr_minus)
there are 2 orfs, both the first on each transcript
txNames(grl)

txSeqsFromFa Get transcript sequence from a GrangesList and a faFile or BSgenome

Description

A small safety wrapper around extractTranscriptSeqs

Usage

txSeqsFromFa(grl, faFile, is.sorted = FALSE)

Arguments

grl a GRangesList object

faFile FaFile, BSgenome or fasta/index file path used to find the transcripts

is.sorted a speedup, if you know the ranges are sorted

Value

a DNAStringSet of the transcript sequences

See Also

Other ExtendGenomicRanges: asTX, coveragePerTiling, overlapsToCoverage, reduceKeepAttr,
tile1, windowPerGroup

uniqueGroups 95

uniqueGroups Get the unique set of groups in a GRangesList

Description

Sometimes GRangesList groups might be identical, for example ORFs from different isoforms can
have identical ranges. Use this function to reduce these groups to unique elements in GRangesList
grl, without names and metacolumns.

Usage

uniqueGroups(grl)

Arguments

grl a GRangesList

Value

a GRangesList of unique orfs

See Also

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, orfID, startCodons, startSites,
stopCodons, stopSites, txNames, uniqueOrder

Examples

gr1 <- GRanges("1", IRanges(1,10), "+")
gr2 <- GRanges("1", IRanges(20, 30), "+")
make a grl with duplicated ORFs (gr1 twice)
grl <- GRangesList(tx1_1 = gr1, tx2_1 = gr2, tx3_1 = gr1)
uniqueGroups(grl)

uniqueOrder Get unique ordering for GRangesList groups

Description

This function can be used to calculate unique numerical identifiers for each of the GRangesList
elements. Elements of GRangesList are unique when the GRanges inside are not duplicated, so
ranges differences matter as well as sorting of the ranges.

Usage

uniqueOrder(grl)

Arguments

grl a GRangesList

96 unlistGrl

Value

an integer vector of indices of unique groups

See Also

uniqueGroups

Other ORFHelpers: defineTrailer, longestORFs, mapToGRanges, orfID, startCodons, startSites,
stopCodons, stopSites, txNames, uniqueGroups

Examples

gr1 <- GRanges("1", IRanges(1,10), "+")
gr2 <- GRanges("1", IRanges(20, 30), "+")
make a grl with duplicated ORFs (gr1 twice)
grl <- GRangesList(tx1_1 = gr1, tx2_1 = gr2, tx3_1 = gr1)
uniqueOrder(grl) # remember ordering

example on unique ORFs
uniqueORFs <- uniqueGroups(grl)
now the orfs are unique, let's map back to original set:
reMappedGrl <- uniqueORFs[uniqueOrder(grl)]

unlistGrl Safe unlist

Description

Same as [AnnotationDbi::unlist2()], keeps names correctly. Two differences is that if grl have no
names, it will not make integer names, but keep them as null. Also if the GRangesList has names ,
and also the GRanges groups, then the GRanges group names will be kept.

Usage

unlistGrl(grl)

Arguments

grl a GRangesList

Value

a GRanges object

Examples

ORF <- GRanges(seqnames = "1",
ranges = IRanges(start = c(1, 10, 20),

end = c(5, 15, 25)),
strand = "+")

grl <- GRangesList(tx1_1 = ORF)
unlistGrl(grl)

uORFSearchSpace 97

uORFSearchSpace Create search space to look for uORFs

Description

Given a GRangesList of 5’ UTRs or transcripts, reassign the start sites using max peaks from
CageSeq data. A max peak is defined as new TSS if it is within boundary of 5’ leader range,
specified by ‘extension‘ in bp. A max peak must also be higher than minimum CageSeq peak cutoff
specified in ‘filterValue‘. The new TSS will then be the positioned where the cage read (with highest
read count in the interval). If you want to include uORFs going into the CDS, add this argument
too.

Usage

uORFSearchSpace(fiveUTRs, cage, extension = 1000, filterValue = 1,
cds = NULL)

Arguments

fiveUTRs (GRangesList) The 5’ leaders or transcript sequences

cage Either a filePath for CageSeq file, or already loaded CageSeq peak data as
GRanges.

extension The maximum number of basses upstream of the TSS to search for CageSeq
peak.

filterValue The minimum number of reads on cage position, for it to be counted as possible
new tss. (represented in score column in CageSeq data) If you already filtered,
set it to 0.

cds (GRangesList) CDS of relative fiveUTRs, applicable only if you want to extend
5’ leaders downstream of CDS’s, to allow upstream ORFs that can overlap into
CDS’s.

Value

a GRangesList of newly assigned TSS for fiveUTRs, using CageSeq data.

Examples

example 5' leader, notice exon_rank column
fiveUTRs <- GenomicRanges::GRangesList(

GenomicRanges::GRanges(seqnames = "chr1",
ranges = IRanges::IRanges(1000, 2000),
strand = "+",
exon_rank = 1))

names(fiveUTRs) <- "tx1"

make fake CageSeq data from promoter of 5' leaders, notice score column
cage <- GenomicRanges::GRanges(

seqnames = "chr1",
ranges = IRanges::IRanges(500, 510),
strand = "+",
score = 10)

98 updateTxdbStartSites

finally reassign TSS for fiveUTRs
uORFSearchSpace(fiveUTRs, cage)

updateTxdbRanks Update exon ranks of exon data.frame

Description

Update exon ranks of exon data.frame

Usage

updateTxdbRanks(exons)

Arguments

exons a data.frame, call of as.list(txdb)$splicings

Value

a data.frame, modified call of as.list(txdb)

updateTxdbStartSites Update start sites of leaders

Description

Update start sites of leaders

Usage

updateTxdbStartSites(txList, fiveUTRs, removeUnused)

Arguments

txList a list, call of as.list(txdb)

fiveUTRs a GRangesList of 5’ leaders

removeUnused logical (FALSE), remove leaders that did not have any cage support. (standard
is to set them to original annotation)

Value

a list, modified call of as.list(txdb)

upstreamFromPerGroup 99

upstreamFromPerGroup Get rest of objects upstream (inclusive)

Description

Per group get the part upstream of position. upstreamFromPerGroup(tx, stopSites(fiveUTRs, asGR
= TRUE)) will return the 5’ utrs per transcript as GRangesList, usually used for interesting parts of
the transcripts.

Usage

upstreamFromPerGroup(tx, upstreamFrom)

Arguments

tx a GRangesList, usually of Transcripts to be changed
upstreamFrom a vector of integers, for each group in tx, where is the new start point of first

valid exon.

Details

If you don’t want to include the points given in the region, use upstreamOfPerGroup

Value

a GRangesList of upstream part

See Also

Other GRanges: assignFirstExonsStartSite, assignLastExonsStopSite, downstreamFromPerGroup,
downstreamOfPerGroup, upstreamOfPerGroup

upstreamOfPerGroup Get rest of objects upstream (exclusive)

Description

Per group get the part upstream of position upstreamOfPerGroup(tx, startSites(cds, asGR = TRUE))
will return the 5’ utrs per transcript, usually used for interesting parts of the transcripts.

Usage

upstreamOfPerGroup(tx, upstreamOf, allowOutside = TRUE)

Arguments

tx a GRangesList, usually of Transcripts to be changed
upstreamOf a vector of integers, for each group in tx, where is the the base after the new stop

point of last valid exon.
allowOutside a logical (T), can upstreamOf extend outside range of tx, can set boundary as a

false hit, so beware.

100 validSeqlevels

Value

a GRangesList of upstream part

See Also

Other GRanges: assignFirstExonsStartSite, assignLastExonsStopSite, downstreamFromPerGroup,
downstreamOfPerGroup, upstreamFromPerGroup

validGRL Helper Function to check valid GRangesList input

Description

Helper Function to check valid GRangesList input

Usage

validGRL(class, type = "grl", checkNULL = FALSE)

Arguments

class as character vector the given class of supposed GRangesList object
type a character vector, is it gtf, cds, 5’, 3’, for messages.
checkNULL should NULL classes be checked and return indeces of these?

Value

either NULL or indices (checkNULL == TRUE)

See Also

Other utils: bedToGR, convertToOneBasedRanges, findFa, fread.bed, is.gr_or_grl, is.grl

validSeqlevels Helper function to find overlaping seqlevels

Description

Useful to avoid warnings in bioC

Usage

validSeqlevels(grl, reads)

Arguments

grl a GRangesList or GRanges object
reads a GRanges or GAlignment object

Value

a character vector of valid seqlevels

widthPerGroup 101

widthPerGroup Get list of widths per granges group

Description

Get list of widths per granges group

Usage

widthPerGroup(grl, keep.names = TRUE)

Arguments

grl a GRangesList

keep.names a boolean, keep names or not

Value

an integer vector (named/unnamed) of widths

Examples

gr_plus <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7, 14), width = 3),
strand = c("+", "+"))

gr_minus <- GRanges(seqnames = c("chr2", "chr2"),
ranges = IRanges(c(4, 1), c(9, 3)),
strand = c("-", "-"))

grl <- GRangesList(tx1 = gr_plus, tx2 = gr_minus)
widthPerGroup(grl)

windowCoveragePlot Get coverage window plot of reads

Description

Spanning a region like a transcripts, plot how the reads distribute.

Usage

windowCoveragePlot(coverage, output = NULL, scoring = "zscore",
colors = c("skyblue4", "orange"), title = "Coverage metaplot",
type = "transcript")

102 windowPerGroup

Arguments

coverage a data.table, output of scaledWindowCoverage

output character string (NULL), if set, saves the plot as pdf or png to path given. If no
format is given, is save as pdf.

scoring character vector (zscore), either of zScore, transcriptNormalized, sum, mean,
median, NULL. Set NULL if already scored.

colors character vector colors to use in plot

title a character (metaplot) (what is the title of plot?)

type a character (transcript), what should legends say is the whole region? Transcript,
gene, non coding rna etc.

Details

If you return this function without assigning it and output is NULL, it will automaticly plot the
figure in your session. If output is assigned, no plot will be shown in session.

Value

a ggplot object of the coverage plot, NULL if output is set, then the plot will only be saved to
location.

See Also

Other coveragePlot: coverageHeatMap, pSitePlot, savePlot

Examples

library(data.table)
coverage <- data.table(position = seq(20), score = cumsum(seq(20)))
windowCoveragePlot(coverage)
See vignette for a more practical example

windowPerGroup Get window region of GRanges object

Description

If downstream is 20, it means the window will start 20 downstream of gr start site (-20 in relative
transcript coordinates.) If upstream is 20, it means the window will start 20 upstream of gr start site
(+20 in relative transcript coordinates.) It will keep exon structure of tx, so if -20 is on next exon,
the previous exon is of course deleted.

Usage

windowPerGroup(gr, tx, upstream = 0L, downstream = 0L)

windowPerReadLength 103

Arguments

gr a GRanges object (startSites and others, must be single point)

tx a GRangesList of transcripts or (container region), names of tx must contain all
gr names. The names of gr can also be the ORFik orf names. that is "txName_id"

upstream an integer (0), relative region to get upstream from.

downstream an integer (0), relative region to get downstream from

Details

If a region has a part that goes out of bounds, E.g if you try to get window around the CDS start
site, goes longer than the 5’ leader start site, it will set start to the edge boundary (the TSS of the
transcript in this case). If region has no hit in bound, a width 0 GRanges object is returned. This is
usefull for things like countOverlaps, since 0 hits will then always be returned for the correct object.
If you don’t want the 0 width windows, use reduce()

Value

a GRanges, or GRangesList object if any group had > 1 exon.

See Also

Other ExtendGenomicRanges: asTX, coveragePerTiling, overlapsToCoverage, reduceKeepAttr,
tile1, txSeqsFromFa

Examples

find 2nd codon of an ORF on a spliced transcript
ORF <- GRanges("1", c(3), "+") # start site
names(ORF) <- "tx1_1" # ORF 1 on tx1
tx <- GRangesList(tx1 = GRanges("1", c(1,3,5,7,9,11,13), "+"))
windowPerGroup(ORF, tx, upstream = -3, downstream = 5) # <- 2nd codon

windowPerReadLength Find proportion of reads per position in window

Description

This is like a more detailed floss score, where floss score takes fraction of reads per read length over
whole window, this is defined as: Fraction of reads per read length, per position in whole window
(by upstream and downstream)

Usage

windowPerReadLength(grl, tx = NULL, reads, pShifted = TRUE,
upstream = if (pShifted) 5 else 20, downstream = if (pShifted) 20
else 5, acceptedLengths = NULL, zeroPosition = upstream,
scoring = "transcriptNormalized")

104 windowPerTranscript

Arguments

grl a GRangesList object with usually either leaders, cds’, 3’ utrs or ORFs

tx default NULL, a GRangesList of transcripts or (container region), names of tx
must contain all grl names. The names of grl can also be the ORFik orf names.
that is "txName_id"

reads any type of reads, usualy ribo seq. As GAlignment, GRanges or GRangesList
object.

pShifted a logical (TRUE), are riboseq reads p-shifted to size 1 width reads? If upstream
or downstream is set, this argument is irrelevant.

upstream an integer (5), relative region to get upstream from.

downstream an integer (20), relative region to get downstream from
acceptedLengths

an integer vector (NULL), the read lengths accepted. Default NULL, means all
lengths accepted.

zeroPosition an integer DEFAULT (upstream), the point if all windows are equal size, that
should be set to position 0. Like leaders and cds combination, then 0 is the TIS
and -1 is last base in leader. NOTE!: if windows have different widths, this will
be ignored.

scoring a character (transcriptNormalized), one of (zscore, transcriptNormalized, mean,
median, sum, sumLength, fracPos), see ?coverageScorings. Use to choose meta
coverage or per transcript.

Details

If tx is not NULL, it gives a metaWindow, centered around startSite of grl from upstream and
downstream. If tx is NULL, it will use only downstream , since it has no reference from to find
upstream from. Unless upstream is negative, that is, going downstream.

Value

a data.frame with lengths by coverage / vector of proportions

See Also

Other coverage: coverageScorings, metaWindow, scaledWindowPositions

windowPerTranscript Get coverage window per transcript

Description

Get coverage window per transcript

Usage

windowPerTranscript(txdb, reads, splitIn3 = TRUE, windowSize = 100,
fraction = "1")

windowPerTranscript 105

Arguments

txdb a TxDb object or a path to gtf/gff/db file.

reads GRanges or GAlignment of reads

splitIn3 a logical(TRUE), split window in 3 (leader, cds, trailer)

windowSize an integer (100), size of windows

fraction info on reads (which read length, or which type (RNA seq))

Value

a data.table with columns position, score

Index

addCdsOnLeaderEnds, 5
addNewTSSOnLeaders, 6
allFeaturesHelper, 6
assignAnnotations, 7
assignFirstExonsStartSite, 8, 9, 27, 28,

99, 100
assignLastExonsStopSite, 8, 8, 27, 28, 99,

100
assignTSSByCage, 9, 71, 72
asTX, 10, 19, 66, 73, 92, 94, 103

bedToGR, 11, 17, 33, 44, 50, 51, 100

changePointAnalysis, 11, 24, 81
checkRFP, 12
checkRNA, 12
codonSumsPerGroup, 13
computeFeatures, 13, 15, 25, 26, 29, 40–43,

48, 49, 52, 53, 55, 65, 69, 77, 78, 84,
85, 91, 93

computeFeaturesCage, 14, 14, 25, 26, 29,
40–43, 48, 49, 52, 53, 55, 65, 69, 77,
78, 84, 85, 91, 93

convertToOneBasedRanges, 11, 16, 33, 44,
50, 51, 100

coverageGroupings, 17
coverageHeatMap, 18, 68, 78, 102
coveragePerTiling, 10, 19, 66, 73, 92, 94,

103
coverageScorings, 20, 62, 79, 104

defineIsoform, 21
defineTrailer, 22, 59, 60, 64, 82, 87, 89,

94–96
detectRibosomeShifts, 11, 23, 80, 81
disengagementScore, 14, 15, 24, 26, 29,

40–43, 48, 49, 52, 53, 55, 65, 69, 77,
78, 84, 85, 91, 93

distToCds, 14, 15, 25, 25, 26, 29, 40–43, 48,
49, 52, 53, 55, 65, 69, 77, 78, 84, 85,
91, 93

distToTSS, 14, 15, 25, 26, 26, 29, 40–43, 48,
49, 52, 53, 55, 65, 69, 77, 78, 84, 85,
91, 93

downstreamFromPerGroup, 8, 9, 27, 28, 99,
100

downstreamN, 28
downstreamOfPerGroup, 8, 9, 27, 28, 99, 100

entropy, 14, 15, 25, 26, 29, 40–43, 48, 49, 52,
53, 55, 65, 69, 77, 78, 84, 85, 91, 93

extendLeaders, 30
extendsTSSexons, 31
extractTranscriptSeqs, 94

filterCage, 31
filterTranscripts, 32
findFa, 11, 17, 33, 44, 50, 51, 100
findMapORFs, 33, 36, 37, 83, 88
findMaxPeaks, 34
findNewTSS, 35
findORFs, 34, 35, 37, 83, 88
findORFsFasta, 34, 36, 37, 83, 88
firstEndPerGroup, 38
firstExonPerGroup, 38
firstStartPerGroup, 39
floss, 14, 15, 25, 26, 29, 40, 41–43, 48, 49,

52, 53, 55, 65, 69, 77, 78, 84, 85, 91,
93

fpkm, 14, 15, 25, 26, 29, 40, 41, 42, 43, 48, 49,
52, 53, 55, 65, 69, 77, 78, 84, 85, 91,
93

fpkm_calc, 14, 15, 25, 26, 29, 40, 41, 42, 43,
48, 49, 52, 53, 55, 65, 69, 77, 78, 84,
85, 91, 93

fractionLength, 14, 15, 25, 26, 29, 40–42,
43, 48, 49, 52, 53, 55, 65, 69, 77, 78,
84, 85, 91, 93

fread.bed, 11, 17, 33, 44, 50, 51, 100

gcContent, 44
GRanges, 66, 95
GRangesList, 6, 8, 10, 13, 15, 19, 24–30, 33,

38–41, 43, 47–49, 54–62, 64, 69, 73,
76, 77, 80–82, 84–93, 95, 99, 101,
104

groupGRangesBy, 45
groupings, 46

106

INDEX 107

gSort, 47

hasHits, 47

initiationScore, 14, 15, 25, 26, 29, 40–43,
48, 49, 52, 53, 55, 65, 69, 77, 78, 84,
85, 91, 93

insideOutsideORF, 14, 15, 25, 26, 29, 40–43,
48, 49, 52, 53, 55, 65, 69, 77, 78, 84,
85, 91, 93

IRanges, 35
IRangesList, 35
is.gr_or_grl, 11, 17, 33, 44, 50, 51, 100
is.grl, 11, 17, 33, 44, 50, 51, 100
is.ORF, 51
isInFrame, 14, 15, 25, 26, 29, 40–43, 48, 49,

52, 53, 55, 65, 69, 77, 78, 84, 85, 91,
93

isOverlapping, 14, 15, 25, 26, 29, 40–43, 48,
49, 52, 53, 55, 65, 69, 77, 78, 84, 85,
91, 93

isPeriodic, 53

kozakSequenceScore, 14, 15, 25, 26, 29,
40–43, 48, 49, 52, 53, 54, 65, 69, 77,
78, 84, 85, 91, 93

lastExonEndPerGroup, 55
lastExonPerGroup, 56
lastExonStartPerGroup, 56
loadRegion, 57
loadTxdb, 58
longestORFs, 22, 34, 36, 37, 58, 60, 64, 82,

87, 89, 94–96

makeExonRanks, 59
makeORFNames, 59
mapToGRanges, 22, 59, 60, 64, 82, 87, 89,

94–96
matchNaming, 61
metaWindow, 20, 61, 79, 104

numCodons, 62
numExonsPerGroup, 63

optimizeReads, 63
orfID, 22, 59, 60, 64, 82, 87, 89, 94–96
ORFik (ORFik-package), 4
ORFik-package, 4
orfScore, 14, 15, 25, 26, 29, 40–43, 48, 49,

52, 53, 55, 64, 69, 77, 78, 84, 85, 91,
93

overlapsToCoverage, 10, 19, 66, 73, 92, 94,
103

parseCigar, 66
pmapFromTranscriptF, 67
pSitePlot, 18, 68, 78, 102

rankOrder, 14, 15, 25, 26, 29, 40–43, 48, 49,
52, 53, 55, 65, 69, 77, 78, 84, 85, 91,
93

readWidths, 70
reassignTSSbyCage, 9, 70, 72
reassignTxDbByCage, 9, 71, 72
reduce, 73
reduceKeepAttr, 10, 19, 66, 73, 92, 94, 103
remakeTxdbExonIds, 74
removeMetaCols, 74
removeTxdbExons, 75
removeTxdbTranscripts, 75
restrictTSSByUpstreamLeader, 76
ribosomeReleaseScore, 14, 15, 25, 26, 29,

40–43, 48, 49, 52, 53, 55, 65, 69, 76,
78, 84, 85, 91, 93

ribosomeStallingScore, 14, 15, 25, 26, 29,
40–43, 48, 49, 52, 53, 55, 65, 69, 77,
77, 84, 85, 91, 93

savePlot, 18, 68, 78, 102
scaledWindowPositions, 20, 62, 79, 104
seqnamesPerGroup, 80
shiftFootprints, 11, 24, 80
sort.GenomicRanges, 81
sortPerGroup, 30, 81
startCodons, 22, 59, 60, 64, 82, 84, 87, 89,

94–96
startDefinition, 33, 34, 36, 37, 83, 88
startRegion, 14, 15, 25, 26, 29, 40–43, 48,

49, 52, 53, 55, 65, 69, 77, 78, 84, 85,
91, 93

startRegionCoverage, 14, 15, 25, 26, 29,
40–43, 48, 49, 52, 53, 55, 65, 69, 77,
78, 84, 85, 91, 93

startRegionString, 86
startSites, 22, 59, 60, 64, 82, 86, 87, 89,

94–96
stopCodons, 22, 59, 60, 64, 82, 87, 87, 89,

94–96
stopDefinition, 34, 36, 37, 83, 88
stopSites, 22, 59, 60, 64, 82, 87, 88, 94–96
strandBool, 89
strandPerGroup, 90
subsetCoverage, 14, 15, 25, 26, 29, 40–43,

48, 49, 52, 53, 55, 65, 69, 77, 78, 84,
85, 90, 93

subsetToFrame, 91

108 INDEX

tile1, 10, 19, 66, 73, 91, 94, 103
translationalEff, 14, 15, 25, 26, 29, 40–43,

48, 49, 52, 53, 55, 65, 69, 77, 78, 84,
85, 91, 92

TxDb, 24
txNames, 22, 59, 60, 64, 82, 87, 89, 93, 95, 96
txSeqsFromFa, 10, 19, 66, 73, 92, 94, 103

uniqueGroups, 22, 59, 60, 64, 82, 87, 89, 94,
95, 96

uniqueOrder, 22, 59, 60, 64, 82, 87, 89, 94,
95, 95

unlistGrl, 96
uORFSearchSpace, 97
updateTxdbRanks, 98
updateTxdbStartSites, 98
upstreamFromPerGroup, 8, 9, 27, 28, 99, 100
upstreamOfPerGroup, 8, 9, 27, 28, 99, 99

validGRL, 11, 17, 33, 44, 50, 51, 100
validSeqlevels, 100

widthPerGroup, 101
windowCoveragePlot, 18, 68, 78, 101
windowPerGroup, 10, 19, 66, 73, 92, 94, 102
windowPerReadLength, 20, 62, 79, 103
windowPerTranscript, 104

	ORFik-package
	addCdsOnLeaderEnds
	addNewTSSOnLeaders
	allFeaturesHelper
	assignAnnotations
	assignFirstExonsStartSite
	assignLastExonsStopSite
	assignTSSByCage
	asTX
	bedToGR
	changePointAnalysis
	checkRFP
	checkRNA
	codonSumsPerGroup
	computeFeatures
	computeFeaturesCage
	convertToOneBasedRanges
	coverageGroupings
	coverageHeatMap
	coveragePerTiling
	coverageScorings
	defineIsoform
	defineTrailer
	detectRibosomeShifts
	disengagementScore
	distToCds
	distToTSS
	downstreamFromPerGroup
	downstreamN
	downstreamOfPerGroup
	entropy
	extendLeaders
	extendsTSSexons
	filterCage
	filterTranscripts
	findFa
	findMapORFs
	findMaxPeaks
	findNewTSS
	findORFs
	findORFsFasta
	firstEndPerGroup
	firstExonPerGroup
	firstStartPerGroup
	floss
	fpkm
	fpkm_calc
	fractionLength
	fread.bed
	gcContent
	groupGRangesBy
	groupings
	gSort
	hasHits
	initiationScore
	insideOutsideORF
	is.grl
	is.gr_or_grl
	is.ORF
	isInFrame
	isOverlapping
	isPeriodic
	kozakSequenceScore
	lastExonEndPerGroup
	lastExonPerGroup
	lastExonStartPerGroup
	loadRegion
	loadTxdb
	longestORFs
	makeExonRanks
	makeORFNames
	mapToGRanges
	matchNaming
	metaWindow
	numCodons
	numExonsPerGroup
	optimizeReads
	orfID
	orfScore
	overlapsToCoverage
	parseCigar
	pmapFromTranscriptF
	pSitePlot
	rankOrder
	readWidths
	reassignTSSbyCage
	reassignTxDbByCage
	reduceKeepAttr
	remakeTxdbExonIds
	removeMetaCols
	removeTxdbExons
	removeTxdbTranscripts
	restrictTSSByUpstreamLeader
	ribosomeReleaseScore
	ribosomeStallingScore
	savePlot
	scaledWindowPositions
	seqnamesPerGroup
	shiftFootprints
	sortPerGroup
	startCodons
	startDefinition
	startRegion
	startRegionCoverage
	startRegionString
	startSites
	stopCodons
	stopDefinition
	stopSites
	strandBool
	strandPerGroup
	subsetCoverage
	subsetToFrame
	tile1
	translationalEff
	txNames
	txSeqsFromFa
	uniqueGroups
	uniqueOrder
	unlistGrl
	uORFSearchSpace
	updateTxdbRanks
	updateTxdbStartSites
	upstreamFromPerGroup
	upstreamOfPerGroup
	validGRL
	validSeqlevels
	widthPerGroup
	windowCoveragePlot
	windowPerGroup
	windowPerReadLength
	windowPerTranscript
	Index

