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calculateVarianceExplained

Calculate variance explained by the model

Description

Method to calculate variance explained by the MOFA model for each view and latent factor.
As a measure of variance explained for gaussian data we adopt the coefficient of determination
(R2).
For non-gaussian views the calculations are based on the normally-distributed pseudo-data (for
more information on the non-gaussian model see Supplementary Methods of the MOFA paper or
Seeger & Bouchard, 2012).

Usage

calculateVarianceExplained(object, views = "all", factors = "all")

Arguments

object a trained MOFAmodel object.
views character vector with the view names, or numeric vector with view indexes.

Default is ’all’
factors character vector with the factor names, or numeric vector with the factor indexes.

Default is ’all’

Details

This function takes a trained MOFA model as input and calculates for each view the coefficient of
determination (R2), i.e. the proportion of variance in the data explained by the MOFA factor(s)
(both jointly and for each individual factor). In case of non-Gaussian data the variance explained
on the Gaussian pseudo-data is calculated.

Value

a list with matrices with the amount of variation explained per factor and view and the total variance
explained per view.
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Examples

# Using an existing trained model on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
calculateVarianceExplained(MOFA_CLL)

# Using an existing trained model on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
calculateVarianceExplained(MOFA_scMT)

clusterSamples clusterSamples: K-means clustering on samples based on latent fac-
tors

Description

MOFA factors are continuous in nature but they can be used to predict discrete clusters of samples,
similar to the iCluster model (Shen, 2009).
The clustering can be performed in a single factor, which is equivalent to setting a manual threshold;
or using multiple factors, where multiple sources of variation are aggregated.
Importantly, this type of clustering is not weighted and does not take into account the different
importance of the latent factors.

Usage

clusterSamples(object, k, factors = "all", ...)

Arguments

object a trained MOFAmodel object.

k number of clusters

factors character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’

... extra arguments passed to kmeans

Details

In some cases, samples can have missing values in the factor space. This occurs when a factor is
active in a single view and some samples are missing this data.
In such a case, there are several strategies to follow:

• Use clustering approaches that deal with NAs (not implemented in MOFA)

• If the factor in question is not important, you can remove it with subsetFactors

• If the factor in question is important and just a small number of samples are conflictive, you
can manually set them to 0 using object@Expectations$Z[is.na(object@Expectations$Z)]
<-0

By default, the conflictive samples are ignored in the clustering procedure and NAs are returned.
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Value

output from kmeans function

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
# cluster samples based into 3 groups based on all factors
clusterSamples(MOFA_CLL, k=3, factors="all")
# cluster samples based into 2 groups based on factor 1
clusters <- clusterSamples(MOFA_CLL, k=2, factors=1)
# cluster can be visualized for example on the factors values:
plotFactorBeeswarm(MOFA_CLL, factor=1, color_by=clusters)

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
# cluster samples based into 2 groups based on all factor 1 and 2
clusters <- clusterSamples(MOFA_CLL, k=2, factors=1:2)
# cluster can be visualized for example on the factors values:
plotFactorScatter(MOFA_CLL, factors=1:2, color_by=clusters)

compareFactors Correlation of the latent factors across different trials

Description

Different objects of MOFAmodel are compared in terms of correlation between their latent factors.
The correlation is calculated only on those samples which are present in all models. Ideally, the
output should look like a block diagonal matrix, suggesting that all detected factors are robust
under different initializations. If not, it suggests that some factors are weak and not captured by all
models.

Usage

compareFactors(models, comparison = "all", show_rownames = FALSE,
show_colnames = FALSE, ...)

Arguments

models a list containing MOFAmodel objects.

comparison type of comparison, either ’pairwise’, i.e. compare one model with another one
at a time, or ’all’, i.e. calculate correlation between factors from all model. By
default, all models are compared.

show_rownames logical indicating whether to show rownames in heatmap (see also pheatmap
documentation)

show_colnames logical indicating whether to show colnames in heatmap (see also pheatmap
documentation)

... extra arguments passed to pheatmap
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Details

This function can be helpful to evaluate the robustness of factors across different random initiliza-
tions. Large block of factors from different models in the correlation matrix show consistent factors,
while stand-alone factors that are only recovered in a single model instance are less reliable.

Value

Plots a heatmap of correlation of Latent Factors in all models when ’comparison’ is ’all’. Otherwise,
for each pair of models, a seperate heatmap is produced comparing one model againt the other. The
corresponding correlation matrix or list or pairwise correlation matrices is returned

Examples

### Example on simulated data
# Simulate Data
data <- makeExampleData()
# Create MOFA model
MOFAobject <- createMOFAobject(data)
# Prepare MOFA model
MOFAobject <- prepareMOFA(MOFAobject)
# Train several instances of MOFA models
n_inits <- 3
MOFAlist <- lapply(seq_len(n_inits), function(i) runMOFA(MOFAobject, outfile=tempfile()))
compareFactors(MOFAlist, comparison="all")
compareFactors(MOFAlist, comparison="pairwise")

compareModels Compare different instances of trained MOFAmodel

Description

Different objects of MOFAmodel are compared in terms of the final value of the ELBO statistics. For
model selection the model with the highest ELBO value is selected. The height of the bar indicates
the number of inferred factors and the color of the bar the value of the ELBO statistic.

Usage

compareModels(models, show_modelnames = FALSE)

Arguments

models a list containing MOFAmodel objects.
show_modelnames

boolean, whether to indicate the name of each model instance (names of the list
in models) or not

Value

a ggplot showing the number of factors and the ELBO statistics of the given models as a barplot
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Examples

### Example on simulated data
# Simulate Data
data <- makeExampleData()
# Create MOFA model
MOFAobject <- createMOFAobject(data)
# Prepare MOFA model
MOFAobject <- prepareMOFA(MOFAobject)
# Train several instances of MOFA models
n_inits <- 3
MOFAlist <- lapply(seq_len(n_inits), function(i) runMOFA(MOFAobject, outfile=tempfile()))
compareModels(MOFAlist)

createMOFAobject Initialize a MOFA object

Description

Method to initialize a MOFAmodel object with a multi-omics data set.

Usage

createMOFAobject(data)

Arguments

data either a MultiAssayExperiment or a list of matrices with features as rows and
samples as columns.

Details

If the multi-omics data is provided as a list of matrices, please make sure that features are stored as
rows and samples are stored as columns.
If the matrices have sample names, we will use them to match the different matrices, filling the
corresponding missing values.
If matrices have no column names, all matrices must have the same number of columns, and you
are responsible for filling any missing values.

Value

Returns an untrained MOFAmodel object.
Next step is to define the training, model and data processing options (see prepareMOFA)

Examples

# Option 1: Create a MOFAobject from a list of matrices, features in rows and samples in columns.
data("CLL_data", package = "MOFAdata")
MOFAobject <- createMOFAobject(CLL_data)

# Option 2: Create a MOFAobject from a MultiAssayExperiment
library(MultiAssayExperiment)
data("CLL_data", package = "MOFAdata")
data("CLL_covariates", package = "MOFAdata")
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mae_CLL <- MultiAssayExperiment(experiments = CLL_data, colData = CLL_covariates)
MOFAobject <- createMOFAobject(mae_CLL)

# next, this object can be passed to prepareMOFA and runMOFA
# (training in runMOFA can take some time):
## Not run:
# MOFAobject <- prepareMOFA(MOFAobject)
# MOFAobject <- runMOFA(MOFAobject)

## End(Not run)

DataOptions DataOptions: set and retrieve data options

Description

Function to set and retrieve data options.

Usage

DataOptions(object)

DataOptions(object) <- value

## S4 method for signature 'MOFAmodel'
DataOptions(object)

## S4 replacement method for signature 'MOFAmodel,list'
DataOptions(object) <- value

Arguments

object a MOFAmodel object.

value a list with data options

Value

list of data options

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
DataOptions(MOFAobject)
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Dimensions Dimensions: set and retrieve dimensions

Description

Function to set and retrieve model dimensions.

Usage

Dimensions(object)

Dimensions(object) <- value

## S4 method for signature 'MOFAmodel'
Dimensions(object)

## S4 replacement method for signature 'MOFAmodel,list'
Dimensions(object) <- value

Arguments

object a MOFAmodel object.

value list of dimensions

Value

list of dimensions of the model

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
Dimensions(MOFAobject)

Expectations Expectations: set and retrieve expectations of model components

Description

Function to set and retrieve expectations of model components.

Usage

Expectations(object)

Expectations(object) <- value

## S4 method for signature 'MOFAmodel'
Expectations(object)
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## S4 replacement method for signature 'MOFAmodel,list'
Expectations(object) <- value

Arguments

object a MOFAmodel object.

value a list with matrices for expectations of unobserved model components

Value

list of matrices containing expectations of model components

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
names(Expectations(MOFAobject))

factorNames factorNames: set and retrieve factor names

Description

Function to set and retrieve factor names.

Usage

factorNames(object)

factorNames(object) <- value

## S4 method for signature 'MOFAmodel'
factorNames(object)

## S4 replacement method for signature 'MOFAmodel,vector'
factorNames(object) <- value

Arguments

object a MOFAmodel object.

value a character vector of factor names

Value

character vector with the features names
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Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
factorNames(MOFAobject)
factorNames(MOFAobject) <- paste("Factor",1:3,sep="_")
factorNames(MOFAobject)

FeatureIntercepts FeatureIntercepts: set and retrieve feature intercepts

Description

Function to set and retrieve feature intercepts

Usage

FeatureIntercepts(object)

FeatureIntercepts(object) <- value

## S4 method for signature 'MOFAmodel'
FeatureIntercepts(object)

## S4 replacement method for signature 'MOFAmodel,list'
FeatureIntercepts(object) <- value

Arguments

object a MOFAmodel object.

value list of feature intercepts (per view)

Value

list of feature intercepts (per view)

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
str(FeatureIntercepts(MOFAobject))
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featureNames featureNames: set and retrieve feature names

Description

Function to set and retrieve feature names.

Usage

featureNames(object)

featureNames(object) <- value

## S4 method for signature 'MOFAmodel'
featureNames(object)

## S4 replacement method for signature 'MOFAmodel,list'
featureNames(object) <- value

Arguments

object a MOFAmodel object.

value list of character vectors with the feature names for each view

Value

list of character vectors with the feature names for each view

Examples

data("CLL_data", package = "MOFAdata")
MOFAobject <- createMOFAobject(CLL_data)
featureNames(MOFAobject)$Mutations
head(featureNames(MOFAobject)$Drugs)

getCovariates getCovariates

Description

This function extracts covariates from the colData in the input MultiAssayExperiment object.
Note that if you did not use MultiAssayExperiment to create your createMOFAobject, this func-
tion will not work.

Usage

getCovariates(object, covariate)
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Arguments

object a MOFAmodel object.

covariate names of the covariate

Value

a vector containing the covariate

Examples

# Example on the CLL data
library(MultiAssayExperiment)
data("CLL_data", package = "MOFAdata")
data("CLL_covariates", package = "MOFAdata")
# Create MultiAssayExperiment object
mae_CLL <- MultiAssayExperiment(CLL_data, colData=CLL_covariates)
MOFAobject <- createMOFAobject(mae_CLL)
# Extract covariates from the colData of a MultiAssayExperiment
gender <- getCovariates(MOFAobject, "Gender")
diagnosis <- getCovariates(MOFAobject, "Diagnosis")
# Example on the scMT data
data("scMT_data", package = "MOFAdata")
MOFAobject <- createMOFAobject(scMT_data)
# Extract covariates from the colData of a MultiAssayExperiment
culture <- getCovariates(MOFAobject, "culture")
# Extract covariates from the phenoData of the RNA assay
cdr <- getCovariates(MOFAobject, "cellular_detection_rate")

getDefaultDataOptions Get default data options

Description

Function to obtain the default data options.

Usage

getDefaultDataOptions()

Details

The data options are the following:

• scaleViews: logical indicating whether to scale views to have the same unit variance. As long
as the scale differences between the data sets is not too high, this is not required. Default is
FALSE.

• removeIncompleteSamples: logical indicating whether to remove samples that are not pro-
filed in all omics. We recommend this only for testing, as the model can cope with samples
having missing assays. Default is FALSE.
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Value

Returns a list with the default data options, which have to be passed as an argument to prepareMOFA

Examples

DataOptions <- getDefaultDataOptions()
DataOptions

getDefaultModelOptions

Get default model options

Description

Function to obtain the default model options.

Usage

getDefaultModelOptions(object)

Arguments

object an untrained MOFAmodel object

Details

The model options are the following:

• likelihood: character vector with data likelihoods per view: ’gaussian’ for continuous data,
’bernoulli’ for binary data and ’poisson’ for count data. By default, they are guessed internally.

• numFactors: numeric value indicating the initial number of factors. If you want to learn the
number of factors automatically we recommend setting this to a large value, default is 25.

• sparsity: logical indicating whether to use sparsity. This is always recommended, as it will
make the loadings more interpretable. Default is TRUE.

Value

Returns a list with the default model options, which have to be passed as an argument to prepareMOFA

Examples

# load data
data("CLL_data", package = "MOFAdata")
#create a MOFAmodel object
MOFAobject <- createMOFAobject(CLL_data)
# set model options
ModelOptions <- getDefaultModelOptions(MOFAobject)
ModelOptions
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getDefaultTrainOptions

Get default training options

Description

Function to obtain the default training options.

Usage

getDefaultTrainOptions()

Details

The training options are the following:

• maxiter: numeric value indicating the maximum number of iterations. Default is 5000, but
we recommend using the ’tolerance’ as convergence criteria.

• tolerance: numeric value indicating the convergence threshold based on the change in Evi-
dence Lower Bound (deltaELBO). For quick exploration we recommend this to be around 1.0,
and for a thorough training we recommend a value of 0.01. Default is 0.1

• DropFactorThreshold: numeric hyperparamter to automatically learn the number of factors.
It indicates the threshold on fraction of variance explained to consider a factor inactive and
automatically drop it from the model during training. For example, a value of 0.01 implies
that factors explaining less than 1% of variance (in each view) will be dropped. Default is 0,
which implies that only factors that explain no variance at all will be removed

• verbose: logical indicating whether to generate a verbose output.

• seed: random seed for reproducibility (default is NULL, which samples a random seed).

Value

Returns a list with default training options, which have to be passed as an argument to prepareMOFA

Examples

TrainOptions <- getDefaultTrainOptions()
TrainOptions

getDimensions getDimensions

Description

Extract dimensionalities from the model.

Usage

getDimensions(object)
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Arguments

object a MOFAmodel object.

Details

K indicates the number of factors, D indicates the number of features, N indicates the (total) number
of samples and M indicates the number of views.

Value

list with the relevant dimensionalities of the model. N for the number of samples, M for the number
of views, D for the number of features of each view and K for the number of infered latent factors.

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
# get dimensions
getDimensions(MOFAobject)

getELBO getELBO

Description

Extract the value of the ELBO statistics after model training. This can be useful for model selection.

Usage

getELBO(object)

Arguments

object a MOFAmodel object.

Value

value of the ELBO statistic at end of training

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
# get ELBO statistic
getELBO(MOFAobject)
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getExpectations getExpectations

Description

Function to extract the expectations from the (variational) posterior distributions of a trained MOFAmodel
object.

Usage

getExpectations(object, variable, as.data.frame = FALSE)

Arguments

object a trained MOFAmodel object.

variable variable name: ’Z’ for factors, ’W’ for weights, ’Tau’ for noise, ’Y’ for pseu-
dodata, ’Theta’ for feature-wise spike-and-slab sparsity, ’Alpha’ for view and
factor-wise ARD sparsity

as.data.frame logical indicating whether to output the result as a long data frame, default is
FALSE.

Details

Technical note: MOFA is a Bayesian model where each variable has a prior distribution and a
posterior distribution. In particular, to achieve scalability we used the variational inference frame-
work, thus true posterior distributions are replaced by approximated variational distributions. This
function extracts the expectations of the variational distributions, which can be used as final point
estimates to analyse the results of the model.
The priors and variational distributions of each variable are extensively described in the supplemen-
tary methods of the original paper.

Value

the output varies depending on the variable of interest:

• "Z": a matrix with dimensions (samples,factors). If as.data.frame is TRUE, a long-formatted
data frame with columns (sample,factor,value)

• "W": a list of length (views) where each element is a matrix with dimensions (features,factors).
If as.data.frame is TRUE, a long-formatted data frame with columns (view,feature,factor,value)

• "Y": a list of length (views) where each element is a matrix with dimensions (features,samples).
If as.data.frame is TRUE, a long-formatted data frame with columns (view,feature,sample,value)

• "Theta": a list of length (views) where each element is a vector of containing the values for
each factor

• "Alpha": a list of length (views) where each element is a vector of containing the values for
each factor

• "Tau": a list of length (views) where each element is a matrix with dimensions (samples,
features)
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Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
# get expectations of Alpha as matrix
getExpectations(MOFAobject, variable="Alpha")

getFactors getFactors

Description

Extract the latent factors from the model.

Usage

getFactors(object, factors = "all", as.data.frame = FALSE)

Arguments

object a trained MOFAmodel object.

factors character vector with the factor name(s), or numeric vector with the factor in-
dex(es). Default is "all".

as.data.frame logical indicating whether to return a long data frame instead of a matrix. De-
fault is FALSE.

Value

By default it returns the latent factor matrix of dimensionality (N,K), where N is number of samples
and K is number of factors.
Alternatively, if as.data.frame is TRUE, returns a long-formatted data frame with columns (sam-
ple,factor,value).

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
# get factors as matrix
getFactors(MOFAobject, factors = 1:3)
# get factors as data.frame
head(getFactors(MOFAobject, factors = 1:5, as.data.frame = TRUE))



getImputedData 19

getImputedData getImputedData

Description

Function to get the imputed data. It requires the previous use of the impute method.

Usage

getImputedData(object, views = "all", features = "all",
as.data.frame = FALSE)

Arguments

object a trained MOFAmodel object.

views character vector with the view name(s), or numeric vector with the view in-
dex(es). Default is "all".

features list of character vectors with the feature names or list of numeric vectors with
the feature indices. Default is "all"

as.data.frame logical indicating whether to return a long-formatted data frame instead of a list
of matrices. Default is FALSE.

Value

By default returns a list where each element is a matrix with dimensionality (D,N), where D is the
number of features in this view and N is the number of samples.
Alternatively, if as.data.frame is TRUE, returns a long-formatted data frame with columns (view,feature,sample,value).

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
# impute missing values
MOFAobject <- impute(MOFAobject)
# get imputations for a single view
imputedDrugs <- getImputedData(MOFAobject,view="Drugs")
head(imputedDrugs)

getTrainData getTrainData

Description

Fetch the training data

Usage

getTrainData(object, views = "all", features = "all",
as.data.frame = FALSE)
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Arguments

object a MOFAmodel object.

views character vector with the view name(s), or numeric vector with the view in-
dex(es). Default is "all".

features list of character vectors with the feature names or list of numeric vectors with
the feature indices. Default is "all"

as.data.frame logical indicating whether to return a long data frame instead of a list of matrices.
Default is FALSE.

Details

By default this function returns a list where each element is a data matrix with dimensionality (D,N)
where D is the number of features and N is the number of samples.
Alternatively, if as.data.frame is TRUE, the function returns a long-formatted data frame with
columns (view,feature,sample,value).

Value

A list with one numeric matrix per view, containing the parsed data used to fit the MOFA model.

Examples

data("scMT_data", package = "MOFAdata")
MOFAobject <- createMOFAobject(scMT_data)
trainData_scMT <- getTrainData(MOFAobject, as.data.frame = FALSE)
(trainData_scMT[["RNA expression"]])[1:10,1:10]

data("CLL_data", package = "MOFAdata")
MOFAobject <- createMOFAobject(CLL_data)
trainData_CLL <- getTrainData(MOFAobject, as.data.frame = TRUE)
head(trainData_CLL)

getWeights getWeights

Description

Extract the weights from the model.

Usage

getWeights(object, views = "all", factors = "all",
as.data.frame = FALSE)

Arguments

object a trained MOFAmodel object.

views character vector with the view name(s), or numeric vector with the view in-
dex(es). Default is "all".
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factors character vector with the factor name(s) or numeric vector with the factor in-
dex(es).
Default is "all".

as.data.frame logical indicating whether to return a long data frame instead of a list of matrices.
Default is FALSE.

Value

By default it returns a list where each element is a loading matrix with dimensionality (D,K), where
D is the number of features and K is the number of factors.
Alternatively, if as.data.frame is TRUE, returns a long-formatted data frame with columns (view,feature,factor,value).

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
# get weights as a list of matrices
weightList <- getWeights(MOFAobject, view = "all", factors = 1:4)
# get weights as a data.frame
head(getWeights(MOFAobject, view = "Mutations", as.data.frame = TRUE))

impute Impute missing values from a fitted MOFA model

Description

This function uses the latent factors and the loadings inferred in order to impute missing values.

Usage

impute(object, views = "all", factors = "all", type = c("inRange",
"response", "link"))

Arguments

object a MOFAmodel object.

views character vector with the view names, or numeric vector with view indexes.

factors character vector with the factor names, or numeric vector with the factor indexes.

type type of prediction returned, either:

• response: gives the response vector, the mean for Gaussian and Poisson,
and success probabilities for Bernoulli.

• link: gives the linear predictions.
• inRange: rounds the fitted values of integer-valued distributions (Poisson

and Bernoulli) to the next integer. This is the default option.
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Details

Matrix factorization models generate a denoised and condensed low-dimensional representation of
the data which capture the main sources of heterogeneity of the data. Such representation can be
used to do predictions via the equation Y = WZ.
This method fills the ImputedData slot by replacing the missing values in the training data with the
model predictions.
For more details see the Methods section of the MOFA article.

Value

a MOFAmodel object with imputed data in the ImputedData slot

Examples

# Load CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
# impute missing data in all views using all factors
MOFA_CLL <- impute(MOFA_CLL)

# Load scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
# impute missing data in the RNA view using Factor 1
MOFA_scMT <- impute(MOFA_scMT, views="RNA expression", factors="LF1")

ImputedData ImputedData: set and retrieve imputed data

Description

Function to set and retrieve imputed data.

Usage

ImputedData(object)

ImputedData(object) <- value

## S4 method for signature 'MOFAmodel'
ImputedData(object)

## S4 replacement method for signature 'MOFAmodel,list'
ImputedData(object) <- value

Arguments

object a MOFAmodel object.
value a list of matrices containing the imputed data

Value

list of matrices containing the imputed data
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Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
MOFAobject <- impute(MOFAobject)
str(ImputedData(MOFAobject))

InputData InputData: set and retrieve input data

Description

Function to set and retrieve input data.

Usage

InputData(object)

InputData(object) <- value

## S4 method for signature 'MOFAmodel'
InputData(object)

## S4 replacement method for signature 'MOFAmodel,MultiAssayExperiment'
InputData(object) <- value

Arguments

object a MOFAmodel object.

value a multi-assay experiment

Value

input data as a multi-assay experiment

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
InputData(MOFAobject)
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loadModel loading a trained MOFA model

Description

Method to load a trained MOFA model.
The training of MOFA is done using a Python framework, and the model output is saved as an .hdf5
file, which has to be loaded in the R package.

Usage

loadModel(file, object = NULL, sortFactors = TRUE, minR2 = 0.01)

Arguments

file an hdf5 file saved by the MOFA python framework.

object either NULL (default) or an an existing untrained MOFA object. If NULL, the
MOFAmodel object is created from the scratch.

sortFactors boolean indicating whether factors should be sorted by variance explained (de-
fault is TRUE)

minR2 minimum R2 threshold to call ’active’ factors (default is 0.01).

Value

a MOFAmodel model.

Examples

# path to the hdf5 file
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
# load the model
MOFAobject <- loadModel(filepath)

makeExampleData make an example multi-view data set for illustration of MOFA

Description

Function to simulate an example multi-view data set according to the generative model of MOFA.

Usage

makeExampleData(n_views = 3, n_features = 100, n_samples = 50,
n_factors = 5, likelihood = "gaussian")
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Arguments

n_views number of views

n_features number of features in each view

n_samples number of samples

n_factors number of factors

likelihood likelihood for each view, one of "gaussian", "bernoulli", "poisson", or a charac-
ter vector of length n_views

Value

Returns an untrained MOFAmodel containing simulated data as training data.

Examples

# Generate a data set
MOFAexample <- makeExampleData()
str(MOFAexample)

ModelOptions ModelOptions: set and retrieve model options

Description

Function to set and retrieve model options.

Usage

ModelOptions(object)

ModelOptions(object) <- value

## S4 method for signature 'MOFAmodel'
ModelOptions(object)

## S4 replacement method for signature 'MOFAmodel,list'
ModelOptions(object) <- value

Arguments

object a MOFAmodel object.

value a list with model options

Value

list of model options
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Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
ModelOptions(MOFAobject)

MOFA Multi-Omics Factor Analysis (MOFA)

Description

MOFA provides an unsupervised framework for the integration of multi-omics data sets. Given sev-
eral data matrices with measurements of multiple ‘omics data types on the same or on overlapping
sets of samples, MOFA infers an interpretable low-dimensional data representation in terms of (hid-
den) factors. These learnt factors represent the driving sources of variation across data modalities,
thus facilitating the identification of cellular states or disease subgroups.

The package contains all function required for training MOFA on a multi-omics data set as well
as for different downstream analyes, such as visualisation of samples in factor space, annotation of
factors to molecular markers or gene sets, outlier identification and imputation of missing values.

Details

Please have a look at the vignette "MOFA" for a in-depth introduction to the package.

MOFAmodel Class to store a Multi-Omics Factor Analysis (MOFA) model

Description

The MOFAmodel is an S4 class used to store all relevant data to analyse a MOFA model.

Slots

InputData the input data before being parsed to Training Data. Either a MultiAssayExperiment
object or a list of matrices, one per view.

TrainData the parsed data used to fit the MOFA model A list with one matrix per view.

ImputedData the parsed data with the missing values imputed using the MOFA model. A list with
one matrix per view.

Expectations expected values of the different variables of the model. A list of matrices, one per
variable. The most relevant are "W" for weights and "Z" for factors.

TrainStats list with training statistics such as evidence lower bound (ELBO), number of active
factors, etc.

DataOptions list with the data processing options such as whether to center or scale the data.

TrainOptions list with the training options such as maximum number of iterations, tolerance for
convergence, etc.

ModelOptions list with the model options such as likelihoods, number of factors, etc.
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FeatureIntercepts list with the feature-wise intercepts. Only used internally.

Dimensions list with the relevant dimensionalities of the model. N for the number of samples, M
for the number of views, D for the number of features of each view and K for the number of
infered latent factors.

Status Auxiliary variable indicating whether the model has been trained.

plotDataHeatmap Plot heatmap of relevant features

Description

Function to plot a heatmap of the input data for relevant features, usually the ones with highest
loadings in a given factor.

Usage

plotDataHeatmap(object, view, factor, features = 50,
includeWeights = FALSE, transpose = FALSE, imputed = FALSE, ...)

Arguments

object a MOFAmodel object.

view character vector with the view name, or numeric vector with the index of the
view.

factor character vector with the factor name, or numeric vector with the index of the
factor.

features if an integer, the total number of top features to plot, based on the absolute value
of the loading. If a character vector, a set of manually-defined features. Default
is 50.

includeWeights logical indicating whether to include the weight of each feature as an extra an-
notation in the heatmap. Default is FALSE.

transpose logical indicating whether to transpose the output heatmap. Default corresponds
to features as rows and samples as columns.

imputed logical indicating whether to plot the imputed data instead of the original data.
Default is FALSE.

... further arguments that can be passed to pheatmap

Details

One of the first steps for the annotation of a given factor is to visualise the corresponding loadings,
using for example plotWeights or plotTopWeights. These functions display the top features that
are driving the heterogeneity captured by a factor.
However, one might also be interested in visualising the coordinated heterogeneity in the input data,
rather than looking at "abstract" weights.
This function extracts the top features for a given factor and view, and generates a heatmap with
dimensions (samples,features). This should reveal the underlying heterogeneity that is captured by
the latent factor.
A similar function for doing scatterplots rather than heatmaps is plotDataScatter.
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Value

plots a heatmap of the data for the top features for a given factor and views

Examples

# Load CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
# plot top 30 features on Factor 1 in the mRNA view
plotDataHeatmap(MOFA_CLL, view="mRNA", factor=1, features=30)
# without column names (extra arguments passed to pheatmap)
plotDataHeatmap(MOFA_CLL, view="mRNA", factor=1, features=30, show_colnames = FALSE)
# transpose the heatmap
plotDataHeatmap(MOFA_CLL, view="mRNA", factor=1, features=30, transpose=TRUE)
# do not cluster rows (extra arguments passed to pheatmap)
plotDataHeatmap(MOFA_CLL, view="mRNA", factor=1, features=30, cluster_rows=FALSE)

plotDataOverview Plot overview of the input data

Description

Function to do a tile plot showing the dimensionality and the missing value structure of the multi-
omics data.

Usage

plotDataOverview(object, colors = NULL)

Arguments

object a MOFAmodel object.

colors a character vector specifying the colors per view. NULL (default) uses an inter-
nal palette.

Details

This function is helpful to get an overview of the dimensionality and the missing value structure of
the training data.
It shows the number of samples, the number of views, the number of features, and the structure of
missing values.
It is particularly useful to visualise incomplete data sets, where some samples are missing subsets
of assays.

Value

a tile plot of the training data
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Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotDataOverview(MOFA_CLL)

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
# using customized colors
plotDataOverview(MOFA_scMT, colors= c("red", "red", "red", "blue"))

plotDataScatter Scatterplots of feature values against latent factors

Description

Function to do a scatterplot of the feature(s) values against the latent factor values.

Usage

plotDataScatter(object, view, factor, features = 10, color_by = NULL,
name_color = "", shape_by = NULL, name_shape = "",
showMissing = TRUE)

Arguments

object a MOFAmodel object.

view character vector with a view name, or numeric vector with the index of the view.

factor character vector with a factor name, or numeric vector with the index of the
factor.

features if an integer, the total number of features to plot (10 by default). If a character
vector, a set of manually-defined features.

color_by specifies groups or values used to color the samples. This can be either: (a)
a character giving the name of a feature, (b) a character giving the name of a
covariate (only if using MultiAssayExperiment as input), or (c) a vector of the
same length as the number of samples specifying discrete groups or continuous
numeric values.

name_color name for the color legend

shape_by specifies groups or values used to shape the samples. This can be either: (a) a
character giving the name of a feature present in the training data, (b) a character
giving the name of a covariate (only if using MultiAssayExperiment as input),
or (c) a vector of the same length as the number of samples specifying discrete
groups.

name_shape name for the shape legend

showMissing logical indicating whether to show samples with missing values for the color or
the shape. Default is TRUE.
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Details

One of the first steps for the annotation of a given factor is to visualise the corresponding loadings,
using for example plotWeights or plotTopWeights. These functions display the top features that
are driving the heterogeneity captured by a factor.
However, one might also be interested in visualising the coordinated heterogeneity in the input data,
rather than looking at "abstract" weights.
This function generates scatterplots of features against factors (each dot is a sample), so that you
can observe the association between them.
A similar function for doing heatmaps rather than scatterplots is plotDataHeatmap.

Value

a scatterplot of featurea against a factor

Examples

# Load CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
# plot scatter for top 5 features on factor 1 in the view mRNA:
plotDataScatter(MOFA_CLL, view="mRNA", factor=1, features=5)
# coloring by the IGHV status (features in Mutations view), not showing samples with missing IGHV:
plotDataScatter(MOFA_CLL, view="mRNA", factor=1, features=5, color_by="IGHV", showMissing=FALSE)

plotEnrichment Plot output of Feature Set Enrichment Analysis

Description

Method to plot the results of the Feature Set Enrichment Analyisis (FSEA)

Usage

plotEnrichment(object, fsea.results, factor, alpha = 0.1,
max.pathways = 25, adjust = TRUE)

Arguments

object MOFAmodel object on which FSEA was performed

fsea.results output of runEnrichmentAnalysis function

factor string with factor name or numeric with factor index

alpha p.value threshold to filter out feature sets

max.pathways maximum number of enriched pathways to display

adjust use adjusted p-values?

Value

a ggplot2 object
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Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)

# perform Enrichment Analysis on mRNA data using pre-build Reactome gene sets
data("reactomeGS", package = "MOFAdata")
fsea.results <- runEnrichmentAnalysis(MOFAobject, view="mRNA", feature.sets=reactomeGS)

# Plot top 10 enriched pathwyas on factor 5:
plotEnrichment(MOFAobject, fsea.results, factor=5, max.pathways=10)

plotEnrichmentBars Barplot of Feature Set Enrichment Analysis results

Description

Method to generate a barplot with the number of enriched feature sets per factor

Usage

plotEnrichmentBars(fsea.results, alpha = 0.05)

Arguments

fsea.results output of runEnrichmentAnalysis function

alpha FDR threshold for calling enriched feature sets. Default is 0.05

Value

a ggplot2 object

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)

# perform Enrichment Analysis on mRNA data using pre-build Reactome gene sets
data("reactomeGS", package = "MOFAdata")
fsea.results <- runEnrichmentAnalysis(MOFAobject, view="mRNA", feature.sets=reactomeGS)

# Plot overview of number of enriched pathways per factor at an FDR of 1%
plotEnrichmentBars(fsea.results, alpha=0.01)
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plotEnrichmentDetailed

Plot detailed output of the Feature Set Enrichment Analysis

Description

Method to plot a detailed output of the Feature Set Enrichment Analyisis (FSEA).
Each row corresponds to a significant pathway, sorted by statistical significance, and each dot cor-
responds to a gene.
For each pathway, we display the top genes of the pathway sorted by the corresponding feature
statistic (by default, the absolute value of the loading) The top genes with the highest statistic
(max.genes argument) are displayed and labeled in black. The remaining genes are colored in grey.

Usage

plotEnrichmentDetailed(object, factor, feature.sets, fsea.results,
adjust = TRUE, alpha = 0.1, max.genes = 5, max.pathways = 10,
text_size = 3)

Arguments

object MOFAmodel object on which FSEA was performed

factor string with factor name or numeric with factor index

feature.sets data structure that holds feature set membership information, as used in the
runEnrichmentAnalysis function.

fsea.results output of runEnrichmentAnalysis function

adjust use adjusted p-values?

alpha p.value threshold to filter out feature sets

max.genes maximum number of genes to display, per pathway

max.pathways maximum number of enriched pathways to display

text_size size of the text to label the top genes

Value

a ggplot2 object

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)

# perform Enrichment Analysis on mRNA data using pre-build Reactome gene sets
data("reactomeGS", package = "MOFAdata")
fsea.results <- runEnrichmentAnalysis(MOFAobject, view="mRNA", feature.sets=reactomeGS)

# Plot detailed output of the enrichment analysis results
plotEnrichmentDetailed(
object = MOFAobject,
factor = 5,
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feature.sets = reactomeGS,
fsea.results = fsea.results,

)

plotEnrichmentHeatmap Heatmap of Feature Set Enrichment Analysis results

Description

This method generates a heatmap with the adjusted p.values that result from the the feature set
enrichment analysis. Rows are feature sets and columns are factors.

Usage

plotEnrichmentHeatmap(fsea.results, alpha = 0.05, logScale = TRUE, ...)

Arguments

fsea.results output of runEnrichmentAnalysis function

alpha FDR threshold to filter out unsignificant feature sets which are not represented
in the heatmap. Default is 0.05.

logScale boolean indicating whether to plot the log of the p.values.

... extra arguments to be passed to pheatmap function

Value

produces a heatmap

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)

# perform Enrichment Analysis on mRNA data using pre-build Reactome gene sets
data("reactomeGS", package = "MOFAdata")
fsea.results <- runEnrichmentAnalysis(MOFAobject, view="mRNA", feature.sets=reactomeGS)

# overview of enriched pathways per factor at an FDR of 1%
plotEnrichmentHeatmap(fsea.results, alpha=0.01)
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plotFactorBeeswarm Beeswarm plot of latent factors

Description

Beeswarm plot of the latent factor values.

Usage

plotFactorBeeswarm(object, factors = "all", color_by = NULL,
shape_by = NULL, name_color = "", name_shape = "",
showMissing = FALSE)

Arguments

object a trained MOFAmodel object.

factors character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’

color_by specifies groups or values used to color the samples. This can be either: a char-
acter giving the name of a feature, a character giving the same of a covariate
(only if using MultiAssayExperiment as input), or a vector of the same length
as the number of samples specifying discrete groups or continuous numeric val-
ues.

shape_by specifies groups or values used for the shape of samples. See color_by for how
this can be specified. A maximum of 6 different values can be specified.

name_color name for color legend (usually only used if color_by is not a character itself)

name_shape name for shape legend (usually only used if shape_by is not a character itself)

showMissing logical indicating whether to remove samples for which shape_by or color_by
is missing.

Details

One of the main steps for the annotation of factors is to visualise and color them using known
covariates or phenotypic data.
This function generates a Beeswarm plot of the sample values in a given latent factor.
Similar functions are plotFactorScatter for doing scatter plots and plotFactorHist for doing
histogram plots

Value

Returns a ggplot2 object

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotFactorBeeswarm(MOFA_CLL, factors=1:3)
plotFactorBeeswarm(MOFA_CLL, factors=1:2, color_by= "IGHV")
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# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotFactorBeeswarm(MOFA_scMT)

plotFactorCor Plot correlation matrix between latent factors

Description

Function to plot the correlation matrix between the latent factors.

Usage

plotFactorCor(object, method = "pearson", ...)

Arguments

object a trained MOFAmodel object.

method a character indicating the type of correlation coefficient to be computed: pearson
(default), kendall, or spearman.

... arguments passed to corrplot

Details

This method plots the correlation matrix between the latent factors.
The model encourages the factors to be uncorrelated, so this function usually yields a diagonal cor-
relation matrix.
However, it is not a hard constraint such as in Principal Component Analysis and correlations be-
tween factors can occur, particularly with large number factors.
Generally, correlated factors are redundant and should be avoided, as they make interpretation
harder. Therefore, if you have too many correlated factors we suggest you try reducing the number
of factors.

Value

Returns a symmetric matrix with the correlation coefficient between every pair of factors.

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotFactorCor(MOFA_CLL)

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotFactorCor(MOFA_scMT)
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plotFactorHist Plot histogram of latent factor values

Description

Plot a histogram of latent factor values.

Usage

plotFactorHist(object, factor, group_by = NULL, group_names = "",
alpha = 0.5, binwidth = NULL, showMissing = FALSE)

Arguments

object a trained MOFAmodel object.
factor character vector with the factor name or numeric vector with the index of the

factor.
group_by specifies groups used to color the samples of the histogram. This can be either:

a character giving the name of a feature, the name of a covariate (only if using a
MultiAssayExperiment as input), or a vector of the same length as the number
of samples.

group_names names for the groups.
alpha transparency parameter. Default is 0.5
binwidth binwidth for histogram. Default is NULL, which uses ggplot2 default calcula-

tion.
showMissing boolean indicating whether to remove sample for which group_by is missing

(default is FALSE)

Details

One of the first steps for the annotation of factors is to visualise and color them using known co-
variates such as phenotypic or clinical data.
This method generates a histogram of the sample values in a given latent factor.
Similar functions are plotFactorScatter for doing scatter plots between pairs of factors and
plotFactorBeeswarm for doing Beeswarm plots of single factors.

Value

Returns a ggplot2 object

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotFactorHist(MOFA_CLL, factor=1)
plotFactorHist(MOFA_CLL, factor=1, group_by= "IGHV")

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotFactorHist(MOFA_scMT, factor=2)
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plotFactorScatter Scatterplot of two latent factors

Description

Scatterplot of the values of two latent factors.

Usage

plotFactorScatter(object, factors, color_by = NULL, shape_by = NULL,
name_color = "", name_shape = "", dot_size = 1.5, dot_alpha = 1,
showMissing = TRUE)

Arguments

object a trained MOFAmodel object.

factors a vector of length two with the factors to plot. Factors can be specified either as
a characters using the factor names, or as numeric with the index of the factors

color_by specifies groups or values used to color the samples. This can be either a char-
acter giving the name of a feature present in the training data, a character giving
the same of a covariate (only if using MultiAssayExperiment as input), or a
vector of the same length as the number of samples specifying discrete groups
or continuous numeric values.

shape_by specifies groups or values used to shape the samples. This can be either a char-
acter giving the name of a feature present in the training data, a character giving
the same of a covariate (only if using MultiAssayExperiment as input), or a
vector of the same length as the number of samples specifying discrete groups.

name_color name for color legend.

name_shape name for shape legend.

dot_size dot size (default is 1.5).

dot_alpha dot transparency (default is 1.0, no transparency).

showMissing logical indicating whether to include samples for which shape_by or color_by
is missing.

Details

One of the first steps for the annotation of factors is to visualise and group/color them using known
covariates such as phenotypic or clinical data. This method generates a single scatterplot for the
combination of two latent factors. Similar functions are plotFactorScatters for doing multiple
scatter plots and plotFactorBeeswarm for doing Beeswarm plots for single factors.

Value

Returns a ggplot2 object
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Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotFactorScatter(MOFA_CLL, factors=1:2)
plotFactorScatter(MOFA_CLL, factors=1:2, color_by= "IGHV", shape_by="trisomy12", showMissing=FALSE)

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotFactorScatter(MOFA_scMT, factors=c(1,3))

plotFactorScatters Pairwise scatterplots of multiple latent factors

Description

Scatterplots of the sample values for pair-wise combinations of multiple latent factors.

Usage

plotFactorScatters(object, factors = "all", showMissing = TRUE,
color_by = NULL, name_color = "", shape_by = NULL,
name_shape = "")

Arguments

object a MOFAmodel object.

factors character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’

showMissing logical indicating whether to include samples for which shape_by or color_by
is missing

color_by specifies groups or values used to color the samples. This can be either: a char-
acter giving the name of a feature present in the training data, a character giving
the same of a covariate (only if using MultiAssayExperiment as input), or a
vector of the same length as the number of samples specifying discrete groups
or continuous numeric values.

name_color name for color legend (usually only used if color_by is not a character itself)

shape_by specifies groups or values used to shape the samples. This can be either: a
character giving the name of a feature present in the training data, a character
giving the same of a covariate (only if using MultiAssayExperiment as input),
or a vector of the same length as the number of samples specifying discrete
groups.

name_shape name for shape legend (usually only used if shape_by is not a character itself)

Details

One of the first steps for the annotation of factors is to visualise and overlap them with known
covariates such as phenotypic or clinical data. This method generates multiple scatterplots for pair-
wise combinations of several latent factors. Similar functions are plotFactorScatter for doing
single scatter plots and plotFactorBeeswarm for doing Beeswarm plots for single factors.
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Value

ggplot2 object

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotFactorScatters(MOFA_CLL, factors=1:3)
plotFactorScatters(MOFA_CLL, factors=1:3, color_by= "IGHV")

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotFactorScatters(MOFA_scMT)

plotTopWeights Plot top weights

Description

Plot top weights for a given latent factor in a given view.

Usage

plotTopWeights(object, view, factor, nfeatures = 10, abs = TRUE,
scale = TRUE, sign = "both")

Arguments

object a trained MOFAmodel object.
view character vector with the view name, or numeric vector with the index of the

view to use.
factor character vector with the factor name, or numeric vector with the index of the

factor to use.
nfeatures number of top features to display. Default is 10.
abs logical indicating whether to use the absolute value of the weights. Default is

TRUE.
scale logical indicating whether to scale all loadings from 0 to 1. Default is TRUE.
sign can be ’positive’, ’negative’ or ’both’ to show only positive, negative or all

weigths, respectively. Default is ’both’.

Details

The weights, or the loadings, provide the mapping between the high-dimensional space (the genes)
and the low-dimensional space (the factors).
They define a score for each gene on each factor, such that genes with no association with the factor
are expected to have values close to zero, whereas genes with strong association with the factor are
expected to have large absolute values.
The sign of the loading indicates the direction of the effect: A positive loading indicates that the
feature is more active in the cells with positive factor values, while a negative loading indicates that
the feature is more active in the cells with negative factor values.
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Value

Returns a ggplot2 object

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotTopWeights(MOFA_CLL, view="Mutations", factor=1, nfeatures=3)
plotTopWeights(MOFA_CLL, view="Mutations", factor=1, nfeatures=3, sign = "positive")
plotTopWeights(MOFA_CLL, view="Mutations", factor=1, nfeatures=3, sign = "negative")

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotTopWeights(MOFA_scMT, view="RNA expression", factor=1)

plotVarianceExplained Plot variance explained by the model

Description

Method to plot variance explained (R-squared) by the MOFA model for each view and latent factor.
As a measure of variance explained for gaussian data we adopt the coefficient of determination
(R2).
For details on the computation see the help of the calculateVarianceExplained function

Usage

plotVarianceExplained(object, cluster = TRUE, ...)

Arguments

object a MOFAmodel object.

cluster logical indicating whether to do hierarchical clustering on the plot

... extra arguments to be passed to calculateVarianceExplained

Value

ggplot object

Examples

# Using an existing trained model on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotVarianceExplained(MOFA_CLL)

# Using an existing trained model on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotVarianceExplained(MOFA_scMT)
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plotWeights Plot Weights

Description

An important step to annotate factors is to visualise the feature loadings.
This function plots all loadings for a given latent factor and view, optionally labeling the top ones.
A similar function is plotTopWeights, which displays only the top features with highest loading.

Usage

plotWeights(object, view, factor, nfeatures = 10, abs = FALSE,
manual = NULL, color_manual = NULL, scale = TRUE)

Arguments

object a MOFAmodel object.

view character vector with the view name, or numeric vector with the index of the
view to use.

factor character vector with the factor name, or numeric vector with the index of the
factor to use.

nfeatures number of top features to label.

abs logical indicating whether to use the absolute value of the weights.

manual A list of character vectors with features to be manually labelled (i.e. list(c("feature1","feature2"),
c("feature3","feature4")). Each character vector specifies a set of features that
will be highlighted with the same color, as specified in color_manual.

color_manual a character vector with colors, one for each character vector of manual

scale logical indicating whether to scale all loadings from 0 to 1.

Details

The weights, or the loadings, provide the mapping between the high-dimensional space (the genes)
and the low-dimensional space (the factors).
They define a score for each gene on each factor, such that genes with no association with the factor
are expected to have values close to zero, whereas genes with strong association with the factor are
expected to have large absolute values.
The sign of the loading indicates the direction of the effect: A positive loading indicates that the
feature is more active in the cells with positive factor values, while a negative loading indicates that
the feature is more active in the cells with negative factor values.

Value

a plot of all feature loadings for the given factor
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Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotWeights(MOFA_CLL, view="Mutations", factor=1)

# Highlight specific features
plotWeights(MOFA_CLL, view="Mutations", factor=1,

manual=list(c("IGHV"), c("TP53", "del17p13")),
color_manual=c("blue","red")
)

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotWeights(MOFA_scMT, view="RNA expression", factor=1, nfeatures=15)

plotWeightsHeatmap Plot heatmap of the weights

Description

Function to visualize the loadings for a given set of factors in a given view.
This is useful to visualize the overall pattern of the weights but not to individually characterise the
factors.
To inspect the loadings of individual factors, use the functions plotWeights and plotTopWeights

Usage

plotWeightsHeatmap(object, view, features = "all", factors = "all",
threshold = 0, ...)

Arguments

object a trained MOFAmodel object.

view character vector with the view name(s), or numeric vector with the index of the
view(s) to use. Default is ’all’

features character vector with the feature name(s), or numeric vector with the index of
the feature(s) to use. Default is ’all’

factors character vector with the factor name(s), or numeric vector with the index of the
factor(s) to use. Default is ’all’

threshold threshold on absolute weight values, so that loadings with a magnitude below
this threshold (in all factors) are removed

... extra arguments passed to pheatmap.
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Details

The weights, or the loadings, provide the mapping between the high-dimensional space (the genes)
and the low-dimensional space (the factors).
They define a score for each gene on each factor, such that genes with no association with the factor
are expected to have values close to zero, whereas genes with strong association with the factor are
expected to have large absolute values.
The sign of the loading indicates the direction of the effect: A positive loading indicates that the
feature is more active in the cells with positive factor values, while a negative loading indicates that
the feature is more active in the cells with negative factor values.

Value

produces a heatmap of feature weights for all factors

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
plotWeightsHeatmap(MOFA_CLL, view="Mutations")
plotWeightsHeatmap(MOFA_CLL, view="Mutations", factors=1:3)

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
plotWeightsHeatmap(MOFA_scMT, view="RNA expression")

predict Do predictions using a fitted MOFA model

Description

This function uses the factors and the corresponding weights to do data predictions.

Usage

predict(object, views = "all", factors = "all", type = c("inRange",
"response", "link"))

Arguments

object a MOFAmodel object.
views character vector with the view name(s), or numeric vector with the view in-

dex(es). Default is "all".
factors character vector with the factor name(s) or numeric vector with the factor in-

dex(es). Default is "all".
type type of prediction returned, either:

• response: gives the response vector, the mean for Gaussian and Poisson,
and success probabilities for Bernoulli.

• link: gives the linear predictions.
• inRange: rounds the fitted values of integer-valued distributions (Poisson

and Bernoulli) to the next integer. This is the default option.
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Details

Matrix factorization models generate a denoised and condensed low-dimensional representation of
the data which capture the main sources of heterogeneity of the data. Such representation can be
used to do predictions (data reconstruction) and imputation (see impute).
For mathematical details, see the Methods section of the MOFA article.

Value

Returns a list with data predictions.

Examples

library(ggplot2)

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)

# predict drug response data using all factors
predictedDrugs <- predict(MOFA_CLL, view="Drugs")

# predict all views using all factors (default)
predictedAll <- predict(MOFA_CLL)

# predict Mutation data using all factors, returning Bernoulli probabilities
predictedMutations <- predict(MOFA_CLL, view="Mutations", type="response")

# predict Mutation data using all factors, returning binary classes
predictedMutationsBinary <- predict(MOFA_CLL, view="Mutations", type="inRange")

# Compare the predictions with the true data
pred <- as.numeric(predictedAll$Drugs)
true <- as.numeric(getTrainData(MOFA_CLL)$Drugs)
qplot(pred,true) + geom_hex(bins=100) + coord_equal() +

geom_abline(intercept=0, slope=1, col="red")

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)

# Predict all views using all factors (default)
predictedAll <- predict(MOFA_scMT)

# Compare the predictions with the true data
view <- "RNA expression"
pred <- as.numeric(predictedAll[[view]])
true <- as.numeric(getTrainData(MOFA_scMT)[[view]])
qplot(pred,true) + geom_hex(bins=100) + coord_equal() +

geom_abline(intercept=0, slope=1, col="red")

prepareMOFA prepare a MOFAobject for training
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Description

Function to prepare a MOFAmodel object for training. Here, data, input/output option are specified
and data, model and training options can be set.

Usage

prepareMOFA(object, DataOptions = NULL, ModelOptions = NULL,
TrainOptions = NULL)

Arguments

object an untrained MOFAmodel

DataOptions list of DataOptions (see getDefaultDataOptions details). If NULL, default
data options are used.

ModelOptions list of ModelOptions (see getDefaultModelOptions for details). If NULL,
default model options are used.

TrainOptions list of TrainOptions (see getDefaultTrainOptions for details). If NULL, de-
fault training options are used.

Value

Returns an untrained MOFAmodel with specified data, model and training options. Next step is to
train the model with runMOFA

Examples

# load data
data("CLL_data", package = "MOFAdata")
#create a MOFAmodel object
MOFAobject <- createMOFAobject(CLL_data)
# set options
TrainOptions <- getDefaultTrainOptions()
ModelOptions <- getDefaultModelOptions(MOFAobject)
DataOptions <- getDefaultDataOptions()
# prepare MOFAmodel object for training
MOFAobject <- prepareMOFA(MOFAobject,
DataOptions = DataOptions,
ModelOptions = ModelOptions,
TrainOptions = TrainOptions
)
MOFAobject

qualityControl qualityControl

Description

Function to do quality control on a MOFAmodel object.

Usage

qualityControl(object, verbose = FALSE)
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Arguments

object a trained MOFAmodel object.
verbose logical indicating whether to generate a verbose output.

Value

none

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
# do quality control
qualityControl(MOFAobject, verbose=TRUE)

regressCovariates regress out a covariate from the training data

Description

Function to regress out a covariate from the training data.
If you have technical sources of variability (i.e. batch effects) that you do not want to be captured
by factors in the model, you should regress them out before fitting MOFA. This function performs
a simple linear regression model, extracts the residuals, and replaces the original data in the Train-
ingData slot.
Why is this important? If big technical factors exist, the model will "focus" on capturing the vari-
ability driven by these factors, and smaller sources of variability could be missed.
But... can we not simply add those covariates to the model? Technically yes, but we extensively
tested this functionality and it was not yielding good results.
The reason is that covariates are usually discrete labels that do not reflect the underlying molecular
biology. For example, if you introduce age as a covariate, but the actual age is different from the
"molecular age", the model will simply learn a new factor that corresponds to this "latent" molecu-
lar age, and it will drop the covariate from the model.
We recommend factors to be learnt in a completely unsupervised manner and subsequently relate
them to the covariates via visualisation or via a simple correlation analysis (see our vignettes for
more details).

Usage

regressCovariates(object, views, covariates, min_observations = 5)

Arguments

object an untrained MOFAmodel

views the view(s) to regress out the covariates.
covariates a vector (one covariate) or a data.frame (for multiple covariates) where each row

corresponds to one sample, sorted in the same order as in the input data matrices.
You can check the order by doing sampleNames(MOFAobject). If required, fill
missing values with NA, which will be ignored when fitting the linear model.

min_observations

number of non-missing observations required
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Value

Returns an untrained MOFAmodel where the specified covariates have been regressed out in the
training data.

Examples

data("CLL_data", package = "MOFAdata")
data("CLL_covariates", package = "MOFAdata")
library(MultiAssayExperiment)
mae_CLL <- MultiAssayExperiment(
experiments = CLL_data,
colData = CLL_covariates
)
MOFAobject <- createMOFAobject(mae_CLL)
MOFAobject <- prepareMOFA(MOFAobject)
MOFAobject_reg <- regressCovariates(
object = MOFAobject,
views = c("Drugs","Methylation","mRNA"),
covariates = InputData(MOFAobject)$Gender
)
# MOFA object with training data after regressing out the specified covariate
MOFAobject_reg

runEnrichmentAnalysis Feature Set Enrichment Analysis

Description

Method to perform feature set enrichment analysis on the feature loadings.
The input is a data structure containing the feature set membership, usually relating biological
pathways to genes.
The output is a matrix of dimensions (number_gene_sets,number_factors) with p-values and other
statistics.

Usage

runEnrichmentAnalysis(object, view, feature.sets, factors = "all",
local.statistic = c("loading", "cor", "z"),
global.statistic = c("mean.diff", "rank.sum"),
statistical.test = c("parametric", "cor.adj.parametric",
"permutation"), transformation = c("abs.value", "none"),
min.size = 10, nperm = 1000, cores = 1, p.adj.method = "BH",
alpha = 0.1)

Arguments

object a MOFAmodel object.

view name of the view to perform enrichment on. Make sure that the feature names
of the feature set file match the feature names in the MOFA model.

feature.sets data structure that holds feature set membership information. Must be either a
binary membership matrix (rows are feature sets and columns are features) or a
list of feature set indexes (see vignette for details).
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factors character vector with the factor names to perform enrichment on. Alternatively,
a numeric vector with the index of the factors. Default is all factors.

local.statistic

the feature statistic used to quantify the association between each feature and
each factor. Must be one of the following: loading (the output from MOFA,
default), cor (the correlation coefficient between the factor and each feature), z
(a z-scored derived from the correlation coefficient).

global.statistic

the feature set statisic computed from the feature statistics. Must be one of the
following: "mean.diff" (difference in means between the foreground set and the
background set, default) or "rank.sum" (difference in rank sums between the
foreground set and the background set).

statistical.test

the statistical test used to compute the significance of the feature set statistics
under a competitive null hypothesis. Must be one of the following: "parametric"
(very liberal, default), "cor.adj.parametric" (very conservative, adjusts for the
inter-gene correlation), "permutation" (non-parametric, the recommended one if
you can do sufficient number of permutations)

transformation optional transformation to apply to the feature-level statistics. Must be one of
the following "none" or "abs.value" (default).

min.size Minimum size of a feature set (default is 10).

nperm number of permutations. Only relevant if statistical.test is set to "permutation".
Default is 1000.

cores number of cores to run the permutation analysis in parallel. Only relevant if
statistical.test is set to "permutation". Default is 1.

p.adj.method Method to adjust p-values factor-wise for multiple testing. Can be any method
in p.adjust.methods(). Default uses Benjamini-Hochberg procedure.

alpha FDR threshold to generate lists of significant pathways. Default is 0.1

Details

This function relates the factors to pre-defined biological pathways by performing a gene set enrich-
ment analysis on the loadings. The general idea is to compute an activity score for every pathway
in each factor based on its corresponding gene loadings.
This function is particularly useful when a factor is difficult to characterise based only on the genes
with the highest loading.
We provide several pre-build gene set matrices in the MOFAdata package. See https://github.com/bioFAM/MOFAdata
for details.
The function we implemented is based on the pcgse function with some modifications. Please read
this paper https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4543476 for details on the math.

Value

a list with the following elements:

feature.statistics

feature statistics

set.statistics feature-set statistics

pval raw p-values

pval.adj adjusted p-values

sigPathways a list with enriched pathways
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Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)

# perform Enrichment Analysis on mRNA data using pre-build Reactome gene sets
data("reactomeGS", package = "MOFAdata")
fsea.results <- runEnrichmentAnalysis(MOFAobject, view="mRNA", feature.sets=reactomeGS)

# heatmap of enriched pathways per factor at 1% FDR
plotEnrichmentHeatmap(fsea.results, alpha=0.01)

# plot number of enriched pathways per factor at 1% FDR
plotEnrichmentBars(fsea.results, alpha=0.01)

# plot top 10 enriched pathways on factor 5:
plotEnrichment(MOFAobject, fsea.results, factor=5, max.pathways=10)

runMOFA train a MOFA model

Description

Function to train an untrained MOFAmodel object.

Usage

runMOFA(object, outfile = NULL)

Arguments

object an untrained MOFAmodel object

outfile output .hdf5 file

Details

In this step the R package is calling the mofapy Python package, where the the training is performed.
The interface with Python is done with the reticulate package. If you have several versions of
Python installed and Rstudio is not detecting the correct one, you can change it using reticulate::use_python.

Value

a trained MOFAmodel object

Examples

data <- makeExampleData()
# create and prepare the MOFAmodel
MOFAobject <- createMOFAobject(data)
MOFAobject <- prepareMOFA(MOFAobject)
# fit the model (takes some time)
## Not run:
# MOFAobject <- runMOFA(MOFAobject)
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# MOFAobject

## End(Not run)

sampleNames sampleNames: set and retrieve sample names

Description

Function to set and retrieve sample names.

Usage

sampleNames(object)

sampleNames(object) <- value

## S4 method for signature 'MOFAmodel'
sampleNames(object)

## S4 replacement method for signature 'MOFAmodel,vector'
sampleNames(object) <- value

Arguments

object a MOFAmodel object.

value a character vector of sample names

Value

character vector with the sample names

Examples

data("CLL_data", package = "MOFAdata")
MOFAobject <- createMOFAobject(CLL_data)
head(sampleNames(MOFAobject))

selectModel Select the best model from a list of trained MOFAmodel objects

Description

Different trained objects of MOFAmodel are compared in terms of the final value of the ELBO statis-
tics and the model with the highest ELBO value is selected.

Usage

selectModel(models, plotit = TRUE)
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Arguments

models a list containing MOFAmodel objects.

plotit show a plot of the characteristics of the compared MOFAmodel objects (ELBO
value and number of inferred factors)?

Value

a single MOFAmodel with the best ELBO statistics from the provided list

Examples

# Simulate Data
data <- makeExampleData()
# Create MOFA model
MOFAobject <- createMOFAobject(data)
# Prepare MOFA model
MOFAobject <- prepareMOFA(MOFAobject)
# Train several instances of MOFA models
n_inits <- 3
MOFAlist <- lapply(seq_len(n_inits), function(i) runMOFA(MOFAobject, outfile=tempfile()))
selectModel(MOFAlist)

Status Status: set and retrieve training status

Description

Function to set and retrieve taining status.

Usage

Status(object)

Status(object) <- value

## S4 method for signature 'MOFAmodel'
Status(object)

## S4 replacement method for signature 'MOFAmodel,character'
Status(object) <- value

Arguments

object a MOFAmodel object.

value character indicating whether the object is trained or untrained

Value

character indicating whether the object is trained or untrained
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Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
Status(MOFAobject)

subsetFactors Subset factors

Description

Method to subset (or sort) factors.
Some factors might not be interesting for the downstream analysis and the user can choose to
remove them. This has no effect on the values of the other factors. For example, this could be
done if the model contains factors which are inactive in all views.

Usage

subsetFactors(object, factors)

Arguments

object a MOFAmodel object.

factors character vector with the factor names (LF1,LF2,...), or numeric vector with the
index of the factors.

Value

MOFAmodel object with a subset of factors

Examples

# Using an existing trained model on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
MOFA_CLL_small <- subsetFactors(MOFA_CLL, factors=c(1,2,3))
MOFA_CLL_small
MOFA_CLL_small <- subsetFactors(MOFA_CLL, factors=c("LF1","LF2","LF3"))
MOFA_CLL_small



subsetSamples 53

subsetSamples Subset samples

Description

Method to subset (or sort) samples.
This function can remove samples from the model. For example, you might want to observe the
effect of Factor 1 on a subset of samples. You can create a new MOFAmodel excluding some samples
and then visualise the effect of Factor 1 on the remaining ones, for instance via plotDataHeatmap
or plotFactorScatter.
This functionality is only for exploratory purposes. In the case of outliers, we strongly recommend
removing them before training the model.

Usage

subsetSamples(object, samples)

Arguments

object a MOFAmodel object.

samples character vector with the sample names, numeric vector with the sample indices
or logical vector with the samples to be kept as TRUE.

Value

MOFAmodel object with a subset of samples

Examples

# Using an existing trained model on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
# Subset samples via character vector
MOFA_CLL_small <- subsetSamples(MOFA_CLL, samples=c("H045","H109","H024","H056"))
MOFA_CLL_small
# Subset samples via numeric vector
MOFA_CLL_small <- subsetSamples(MOFA_CLL, samples=1:10)
MOFA_CLL_small

subsetViews Subset views

Description

Method to subset (or sort) views. This function can remove entire views from the model. For
example, you might want to generate the plotVarianceExplained plot excluding a particular view.
This functionality is only for exploratory purposes. If some view(s) are not of interest we strongly
recommend removing them before training the model.
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Usage

subsetViews(object, views)

Arguments

object a MOFAmodel object.

views character vector with the view names, numeric vector with the view indices or
logical vector with the view to be kept as TRUE.

Value

MOFAmodel object with a subset of views

Examples

# Using an existing trained model on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
# Subset views via character vector
MOFA_CLL_small <- subsetViews(MOFA_CLL, views=c("Drugs","Methylation"))
MOFA_CLL_small
# Subset views via numeric vector
MOFA_CLL_small <- subsetViews(MOFA_CLL, views=2:3)
MOFA_CLL_small

trainCurveELBO Training curve for Evidence Lower Bound (ELBO)

Description

MOFA inference is done using the variational Bayes algorithm, which maximises a quantity called
the Evidence Lower Bound (ELBO). The ELBO is supposed to increase monotonically up to con-
vergence, but it can decrease substantially when dropping inactive factors. For more details read the
supplementary methods. The frequency of ELBO computation as well as the convergence criteria
are defined as hyperparameters in prepareMOFA.
All Training statistics, including the ELBO, can be fetch from the TrainStats slot of MOFAmodel .

Usage

trainCurveELBO(object, logScale = FALSE)

Arguments

object a MOFAmodel object.

logScale boolean indicating whether to apply log transform

Value

plot of ELBO values during training
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Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
trainCurveELBO(MOFA_CLL)
trainCurveELBO(MOFA_CLL, logScale= TRUE)

# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
trainCurveELBO(MOFA_scMT)

trainCurveFactors Training curve for the number of active factors

Description

The MOFA model starts with an initial number of factors and inactive factors can be dropped during
training if they explain small amounts of variation (as defined in getDefaultModelOptions). This
allows the model to automatically infer the dimensionality of the latent space. The corresponding
hyperparameters are defined in prepareMOFA.
All training statistics, including the number of active factors, can be fetch from the TrainStats slot
of MOFAmodel .

Usage

trainCurveFactors(object)

Arguments

object a MOFAmodel object.

Value

plot of number of active factors during training

Examples

# Example on the CLL data
filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
MOFA_CLL <- loadModel(filepath)
trainCurveFactors(MOFA_CLL)
# Example on the scMT data
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFA_scMT <- loadModel(filepath)
trainCurveFactors(MOFA_scMT)
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TrainData TrainData: set and retrieve training data

Description

Function to set and retrieve taining data.

Usage

TrainData(object)

TrainData(object) <- value

## S4 method for signature 'MOFAmodel'
TrainData(object)

## S4 replacement method for signature 'MOFAmodel,list'
TrainData(object) <- value

Arguments

object a MOFAmodel object.

value a list of matrices containing the training data

Value

list of matrices containing the training data

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
str(TrainData(MOFAobject))

TrainOptions TrainOptions: set and retrieve training options

Description

Function to set and retrieve training options.



TrainStats 57

Usage

TrainOptions(object)

TrainOptions(object) <- value

## S4 method for signature 'MOFAmodel'
TrainOptions(object)

## S4 replacement method for signature 'MOFAmodel,list'
TrainOptions(object) <- value

Arguments

object a MOFAmodel object.

value a list with training options

Value

list of training options

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
TrainOptions(MOFAobject)

TrainStats TrainStats: set and retrieve training statistcs

Description

Function to set and retrieve taining statistics

Usage

TrainStats(object)

TrainStats(object) <- value

## S4 method for signature 'MOFAmodel'
TrainStats(object)

## S4 replacement method for signature 'MOFAmodel,list'
TrainStats(object) <- value

Arguments

object a MOFAmodel object.

value list of different training statistics (EBLO, number of factors)
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Value

list of different training statistics (EBLO, number of factors)

Examples

# load a trained MOFAmodel object
filepath <- system.file("extdata", "scMT_model.hdf5", package = "MOFAdata")
MOFAobject <- loadModel(filepath)
str(TrainStats(MOFAobject))

viewNames viewNames: set and retrieve view names

Description

Function to set and retrieve view names.

Usage

viewNames(object)

viewNames(object) <- value

## S4 method for signature 'MOFAmodel'
viewNames(object)

## S4 replacement method for signature 'MOFAmodel,character'
viewNames(object) <- value

Arguments

object a MOFAmodel object.

value character vector with the names for each view

Value

character vector with the names for each view

Examples

data("CLL_data", package = "MOFAdata")
MOFAobject <- createMOFAobject(CLL_data)
viewNames(MOFAobject)
viewNames(MOFAobject) <- c("DrugResponses", viewNames(MOFAobject)[2:4])
viewNames(MOFAobject)
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