
Package ‘ClassifyR’
October 16, 2019

Type Package

Title A framework for cross-validated classification problems, with
applications to differential variability and differential
distribution testing

Version 2.4.4

Date 2019-06-14

Author Dario Strbenac, John Ormerod, Graham Mann, Jean Yang

Maintainer Dario Strbenac <dario.strbenac@sydney.edu.au>

VignetteBuilder knitr

biocViews Classification, Survival

Depends R (>= 3.6.0), methods, S4Vectors, MultiAssayExperiment,
BiocParallel

Imports locfit, grid, utils, plyr

Suggests limma, genefilter, edgeR, car, Rmixmod, ggplot2, gridExtra,
cowplot, BiocStyle, pamr, PoiClaClu, parathyroidSE, knitr,
htmltools, gtable, scales, e1071, rmarkdown, IRanges,
randomForest, robustbase, glmnet, class

Description The software formalises a framework for classification in R.
There are four stages; Data transformation, feature selection, classifier training,
and prediction. The requirements of variable types and names are
fixed, but specialised variables for functions can also be provided.
The classification framework is wrapped in a driver loop, that
reproducibly carries out a number of cross-validation schemes.
Functions for differential expression, differential variability,
and differential distribution are included. Additional functions
may be developed by the user, by creating an interface to the framework.

Collate classes.R utilities.R bartlettSelection.R calcPerformance.R
classifyInterface.R DLDAinterface.R DMDselection.R
differentMeansSelection.R distribution.R edgeRselection.R
edgesToHubNetworks.R elasticNetGLMinterface.R
elasticNetFeatures.R featureSetSummary.R fisherDiscriminant.R
forestFeatures.R getLocationsAndScales.R
interactorDifferences.R kNNinterface.R
KolmogorovSmirnovSelection.R KullbackLeiblerSelection.R
kTSPclassifier.R leveneSelection.R likelihoodRatioSelection.R
limmaSelection.R mixmodels.R naiveBayesKernel.R

1



2 R topics documented:

networkCorrelationsSelection.R NSCselectionInterface.R
NSCtrainInterface.R NSCpredictInterface.R
pairsDifferencesSelection.R performancePlot.R
plotFeatureClasses.R previousSelection.R previousTrained.R
randomForestInterface.R rankingPlot.R ROCplot.R runTest.R
runTests.R samplesMetricMap.R selectionPlot.R
subtractFromLocation.R SVMinterface.R

License GPL-3

git_url https://git.bioconductor.org/packages/ClassifyR

git_branch RELEASE_3_9

git_last_commit a2993e1

git_last_commit_date 2019-06-14

Date/Publication 2019-10-15

R topics documented:
asthma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bartlettSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
calcPerformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
characterOrDataFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
classifyInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ClassifyResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
differentMeansSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dlda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DLDAinterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DMDselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
edgeRselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
edgesToHubNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
elasticNetFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
elasticNetGLMinterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FeatureSetCollection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FeatureSetCollectionOrNULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
featureSetSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
fisherDiscriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
forestFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
functionOrList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
functionOrNULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
getLocationsAndScales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
integerOrNumeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
interactorDifferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
kNNinterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
KolmogorovSmirnovSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
kTSPclassifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
KullbackLeiblerSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
leveneSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
likelihoodRatioSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
limmaSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
mixmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
MixModelsListsSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



asthma 3

multnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
naiveBayesKernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
networkCorrelationsSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
NSCpredictInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
NSCselectionInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
NSCtrainInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
pairsDifferencesSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
pamrtrained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
performancePlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
plotFeatureClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
PredictParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
previousSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
previousTrained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
randomForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
randomForestInterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
rankingPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
ResubstituteParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
ROCplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
runTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
runTests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
samplesMetricMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
selectionPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
SelectParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
SelectResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
subtractFromLocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
svm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SVMinterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
TrainParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
TransformParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Index 90

asthma Asthma RNA Abundance and Patient Classes

Description

Data set consists of a matrix of abundances of 2000 most variable gene expression measurements
for 190 samples and a factor vector of classes for those samples.

Usage

data(asthma)

Format

measurements has a row for each gene and a column for each sample. classes is a factor vector.

Source

A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal
RNA Sequence Data, Scientific Reports, 2018. Webpage: http://www.nature.com/articles/
s41598-018-27189-4

http://www.nature.com/articles/s41598-018-27189-4
http://www.nature.com/articles/s41598-018-27189-4


4 bartlettSelection

bartlettSelection Selection of Differential Variability with Bartlett Statistic

Description

Ranks features by largest Bartlett statistic and chooses the features which have best resubstitution
performance.

Usage

## S4 method for signature 'matrix'
bartlettSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

bartlettSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams,
selectionName = "Bartlett Test", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
bartlettSelection(measurements, targets, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

The calculation of the test statistic is performed by the bartlett.test function from the stats
package.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".



calcPerformance 5

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

# Samples in one class with differential variability to other class.
# First 20 genes are DV.
genesRNAmatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 1)))
moreVariable <- sapply(1:25, function(sample) rnorm(20, 9, 5))
genesRNAmatrix <- cbind(genesRNAmatrix, rbind(moreVariable,

sapply(1:25, function(sample) rnorm(80, 9, 1))))
colnames(genesRNAmatrix) <- paste("Sample", 1:50)
rownames(genesRNAmatrix) <- paste("Gene", 1:100)
genesSNPmatrix <- matrix(sample(c("None", "Missense"), 250, replace = TRUE),

ncol = 50)
colnames(genesSNPmatrix) <- paste("Sample", 1:50)
rownames(genesSNPmatrix) <- paste("Gene", 1:5)
classes <- factor(rep(c("Poor", "Good"), each = 25))
names(classes) <- paste("Sample", 1:50)
genesDataset <- MultiAssayExperiment(list(RNA = genesRNAmatrix, SNP = genesSNPmatrix),

colData = DataFrame(class = classes))
# Wait for update to MultiAssayExperiment wideFormat function.
trainIDs <- paste("Sample", c(1:20, 26:45))
genesDataset <- subtractFromLocation(genesDataset, training = trainIDs,

targets = "RNA") # Exclude SNP data.

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

bartlettSelection(genesDataset, datasetName = "Example", targets = "RNA",
trainParams = TrainParams(fisherDiscriminant),
predictParams = PredictParams(NULL),
resubstituteParams = resubstituteParams)

calcPerformance Add Performance Calculations to a ClassifyResult Object or Calculate
for a Pair of Factor Vectors

Description

If calcExternalPerformance is used, such as when having a vector of known classes and a vector
of predicted classes determined outside of the ClassifyR package, a single metric value is calculated.
If calcCVperformance is used, annotates the results of calling runTests with one of the user-
specified performance measures.



6 calcPerformance

Usage

## S4 method for signature 'factor,factor'
calcExternalPerformance(actualClasses, predictedClasses,

performanceType = c("error", "accuracy", "balanced error", "balanced accuracy",
"micro precision", "micro recall",
"micro F1", "macro precision",
"macro recall", "macro F1", "matthews"))

## S4 method for signature 'ClassifyResult'
calcCVperformance(result, performanceType = c("error", "accuracy", "balanced error", "balanced accuracy",

"sample error", "sample accuracy",
"micro precision", "micro recall",
"micro F1", "macro precision",

"macro recall", "macro F1", "matthews"))

Arguments

result An object of class ClassifyResult.
performanceType

A character vector of length 1. Default: "balanced error".
Must be one of the following options:

• "error": Ordinary error rate.
• "accuracy": Ordinary accuracy.
• "balanced error": Balanced error rate.
• "balanced accuracy": Balanced accuracy.
• "sample error": Error rate for each sample in the data set.
• "sample accuracy": Accuracy for each sample in the data set.
• "micro precision": Sum of the number of correct predictions in each

class, divided by the sum of number of samples in each class.
• "micro recall": Sum of the number of correct predictions in each class,

divided by the sum of number of samples predicted as belonging to each
class.

• "micro F1": F1 score obtained by calculating the harmonic mean of micro
precision and micro recall.

• "macro precision": Sum of the ratios of the number of correct predictions
in each class to the number of samples in each class, divided by the number
of classes.

• "macro recall": Sum of the ratios of the number of correct predictions in
each class to the number of samples predicted to be in each class, divided
by the number of classes.

• "macro F1": F1 score obtained by calculating the harmonic mean of macro
precision and macro recall.

• "matthews": Matthews Correlation Coefficient (MCC). A score between
-1 and 1 indicating how concordant the predicted classes are to the actual
classes. Only defined if there are two classes.

actualClasses A factor vector specifying each sample’s correct class.
predictedClasses

A factor vector of the same length as actualClasses specifying each sample’s
predicted class.



characterOrDataFrame 7

Details

All metrics except Matthews Correlation Coefficient are suitable for evaluating classification sce-
narios with more than two classes and are reimplementations of those available from Intel DAAL.

If runTests was run in resampling mode, one performance measure is produced for every resam-
pling. If the leave-k-out mode was used, then the predictions are concatenated, and one performance
measure is calculated for all classifications.

"balanced error" calculates the balanced error rate and is better suited to class-imbalanced data
sets than the ordinary error rate specified by "error". "sample error" calculates the error rate of
each sample individually. This may help to identify which samples are contributing the most to the
overall error rate and check them for confounding factors. Precision, recall and F1 score have micro
and macro summary versions. The macro versions are preferable because the metric will not have a
good score if there is substantial class imbalance and the classifier predicts all samples as belonging
to the majority class.

Value

If calcCVperformance was run, an updated ClassifyResult object, with new metric values in the
performance slot. If calcExternalPerformance was run, the performance metric value itself.

Author(s)

Dario Strbenac

Examples

predictTable <- data.frame(sample = 1:10,
class = factor(sample(LETTERS[1:2], 50, replace = TRUE)))

actual <- factor(sample(LETTERS[1:2], 10, replace = TRUE))
result <- ClassifyResult("Example", "Differential Expression", "A Selection",

paste("A", 1:10, sep = ''), paste("Gene", 1:50, sep = ''),
50, list(1:50, 1:50), list(1:5, 6:15), list(function(oracle){}),

list(predictTable), actual, list("leave", 2))
result <- calcCVperformance(result, "balanced error")
performance(result)

characterOrDataFrame Union of a Character and a DataFrame

Description

Allows a slot to be either a character or a DataFrame.

Author(s)

Dario Strbenac

Examples

setClass("Selections", representation(features = "characterOrDataFrame"))
selections <- new("Selections", features = c("BRAF", "NRAS"))
featuresTable <- DataFrame(assay = c("RNA-seq", "Mass spectrometry"),

feature = c("PD-1", "MITF"))
omicsSelections <- new("Selections", features = featuresTable)

https://software.intel.com/en-us/daal-programming-guide-details-40


8 classifyInterface

classifyInterface An Interface for PoiClaClu Package’s Classify Function

Description

More details of Poisson LDA are available in the documentation of Classify.

Usage

## S4 method for signature 'matrix'
classifyInterface(measurements, classes, test, ...)
## S4 method for signature 'DataFrame'

classifyInterface(measurements, classes, test, ..., returnType = c("class", "score", "both"), verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

classifyInterface(measurements, test, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or parameters that Classify
can accept.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, matrix of scores for each
class, or both labels and scores in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Data tables which consist entirely of non-integer data cannot be analysed. If measurements is an ob-
ject of class MultiAssayExperiment, the factor of sample classes must be stored in the DataFrame
accessible by the colData function with column name "class".

Value

Either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the
class labels and class scores, depending on the setting of returnType.



ClassifyResult 9

Author(s)

Dario Strbenac

Examples

if(require(PoiClaClu))
{

readCounts <- CountDataSet(n = 100, p = 1000, 2, 5, 0.1)
# Rows are for features, columns are for samples.
trainData <- t(readCounts[['x']])
classes <- factor(paste("Class", readCounts[['y']]))
testData <- t(readCounts[['xte']])
storage.mode(trainData) <- storage.mode(testData) <- "integer"
classified <- classifyInterface(trainData, classes, testData)

setNames(table(paste("Class", readCounts[["yte"]]) == classified), c("Incorrect", "Correct"))
}

ClassifyResult Container for Storing Classification Results

Description

Contains a table of actual sample classes and predicted classes, the identifiers of features selected
for each fold of each permutation or each hold-out classification, and error rates. This class is not
intended to be created by the user, but could be used in another package. It is created by runTests.

Constructor

ClassifyResult(datasetName, classificationName, selectionName, originalNames, originalFeatures,
rankedFeatures, chosenFeatures, predictions, actualClasses, models,

validation, tune = list(NULL))

datasetName A name associated with the dataset used.
classificationName A name associated with the classification.
seletionName A name associated with the feature selection.
originalNames All sample names.
originalFeatures All feature names. Character vector or DataFrame with one row for each

feature if the data set is a MultiAssayExperiment.
rankedFeatures All features, from most to least important. Character vector or DataFrame if data

set is a MultiAssayExperiment.
chosenFeatures Features selected at each fold. Character vector or DataFrame if data set is a

MultiAssayExperiment.
predictions A list of data.frame containing information about samples, their actual class and

predicted class.
actualClasses Factor of class of each sample.
models All of the models fitted to the training data.
validation List with first element being the name of the validation scheme, and other elements

providing details about the scheme.
tune A description of the tuning parameters, and the value chosen of each parameter.



10 ClassifyResult

Summary

A method which summarises the results is available. result is a ClassifyResult object.

show(result)Prints a short summary of what result contains.

totalPredictions(ClassifyResult)Calculates the sum of the number of predictions.

Accessors

result is a ClassifyResult object.

sampleNames(result) Returns a vector of sample names present in the data set.

featureNames(result) Returns a vector of features present in the data set.

predictions(result) Returns a list of data.frame. Each data.frame contains columns sample,
predicted, and actual. For hold-out validation, only one data.frame is returned of all of the
concatenated predictions.

actualClasses(result) Returns a factor class labels, one for each sample.

features(result) A list of the features selected for each training.

models(result) A list of the models fitted for each training.

performance(result) Returns a list of performance measures. This is empty until calcCVperformance
has been used.

tunedParameters(result) Returns a list of tuned parameter values. If cross-validation is used,
this list will be large, as it stores chosen values for every iteration.

sampleNames(result) Returns a character vector of sample names.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),
performanceType = "balanced error",
better = "lower")

classified <-
runTests(measurements, classes, datasetName = "Asthma",

classificationName = "Different Means", validation = "leaveOut", leave = 1,
params = list(SelectParams(limmaSelection, "Moderated t Statistic",

resubstituteParams = resubstituteParams),
TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface)))

class(classified)
#}



differentMeansSelection 11

differentMeansSelection

Selection of Differentially Abundant Features

Description

Uses an ordinary t-test if the data set has two classes or one-way ANOVA if the data set has three
or more classes to select differentially expressed features.

Usage

## S4 method for signature 'matrix'
differentMeansSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

differentMeansSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams,
selectionName = "Difference in Means", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
differentMeansSelection(measurements, targets = NULL, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes A vector of class labels of class factor of the same length as the number of sam-
ples in measurements. Not used if measurements is a MultiAssayExperiment
object.

targets Names of data tables to be combined into a single table and used in the analysis.
... Variables not used by the matrix nor the MultiAssayExperiment method which

are passed into and used by the DataFrame method.
datasetName A name for the data set used. Stored in the result.
trainParams A container of class TrainParams describing the classifier to use for training.
predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.
verbose Default: 3. A number between 0 and 3 for the amount of progress messages to

give. This function only prints progress messages if the value is 3.

Details

This selection method looks for changes in means and uses rowttests to rank the features if there
are two classes or rowFtests if there are three or more classes. The choice of features is based on
the best resubstitution performance.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.



12 distribution

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error", better = "lower")

selected <- differentMeansSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(), predictParams = PredictParams(),

resubstituteParams = resubstituteParams)

selected@chosenFeatures
#}

distribution Get Frequencies of Feature Selection and Sample Errors

Description

There are two modes. For aggregating feature selection results, the function counts the number of
times each feature was selected in all cross-validations. For aggregating classification results, the
error rate for each sample is calculated. This is useful in identifying outlier samples that are difficult
to classify.

Usage

## S4 method for signature 'ClassifyResult'
distribution(result, dataType = c("features", "samples"),

plotType = c("density", "histogram"), summaryType = c("percentage", "count"),
plot = TRUE, xMax = NULL, xLabel = "Percentage of Cross-validations",
yLabel = "Density", title = "Distribution of Feature Selections",

fontSizes = c(24, 16, 12), ...)

Arguments

result An object of class ClassifyResult.

dataType Whether to calculate sample-wise error rate or the number of times a feature
was selected.

plotType Whether to draw a probability density curve or a histogram.

summaryType Whether to summarise the feature selections as a percentage or count.

plot Whether to draw a plot of the frequency of selection or error rate.



dlda 13

xMax Maximum data value to show in plot.

xLabel The label for the x-axis of the plot.

yLabel The label for the y-axis of the plot.

title An overall title for the plot.

fontSizes A vector of length 3. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values.

... Further parameters, such as colour and fill, passed to geom_histogram or
stat_density, depending on the value of plotType.

Value

If type is "features", a vector as long as the number of features that were chosen at least once
containing the number of times the feature was chosen in cross validations or the percentage of
times chosen. If type is "samples", a vector as long as the number of samples, containing the cross-
validation error rate of the sample. If plot is TRUE, then a plot is also made on the current graphics
device.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)
resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),

performanceType = "balanced error",
better = "lower")

result <- runTests(measurements, classes, datasetName = "Asthma",
classificationName = "Different Means",
permutations = 5,

params = list(SelectParams(limmaSelection, "Moderated t Statistic",
resubstituteParams = resubstituteParams),

TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface)
)

)
featureDistribution <- distribution(result, "features", summaryType = "count",

plotType = "histogram",
xLabel = "Number of Cross-validations", yLabel = "Count",

binwidth = 1)
print(head(featureDistribution))

#}

dlda Trained dlda Object

Description

Enables S4 method dispatching on it.



14 DLDAinterface

Author(s)

Dario Strbenac

DLDAinterface An Interface for sparsediscrim Package’s dlda Function

Description

DLDAtrainInterface generates a trained diagonal LDA classifier and DLDApredictInterface
uses it to make predictions on a test data set.

Usage

## S4 method for signature 'matrix'
DLDAtrainInterface(measurements, classes, ...)
## S4 method for signature 'DataFrame'

DLDAtrainInterface(measurements, classes, verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

DLDAtrainInterface(measurements, targets = names(measurements), ...)
## S4 method for signature 'dlda,matrix'

DLDApredictInterface(model, test, ...)
## S4 method for signature 'dlda,DataFrame'

DLDApredictInterface(model, test, returnType = c("class", "score", "both"),
verbose = 3)

## S4 method for signature 'dlda,MultiAssayExperiment'
DLDApredictInterface(model, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

model A fitted model as returned by DLDAtrainInterface.
test An object of the same class as measurements with no samples in common with

measurements and the same number of features as it. Also, if a DataFrame, the
class column must be absent.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose).

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, matrix of scores for each
class, or both labels and scores in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.



DMDselection 15

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

Value

For DLDAtrainInterface, a trained DLDA classifier. For DLDApredictInterface, either a factor
vector of predicted classes, a matrix of scores for each class, or a table of both the class labels and
class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

Examples

# if(require(sparsediscrim)) Package currently removed from CRAN.
#{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
selected <- rownames(genesMatrix)[91:100]
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

classifier <- DLDAtrainInterface(genesMatrix[selected, trainingSamples],
classes[trainingSamples])

DLDApredictInterface(classifier, genesMatrix[selected, testingSamples])
#}

DMDselection Selection of Differential Distributions with Differences in Means or
Medians and a Deviation Measure

Description

Ranks features by largest Differences in Means/Medians and Deviations and chooses the features
which have best resubstitution performance.

Usage

## S4 method for signature 'matrix'
DMDselection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

DMDselection(measurements, classes, datasetName, differences = c("both", "location", "scale"),
trainParams, predictParams, resubstituteParams, ...,
selectionName = "Differences of Medians and Deviations",
verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
DMDselection(measurements, targets = names(measurements), ...)



16 DMDselection

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes A vector of class labels.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or parameters for getLocationsAndScales,
such as location, scale.

datasetName Default: "Differences of Medians and Deviations". A name for the data set
used. Stored in the result.

differences Default: "both". Either "both", "location", or "scale". The type of differ-
ences to consider. If both are considered then the absolute difference in location
and the absolute difference in scale are summed.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

DMD is defined as
∑

i=1

∑
j=i+1 |locationi − locationj | + |scalei − scalej |. The subscripts

denote the class for which the parameter is calculated for.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

# First 20 features have bimodal distribution for Poor class.
# Other 80 features have normal distribution for both classes.
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}



edgeRselection 17

)
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

DMDselection(genesMatrix, classes, datasetName = "Example",
trainParams = TrainParams(naiveBayesKernel),
predictParams = PredictParams(NULL),
resubstituteParams = resubstituteParams)

edgeRselection Feature Selection Based on Differential Expression for Count Data

Description

Performs a differential expression analysis between classes and chooses the features which have
best resubstitution performance. The data may have overdispersion and this is modelled.

Usage

## S4 method for signature 'matrix'
edgeRselection(counts, classes, ...)
## S4 method for signature 'DataFrame'

edgeRselection(counts, classes, datasetName,
normFactorsOptions = NULL, dispOptions = NULL, fitOptions = NULL,
trainParams, predictParams, resubstituteParams,
selectionName = "edgeR LRT", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
edgeRselection(counts, targets = NULL, ...)

Arguments

counts Either a matrix or MultiAssayExperiment containing the unnormalised counts.

classes A vector of class labels of class factor of the same length as the number of sam-
ples in measurements. Not used if measurements is a MultiAssayExperiment
object.

targets If measurements is a MultiAssayExperiment, the names of the data tables of
counts to be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.
normFactorsOptions

A named list of any options to be passed to calcNormFactors.

dispOptions A named list of any options to be passed to estimateDisp.

fitOptions A named list of any options to be passed to glmFit.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.



18 edgeRselection

resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.
verbose Default: 3. A number between 0 and 3 for the amount of progress messages to

give. This function only prints progress messages if the value is 3.

Details

The differential expression analysis follows the standard edgeR steps of estimating library size
normalisation factors, calculating dispersion, in this case robustly, and then fitting a generalised
linear model followed by a likelihood ratio test.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

References

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data,
Mark D. Robinson, Davis McCarthy, and Gordon Smyth, 2010, Bioinformatics, Volume 26 Issue 1,
https://academic.oup.com/bioinformatics/article/26/1/139/182458.

Examples

if(require(parathyroidSE) && require(PoiClaClu))
{

data(parathyroidGenesSE)
expression <- assays(parathyroidGenesSE)[[1]]
sampleNames <- paste("Sample", 1:ncol(parathyroidGenesSE))
colnames(expression) <- sampleNames
DPN <- which(colData(parathyroidGenesSE)[, "treatment"] == "DPN")
control <- which(colData(parathyroidGenesSE)[, "treatment"] == "Control")
expression <- expression[, c(control, DPN)]
classes <- factor(rep(c("Contol", "DPN"), c(length(control), length(DPN))))
expression <- expression[rowSums(expression > 1000) > 8, ] # Make small data set.

selected <- edgeRselection(expression, classes, "DPN Treatment",
trainParams = TrainParams(classifyInterface),
predictParams = PredictParams(NULL),
resubstituteParams = ResubstituteParams(nFeatures = seq(10, 100, 10),

performanceType = "balanced error", better = "lower"))

head(selected@rankedFeatures[[1]])
plotFeatureClasses(expression, classes, "ENSG00000044574",

dotBinWidth = 500, xAxisLabel = "Unnormalised Counts")
}

https://academic.oup.com/bioinformatics/article/26/1/139/182458


edgesToHubNetworks 19

edgesToHubNetworks Convert a Two-column Matrix or Data Frame into a Hub Node List

Description

Interactions between pairs of features (typically a protein-protein interaction, commonly abbrevi-
ated as PPI, database) are restructured into a named list. The name of the each element of the list is
a feature and the element contains all features which have an interaction with it.

Usage

edgesToHubNetworks(edges, minCardinality = 5)

Arguments

edges A two-column matrix or data.frame for which each row specifies a known
interaction betwen two interactors. If feature X appears in the first column and
feature Y appears in the second, there is no need for feature Y to appear in the
first column and feature X in the second.

minCardinality An integer specifying the minimum number of features to be associated with a
hub feature for it to be present in the result.

Value

An object of type FeatureSetCollection.

Author(s)

Dario Strbenac

References

VAN: an R package for identifying biologically perturbed networks via differential variability anal-
ysis, Vivek Jayaswal, Sarah-Jane Schramm, Graham J Mann, Marc R Wilkins and Yee Hwa Yang,
2010, BMC Research Notes, Volume 6 Article 430, https://bmcresnotes.biomedcentral.com/
articles/10.1186/1756-0500-6-430.

Examples

interactor <- c("MITF", "MITF", "MITF", "MITF", "MITF", "MITF",
"KRAS", "KRAS", "KRAS", "KRAS", "KRAS", "KRAS",
"PD-1")

otherInteractor <- c("HINT1", "LEF1", "PSMD14", "PIAS3", "UBE2I", "PATZ1",
"ARAF", "CALM1", "CALM2", "CALM3", "RAF1", "HNRNPC",
"PD-L1")

edges <- data.frame(interactor, otherInteractor, stringsAsFactors = FALSE)

edgesToHubNetworks(edges, minCardinality = 4)

https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-6-430
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-6-430


20 elasticNetFeatures

elasticNetFeatures Extract Vectors of Ranked and Selected Features From an Elastic Net
GLM Object

Description

Provides a ranking of features based on the magnitude of fitted GLM coefficients. Also provides
the selected features which are those with a non-zero coefficient.

Usage

## S4 method for signature 'multnet'
elasticNetFeatures(model)

Arguments

model A fitted multinomial GLM which was created by glmnet.

Value

An list object. The first element is a vector or data frame of ranked features, the second is a vector
or data frame of selected features.

Author(s)

Dario Strbenac

Examples

if(require(glmnet))
{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

# alpha is a user-specified tuning parameter.
# lambda is automatically tuned, based on glmnet defaults, if not user-specified.
trainParams <- TrainParams(elasticNetGLMtrainInterface, nlambda = 500)
predictParams <- PredictParams(elasticNetGLMpredictInterface)
classified <- runTests(genesMatrix, classes, datasetName = "Example",

classificationName = "Differential Expression",
validation = "fold",
params = list(trainParams, predictParams))

elasticNetFeatures(models(classified)[[1]])
}



elasticNetGLMinterface 21

elasticNetGLMinterface

An Interface for glmnet Package’s glmnet Function

Description

An elastic net GLM classifier uses a penalty which is a combination of a lasso penalty and a ridge
penalty, scaled by a lambda value, to fit a sparse linear model to the data.

Usage

## S4 method for signature 'matrix'
elasticNetGLMtrainInterface(measurements, classes, ...)
## S4 method for signature 'DataFrame'

elasticNetGLMtrainInterface(measurements, classes, lambda = NULL,
..., verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
elasticNetGLMtrainInterface(measurements, targets = names(measurements), ...)
## S4 method for signature 'multnet,matrix'

elasticNetGLMpredictInterface(model, test, ...)
## S4 method for signature 'multnet,DataFrame'

elasticNetGLMpredictInterface(model, test, classes = NULL, lambda, ..., returnType = c("class", "score", "both"), verbose = 3)
## S4 method for signature 'multnet,MultiAssayExperiment'

elasticNetGLMpredictInterface(model, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

lambda The lambda value passed directly to glmnet if the training function is used or
passed as s to predict.glmnet if the prediction function is used.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose) or, for the
training function, options that are used by the glmnet function. For the testing
function, this variable simply contains any parameters passed from the classifi-
cation framework to it which aren’t used by glmnet’s predict fuction.

model A trained elastic net GLM, as created by the glmnet function.



22 elasticNetGLMinterface

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, matrix of scores for each
class, or both labels and scores in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

The value of the family parameter is fixed to "multinomial" so that classification with more than
2 classes is possible and type.multinomial is fixed to "grouped" so that a grouped lasso penalty
is used. During classifier training, if more than one lambda value is considered by specifying a
vector of them as input or leaving the default value of NULL, then the chosen value is determined
based on classifier resubstitution error rate.

Value

For elasticNetGLMtrainInterface, an object of type glmnet. For elasticNetGLMpredictInterface,
either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the
class labels and class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

Examples

if(require(glmnet))
{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

# lambda is automatically tuned, based on glmnet defaults, if not user-specified.
trainParams <- TrainParams(elasticNetGLMtrainInterface, nlambda = 500,

getFeatures = elasticNetFeatures)
predictParams <- PredictParams(elasticNetGLMpredictInterface)
classified <- runTests(genesMatrix, classes, datasetName = "Example",

classificationName = "Differential Expression",
validation = "fold",
params = list(trainParams, predictParams))

classified <- calcCVperformance(classified, "balanced error")
head(tunedParameters(classified))
performance(classified)

}



FeatureSetCollection 23

FeatureSetCollection Container for Storing A Collection of Sets

Description

This container is the required storage format for a collection of sets. Typically, the elements of a set
will either be a set of proteins (i.e. character vector) which perform a particular biological process
or a set of binary interactions (i.e. Two-column matrix of feature identifiers).

Constructor

FeatureSetCollection(sets)

sets A named list. The names of the list describe the sets and the elements of the list specify the
features which comprise the sets.

Summary

A method which summarises the results is available. featureSets is a FeatureSetCollection
object.

show(featureSets)Prints a short summary of what featureSets contains.

Subsetting

The FeatureSetCollection may be subsetted or a single set may be extracted as a vector. featureSets
is a FeatureSetCollection object.

featureSets[i:j]: Reduces the object to a subset of the feature sets between elements i and j
of the collection.

featureSets[[i]]: Extract the feature set identified by i. i may be a numeric index or the
character name of a feature set.

Author(s)

Dario Strbenac

Examples

ontology <- list(c("SESN1", "PRDX1", "PRDX2", "PRDX3", "PRDX4", "PRDX5", "PRDX6",
"LRRK2", "PARK7"),

c("ATP7A", "CCS", "NQO1", "PARK7", "SOD1", "SOD2", "SOD3",
"SZT2", "TNF"),

c("AARS", "AIMP2", "CARS", "GARS", "KARS", "NARS", "NARS2",
"LARS2", "NARS", "NARS2", "RGN", "UBA7"),

c("CRY1", "CRY2", "ONP1SW", "OPN4", "RGR"),
c("ESRRG", "RARA", "RARB", "RARG", "RXRA", "RXRB", "RXRG"),
c("CD36", "CD47", "F2", "SDC4"),
c("BUD31", "PARK7", "RWDD1", "TAF1")
)

names(ontology) <- c("Peroxiredoxin Activity", "Superoxide Dismutase Activity",
"Ligase Activity", "Photoreceptor Activity",
"Retinoic Acid Receptor Activity",



24 featureSetSummary

"Thrombospondin Receptor Activity",
"Regulation of Androgen Receptor Activity")

featureSets <- FeatureSetCollection(ontology)
featureSets
featureSets[3:5]
featureSets[["Photoreceptor Activity"]]

subNetworks <- list(MAPK = matrix(c("NRAS", "NRAS", "NRAS", "BRAF", "MEK",
"ARAF", "BRAF", "CRAF", "MEK", "ERK"), ncol = 2),

P53 = matrix(c("ATM", "ATR", "ATR", "P53",
"CHK2", "CHK1", "P53", "MDM2"), ncol = 2)

)
networkSets <- FeatureSetCollection(subNetworks)
networkSets

FeatureSetCollectionOrNULL

Union of a FeatureSetCollection and NULL

Description

Allows a slot to be either a FeatureSetCollectionOrNULL object or empty.

Author(s)

Dario Strbenac

Examples

TrainParams(DLDAtrainInterface, transform = NULL) # Use the input data as-is.

featureSetSummary Transform a Table of Feature Abundances into a Table of Feature Set
Abundances.

Description

Represents a feature set by the mean or median feature measurement of a feature set for all features
belonging to a feature set.

Usage

## S4 method for signature 'matrix'
featureSetSummary(measurements, location = c("median", "mean"),

featureSets, minimumOverlapPercent = 80, verbose = 3)
## S4 method for signature 'DataFrame'

featureSetSummary(measurements, location = c("median", "mean"),
featureSets, minimumOverlapPercent = 80, verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
featureSetSummary(measurements, target = NULL, location = c("median", "mean"),

featureSets, minimumOverlapPercent = 80, verbose = 3)



featureSetSummary 25

Arguments

measurements Either a matrix or DataFrame containing the training data. For a matrix, the
rows are features, and the columns are samples.

target If the input is a MultiAssayExperiment, this specifies which data set will be
transformed. Can either be an integer or a character string specifying the name
of the table. Must have length 1.

location Default: The median. The type of location to summarise a set of features be-
longing to a feature set by.

featureSets An object of type FeatureSetCollection which defines the feature sets.
minimumOverlapPercent

The minimum percentage of overlapping features between the data set and a
feature set defined in featureSets for that feature set to not be discarded from
the anaylsis.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This feature transformation method is unusual because the mean or median feature of a feature
set for one sample may be different to another sample, whereas most other feature transformation
methods do not result in different features being compared between samples during classification.

Value

The same class of variable as the input variable measurements is, with the individual features
summarised to feature sets. The number of samples remains unchanged, so only one dimension of
measurements is altered.

Author(s)

Dario Strbenac

References

Network-based biomarkers enhance classical approaches to prognostic gene expression signatures,
Rebecca L Barter, Sarah-Jane Schramm, Graham J Mann and Yee Hwa Yang, 2014, BMC Sys-
tems Biology, Volume 8 Supplement 4 Article S5, https://bmcsystbiol.biomedcentral.com/
articles/10.1186/1752-0509-8-S4-S5.

Examples

sets <- list(Adhesion = c("Gene 1", "Gene 2", "Gene 3"),
`Cell Cycle` = c("Gene 8", "Gene 9", "Gene 10"))

featureSets <- FeatureSetCollection(sets)

# Adhesion genes have a median gene difference between classes.
genesMatrix <- matrix(c(rnorm(5, 9, 0.3), rnorm(5, 7, 0.3), rnorm(5, 8, 0.3),

rnorm(5, 6, 0.3), rnorm(10, 7, 0.3), rnorm(70, 5, 0.1)),
ncol = 10, byrow = TRUE)

rownames(genesMatrix) <- paste("Gene", 1:10)
colnames(genesMatrix) <- paste("Patient", 1:10)
classes <- factor(rep(c("Poor", "Good"), each = 5)) # But not used for transformation.

https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S4-S5
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S4-S5


26 fisherDiscriminant

featureSetSummary(genesMatrix, featureSets = featureSets)

fisherDiscriminant Classification Using Fisher’s LDA

Description

Finds the decision boundary using the training set, and gives predictions for the test set.

Usage

## S4 method for signature 'matrix'
fisherDiscriminant(measurements, classes, test, ...)
## S4 method for signature 'DataFrame'

fisherDiscriminant(measurements, classes, test, returnType = c("class", "score", "both"),
verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
fisherDiscriminant(measurements, test, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

returnType Default: "class". Either "class", "score", or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Unlike ordinary LDA, Fisher’s version does not have assumptions about the normality of the fea-
tures.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".



forestFeatures 27

Value

A vector or data.frame of class prediction information, as long as the number of samples in the
test data.

Author(s)

Dario Strbenac

Examples

trainMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
classes <- factor(rep(c("Poor", "Good"), each = 5))

# Make first 30 genes increased in value for poor samples.
trainMatrix[1:30, 1:5] <- trainMatrix[1:30, 1:5] + 5

testMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)

# Make first 30 genes increased in value for sixth to tenth samples.
testMatrix[1:30, 6:10] <- testMatrix[1:30, 6:10] + 5

fisherDiscriminant(trainMatrix, classes, testMatrix)

forestFeatures Extract Vectors of Ranked and Selected Features From a Random For-
est Object

Description

Provides a ranking of features based on the total decrease in node impurities from splitting on the
variable, averaged over all trees. Also provides the selected features which are those that were used
in at least one tree of the forest.

Usage

## S4 method for signature 'randomForest'
forestFeatures(forest)

Arguments

forest A trained random forest which was created by randomForest.

Value

An list object. The first element is a vector or data frame of features, ranked from best to worst
using the Gini index. The second element is a vector or data frame of features used in at least one
tree.

Author(s)

Dario Strbenac



28 functionOrNULL

Examples

if(require(randomForest))
{

genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

trained <- randomForestTrainInterface(genesMatrix[, trainingSamples],
classes[trainingSamples], ntree = 10)

forestFeatures(trained)
}

functionOrList Union of Functions and List of Functions

Description

Allows a slot to be either a function or a list of functions.

Author(s)

Dario Strbenac

Examples

SelectParams(limmaSelection)
SelectParams(list(limmaSelection, leveneSelection), "Ensemble Selection")

functionOrNULL Union of A Function and NULL

Description

Allows a slot to be either a function or empty.

Author(s)

Dario Strbenac

Examples

PredictParams(NULL)
PredictParams(predict)



getLocationsAndScales 29

getLocationsAndScales Calculate Location and Scale

Description

Calculates the location and scale for each feature.

Usage

## S4 method for signature 'matrix'
getLocationsAndScales(measurements, ...)
## S4 method for signature 'DataFrame'

getLocationsAndScales(measurements, location = c("mean", "median"),
scale = c("SD", "MAD", "Qn"))

## S4 method for signature 'MultiAssayExperiment'
getLocationsAndScales(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the data.
For a matrix, the rows are features, and the columns are samples.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

location The type of location to be calculated.

scale The type of scale to be calculated.

Details

"SD" is used to represent standard deviation and "MAD" is used to represent median absolute devia-
tion.

Value

A list of length 2. The first element contains the location for every feature. The second element
contains the scale for every feature.

Author(s)

Dario Strbenac

References

Qn: http://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476408

http://www.tandfonline.com/doi/pdf/10.1080/01621459.1993.10476408


30 interactorDifferences

Examples

genesMatrix <- matrix(rnorm(1000, 8, 4), ncol = 10)
distributionInfo <- getLocationsAndScales(genesMatrix, "median", "MAD")

mean(distributionInfo[["median"]]) # Typical median.
mean(distributionInfo[["MAD"]]) # Typical MAD.

integerOrNumeric Union of a Integer and a Numeric

Description

Allows the same S4 subsetting function to be specified for object[i] and object[i:j], where i
and j are integers.

Author(s)

Dario Strbenac

Examples

setClass("Container", representation(scores = "numeric"))
setMethod("[", c("Container", "integerOrNumeric", "missing", "ANY"),

function(x, i, j, ..., drop = TRUE)
{

new("Container", scores = x@scores[i])
})

dataset <- new("Container", scores = 1:10)
dataset[1] # 1 is numeric.
dataset[4:6] # 4:6 is a sequence of integers.

interactorDifferences Convert Individual Features into Differences Between Binary Interac-
tors Based on Known Sub-networks

Description

This conversion is useful for creating a meta-feature table for classifier training and prediction based
on sub-networks that were selected based on their differential correlation between classes.

Usage

## S4 method for signature 'matrix'
interactorDifferences(measurements, ...)
## S4 method for signature 'DataFrame'

interactorDifferences(measurements, networkSets = NULL, absolute = FALSE, verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

interactorDifferences(measurements, target = NULL, ...)



interactorDifferences 31

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

networkSets A object of type FeatureSetCollection. The sets slot must contain a list of
two-column matrices with each row corresponding to a binary interaction. Such
sub-networks may be determined by a community detection algorithm.

absolute If TRUE, then the absolute values of the differences are returned.

target If measurements is a MultiAssayExperiment, the name of the data table to be
used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

The pairs of features known to interact with each other are specified by networkSets.

Value

An object of class DataFrame with one column for each interactor pair difference and one row for
each sample. Additionally, mcols(resultTable) prodvides a DataFrame with a column named
"original" containing the name of the sub-network each meta-feature belongs to.

Author(s)

Dario Strbenac

References

Dynamic modularity in protein interaction networks predicts breast cancer outcome, Ian W Tay-
lor, Rune Linding, David Warde-Farley, Yongmei Liu, Catia Pesquita, Daniel Faria, Shelley Bull,
Tony Pawson, Quaid Morris and Jeffrey L Wrana, 2009, Nature Biotechnology, Volume 27 Issue 2,
https://www.nature.com/articles/nbt.1522.

Examples

networksList <- list(`A Hub` = matrix(c('A', 'A', 'A', 'B', 'C', 'D'), ncol = 2),
`G Hub` = matrix(c('G', 'G', 'G', 'H', 'I', 'J'), ncol = 2))

netSets <- FeatureSetCollection(networksList)

# Differential correlation for sub-network with hub A.
measurements <- matrix(c(5.7, 10.1, 6.9, 7.7, 8.8, 9.1, 11.2, 6.4, 7.0, 5.5,

5.6, 9.6, 7.0, 8.4, 10.8, 12.2, 8.1, 5.7, 5.4, 12.1,
4.5, 9.0, 6.9, 7.0, 7.3, 6.9, 7.8, 7.9, 5.7, 8.7,
8.1, 10.6, 7.4, 7.15, 10.4, 6.1, 7.3, 2.7, 11.0, 9.1,
round(rnorm(60, 8, 1), 1)), ncol = 10, byrow = TRUE)

rownames(measurements) <- LETTERS[1:10]
colnames(measurements) <- paste("Patient", 1:10)

interactorDifferences(measurements, netSets)

https://www.nature.com/articles/nbt.1522


32 kNNinterface

kNNinterface An Interface for class Package’s knn Function

Description

More details of k Nearest Neighbours are available in the documentation of knn.

Usage

## S4 method for signature 'matrix'
kNNinterface(measurements, classes, test, ...)
## S4 method for signature 'DataFrame'

kNNinterface(measurements, classes, test, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

kNNinterface(measurements, test, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or parameters that knn can
accept.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

A factor vector, the same as is returned by knn.

Author(s)

Dario Strbenac



KolmogorovSmirnovSelection 33

Examples

if(require(class))
{

classes <- factor(rep(c("Healthy", "Disease"), each = 5),
levels = c("Healthy", "Disease"))

measurements <- matrix(c(rnorm(50, 10), rnorm(50, 5)), ncol = 10)
colnames(measurements) <- paste("Sample", 1:10)
rownames(measurements) <- paste("mRNA", 1:10)

}

kNNinterface(measurements[, 1:9], classes[1:9], measurements[, 10, drop = FALSE])

KolmogorovSmirnovSelection

Selection of Differential Distributions with Kolmogorov-Smirnov Dis-
tance

Description

Ranks features by largest Kolmogorov-Smirnov distance and chooses the features which have best
resubstitution performance.

Usage

## S4 method for signature 'matrix'
KolmogorovSmirnovSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

KolmogorovSmirnovSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams, ...,

selectionName = "Kolmogorov-Smirnov Test", verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

KolmogorovSmirnovSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or options which are ac-
cepted by the function ks.test.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.



34 KolmogorovSmirnovSelection

resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Features are sorted in order of biggest distance to smallest. The top number of features is used in a
classifier, to determine which number of features has the best resubstitution performance.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

# First 20 features have bimodal distribution for Poor class.
# Other 80 features have normal distribution for both classes.
set.seed(1984)
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),
performanceType = "balanced error",
better = "lower")

selected <- KolmogorovSmirnovSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(naiveBayesKernel),
predictParams = PredictParams(NULL),
resubstituteParams = resubstituteParams)

head(selected@chosenFeatures)
plotFeatureClasses(genesMatrix, classes, "Gene 13", dotBinWidth = 0.25,

xAxisLabel = bquote(log[2]*'(expression)'))



kTSPclassifier 35

kTSPclassifier Classification Using k Pairs of Features With Relative Differences Be-
tween Classes

Description

Each pair of features votes for a class based on whether the value of one feature is less than the
other feature.

Usage

## S4 method for signature 'matrix'
kTSPclassifier(measurements, classes, test, featurePairs = NULL, ...)
## S4 method for signature 'DataFrame'

kTSPclassifier(measurements, classes, test, featurePairs = NULL,
weighted = c("unweighted", "weighted", "both"),

minDifference = 0, returnType = c("class", "score", "both"), verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

kTSPclassifier(measurements, test, target = names(measurements)[1],
featurePairs = NULL, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

featurePairs An object of class as Pairs containing the pairs of features to determine whether
the inequality of the first feature being less than the second feature holds, indi-
ciating evidence for the second level of the classes factor.

target If measurements is a MultiAssayExperiment, the name of the data table to be
used. "clinical" is also a valid value and specifies that integer variables from
the clinical data table will be used.

... Unused variables by the methods for a matrix or a MultiAssayExperiment
passed to the DataFrame method which does the classification.

weighted Default: "both". Either "both", "unweighted" or "weighted". In weighted
mode, the difference in densities is summed over all features. If unweighted
mode, each feature’s vote is worth the same. Both can be calculated simultane-
ously.

minDifference Default: 0. The minimum difference in densities for a feature to be allowed to
vote. Can be a vector of cutoffs. If no features for a particular sample have a
difference large enough, the class predicted is simply the largest class.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.



36 kTSPclassifier

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If weighted is TRUE, then a sample’s predicted class is based on the sum of differences of measure-
ments for each feature pair. Otherwise, when weighted is FALSE, each pair of features has an equal
vote, the predicted class is the one with the most votes. If the voting is tied, the the class with the
most samples in the training set is voted for.

Because this method compares different features, they need to have comparable measurements.
For example, RNA-seq counts would be unsuitable since these depend on the length of a feature,
whereas F.P.K.M. values would be suitable.

The featurePairs to use is recommended to be determined in conjunction with pairsDifferencesSelection.

Value

A vector or list of class prediction information, as long as the number of samples in the test data, or
lists of such information, if a variety of predictions is generated.

Author(s)

Dario Strbenac

See Also

pairsDifferencesSelection for a function which could be used to do feature selection before
the k-TSP classifier is run.

Examples

# Difference in differences for features A and C between classes.
measurements <- matrix(c(9.9, 10.5, 10.1, 10.9, 11.0, 6.6, 7.7, 7.0, 8.1, 6.5,

8.5, 10.5, 12.5, 10.5, 9.5, 8.5, 10.5, 12.5, 10.5, 9.5,
6.6, 7.7, 7.0, 8.1, 6.5, 11.2, 11.0, 11.1, 11.4, 12.0,
8.1, 10.6, 7.4, 7.1, 10.4, 6.1, 7.3, 2.7, 11.0, 9.1,
round(rnorm(60, 8, 1), 1)), ncol = 10, byrow = TRUE)

classes <- factor(rep(c("Good", "Poor"), each = 5))

rownames(measurements) <- LETTERS[1:10]
colnames(measurements) <- names(classes) <- paste("Patient", 1:10)

trainIndex <- c(1:4, 6:9)
trainMatrix <- measurements[, trainIndex]
testMatrix <- measurements[, c(5, 10)]

featurePairs <- Pairs('A', 'C') # Could be selected by pairsDifferencesSelection function.
kTSPclassifier(trainMatrix, classes[trainIndex], testMatrix, featurePairs)



KullbackLeiblerSelection 37

KullbackLeiblerSelection

Selection of Differential Distributions with Kullback-Leibler Distance

Description

Ranks features by largest Kullback-Leibler distance and chooses the features which have best re-
substitution performance.

Usage

## S4 method for signature 'matrix'
KullbackLeiblerSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

KullbackLeiblerSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams, ...,

selectionName = "Kullback-Leibler Divergence", verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

KullbackLeiblerSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or options which are ac-
cepted by the function getLocationsAndScales.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.

resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.



38 leveneSelection

Details

The distance is defined as 1
2 ×

( (location1−location2)
2

scale21
+ (location1−location2)

2

scale22
+

scale22
scale21

+
scale21
scale22

)
The subscripts denote the group which the parameter is calculated for.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

# First 20 features have bimodal distribution for Poor class.
# Other 80 features have normal distribution for both classes.
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),
performanceType = "balanced error",
better = "lower")

KullbackLeiblerSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(naiveBayesKernel),
predictParams = PredictParams(NULL),
resubstituteParams = resubstituteParams
)

leveneSelection Selection of Differential Variability with Levene Statistic

Description

Ranks features by largest Levene statistic and chooses the features which have best resubstitution
performance.

Usage

## S4 method for signature 'matrix'
leveneSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

leveneSelection(measurements, classes, datasetName,



leveneSelection 39

trainParams, predictParams, resubstituteParams,
selectionName = "Levene Test", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
leveneSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Levene’s statistic for unequal variance between groups is a robust version of Bartlett’s statistic.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

# First 20 features have bimodal distribution for Poor class.
# Other 80 features have normal distribution for both classes.
set.seed(1984)
genesMatrix <- sapply(1:25, function(sample)

{



40 likelihoodRatioSelection

randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))
genesMatrix <- subtractFromLocation(genesMatrix, 1:ncol(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",
better = "lower")

selected <- leveneSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(fisherDiscriminant),
predictParams = PredictParams(NULL),
resubstituteParams = resubstituteParams)

selected@chosenFeatures

likelihoodRatioSelection

Selection of Differential Distributions with Likelihood Ratio Statistic

Description

Ranks features by largest ratio and chooses the features which have the best resubstitution perfor-
mance.

Usage

## S4 method for signature 'matrix'
likelihoodRatioSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

likelihoodRatioSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams,

alternative = c(location = "different", scale = "different"),
..., selectionName = "Likelihood Ratio Test (Normal)", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
likelihoodRatioSelection(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.



likelihoodRatioSelection 41

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or options which are ac-
cepted by the function getLocationsAndScales.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

alternative Default: c("different","different"). A vector of length 2. The first el-
ement specifies the location of the alternate hypothesis. The second element
specifies the scale of the alternate hypothesis. Valid values in each element are
"same" or "different".

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

Likelihood ratio test of null hypothesis that the location and scale are the same for both groups, and
an alternate hypothesis that is specified by parameters. The location and scale of features is calcu-
lated by getLocationsAndScales. The distribution fitted to the data is the normal distribution.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

Examples

# First 20 features have bimodal distribution for Poor class.
# Other 80 features have normal distribution for both classes.
set.seed(1984)
genesMatrix <- sapply(1:25, function(sample)

{
randomMeans <- sample(c(8, 12), 20, replace = TRUE)
c(rnorm(20, randomMeans, 1), rnorm(80, 10, 1))

}
)

genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample) rnorm(100, 10, 1)))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error",



42 limmaSelection

better = "lower")
selected <- likelihoodRatioSelection(genesMatrix, classes, "Example",

trainParams = TrainParams(naiveBayesKernel),
predictParams = PredictParams(NULL),
resubstituteParams = resubstituteParams)

head(selected@chosenFeatures[[1]])

limmaSelection Selection of Differentially Abundant Features

Description

Uses a moderated t-test with empirical Bayes shrinkage to select differentially expressed features.

Usage

## S4 method for signature 'matrix'
limmaSelection(measurements, classes, ...)
## S4 method for signature 'DataFrame'

limmaSelection(measurements, classes, datasetName,
trainParams, predictParams, resubstituteParams, ...,
selectionName = "Moderated t-test", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
limmaSelection(measurements, targets = NULL, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes A vector of class labels of class factor of the same length as the number of sam-
ples in measurements. Not used if measurements is a MultiAssayExperiment
object.

targets Names of data tables to be combined into a single table and used in the analysis.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or optional settings that are
passed to lmFit.

datasetName A name for the data set used. Stored in the result.

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This selection method looks for changes in means and uses a moderated t-test.



mixmodels 43

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

References

Limma: linear models for microarray data, Gordon Smyth, 2005, In: Bioinformatics and Computa-
tional Biology Solutions using R and Bioconductor, Springer, New York, pages 397-420.

Examples

#if(require(sparsediscrim))
#{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))

resubstituteParams <- ResubstituteParams(nFeatures = seq(10, 100, 10),
performanceType = "balanced error", better = "lower")

selected <- limmaSelection(genesMatrix, classes, "Example",
trainParams = TrainParams(), predictParams = PredictParams(),

resubstituteParams = resubstituteParams)

selected@chosenFeatures
#}

mixmodels Classification based on Differential Distribution utilising Mixtures of
Normals

Description

Fits mixtures of normals for every feature, separately for each class.

Usage

## S4 method for signature 'matrix'
mixModelsTrain(measurements, ...)
## S4 method for signature 'DataFrame'

mixModelsTrain(measurements, classes, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

mixModelsTrain(measurements, targets = names(measurements), ...)
## S4 method for signature 'MixModelsListsSet,matrix'

mixModelsPredict(models, test, ...)
## S4 method for signature 'MixModelsListsSet,DataFrame'



44 mixmodels

mixModelsPredict(models, test, weighted = c("unweighted", "weighted", "both"),
weight = c("height difference", "crossover distance", "both"),

densityXvalues = 1024, minDifference = 0,
returnType = c("class", "score", "both"), verbose = 3)

## S4 method for signature 'MixModelsListsSet,MultiAssayExperiment'
mixModelsPredict(models, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it. Also, if a DataFrame, the
class column must be absent.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or extra arguments for train-
ing passed to mixmodCluster. The argument nbCluster is mandatory.

models A MixModelsListsSet of models generated by the training function and train-
ing class information. There is one element for each class. Another element at
the end of the list has the class sizes of the classes in the training data.

weighted Default: "unweighted". Either "unweighted", "weighted" or "both". In
weighted mode, the difference in densities is summed over all features. If un-
weighted mode, each feature’s vote is worth the same. Both can be calculated
simultaneously.

weight Default: "both". Either "both", "height difference", or "crossover distance".
The type of weight to calculate. For "height difference", the weight of each
prediction is equal to the sum of the vertical distances for all of the mixture com-
ponents within one class subtracted from the sum of the components of the other
class, summed for each value of x. For "crossover distance", the x positions
where the mixture density of the class being considered crosses another class’
density is firstly calculated. The predicted class is the class with the highest
mixture sum at the particular value of x and the weight is the distance of x from
the nearest density crossover point.

densityXvalues Default: 1024. Only relevant when weight is "crossover distance". The
number of equally-spaced locations at which to calculate y values for each mix-
ture density.

minDifference Default: 0. The minimum difference in sums of mixture densities between the
class with the highest sum and the class with the second highest sum for a feature
to be allowed to vote. Can be a vector of cutoffs. If no features for a particular
sample have a difference large enough, the class predicted is simply the largest
class.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of predicted classes, a matrix of scores



mixmodels 45

with columns corresponding to classes, as determined by the factor levels of
classes, or both a column of predicted classes and columns of class scores in a
data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If weighted is TRUE, then a sample’s predicted class is the class with the largest sum of weights,
each scaled for the number of samples in the training data of each class. Otherwise, when weighted
is FALSE, each feature has an equal vote, and votes for the class with the largest weight, scaled for
class sizes in the training set.

If weight is "crossover distance", the crossover points are computed by considering the distance
between y values of the two densities at every x value. x values for which the sign of the difference
changes compared to the difference of the closest lower value of x are used as the crossover points.

Value

For mixModelsTrain, a list of trained models of class MixmodCluster. For mixModelsPredict, a
vector or list of class prediction information (i.e. classes and/or scores), as long as the number of
samples in the test data, or lists of such information, if both weighted and unweighted voting was
used or a range of minDifference values was provided.

Author(s)

Dario Strbenac

Examples

# First 25 samples and first 5 genes are mixtures of two normals. Last 25 samples are
# one normal.

genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(5, sample(c(5, 15), replace = TRUE, 5))))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) c(rnorm(5, 9, 1))))
genesMatrix <- rbind(genesMatrix, sapply(1:50, function(geneColumn) rnorm(5, 9, 1)))
rownames(genesMatrix) <- paste("Gene", 1:10)
colnames(genesMatrix) <- paste("Sample", 1:50)
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))

trainSamples <- c(1:15, 26:40)
testSamples <- c(16:25, 41:50)
selected <- 1:5

trained <- mixModelsTrain(genesMatrix[selected, trainSamples], classes[trainSamples],
nbCluster = 1:3)

mixModelsPredict(trained, genesMatrix[selected, testSamples], minDifference = 0:3)



46 multnet

MixModelsListsSet Container for a List of Lists Containing Mixture Models

Description

Stores a list of lists of trained mixture models, to prevent them being unintentionally being unlisted
during cross-validation. Not intended for end-user.

Constructor

MixModelsListsSet(set)

Creates a MixModelsListsSet object which stores the mixture models.

set A list as long as the number of classes in the data set. Each element is a list, which each
element of is a mixture model trained on one feature.

Author(s)

Dario Strbenac

Examples

if(require(Rmixmod))
{

mixModels <- list(Good = list(mixmodCluster(rnorm(20), nbCluster = 1:2)),
Poor = list(mixmodCluster(rnorm(20), nbCluster = 1:2)))

MixModelsListsSet(mixModels)
}

multnet Trained multnet Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac



naiveBayesKernel 47

naiveBayesKernel Classification Using A Bayes Classifier with Kernel Density Estimates

Description

Kernel density estimates are fitted to the training data and a naive Bayes classifier is used to classify
samples in the test data.

Usage

## S4 method for signature 'matrix'
naiveBayesKernel(measurements, classes, test, ...)
## S4 method for signature 'DataFrame'

naiveBayesKernel(measurements, classes, test,
densityFunction = density,
densityParameters = list(bw = "nrd0", n = 1024,

from = expression(min(featureValues)),
to = expression(max(featureValues))),

weighted = c("unweighted", "weighted", "both"),
weight = c("height difference", "crossover distance", "both"),

minDifference = 0, returnType = c("class", "score", "both"), verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

naiveBayesKernel(measurements, test, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Unused variables by the three top-level methods passed to the internal method
which does the classification.

densityFunction

Default: density. A function which will return a probability density, which is
essentially a list with x and y coordinates.

densityParameters

A list of options for densityFunction. Default: list(bw = "nrd0",n = 1024,from
= expression(min(featureValues)),to = expression(max(featureValues)).

weighted Default: "unweighted". Either "unweighted", "weighted" or "both". In
weighted mode, the difference in densities is summed over all features. If un-
weighted mode, each feature’s vote is worth the same. Both can be calculated
simultaneously.



48 naiveBayesKernel

weight Default: "both". Either "both", "height difference", or "crossover distance".
The type of weight to calculate. For "height difference", the weight of each
prediction is equal to the vertical distance between the highest density and the
second-highest, for a particular value of x. For "crossover distance", the x
positions where two densities cross is firstly calculated. The predicted class is
the class with the highest density at the particular value of x and the weight is
the distance of x from the nearest density crossover point.

minDifference Default: 0. The minimum difference in density height between the highest den-
sity and second-highest for a feature to be allowed to vote. Can be a vector of
cutoffs. If no features for a particular sample have a difference large enough, the
class predicted is simply the largest class.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of predicted classes, a matrix of scores
with columns corresponding to classes, as determined by the factor levels of
classes, or both a column of predicted classes and columns of class scores in a
data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If weighted is TRUE, then a sample’s predicted class is the class with the largest sum of weights,
each scaled for the number of samples in the training data of each class. Otherwise, when weighted
is FALSE, each feature has an equal vote, and votes for the class with the largest weight, scaled for
class sizes in the training set.

The variable name of each feature’s measurements in the iteration over all features is featureValues.
This is important to know if each feature’s measurements need to be referred to in the specification
of densityParameters, such as for specifying the range of x values of the density function to be
computed. For example, see the default value of densityParameters above.

If weight is "crossover distance", the crossover points are computed by considering the distance
between y values of all of the densities at every x value. x values for which a class density crosses
any other class’ density are used as the crossover points for that class.

Value

A vector or list of class prediction information (i.e. classes and/or scores), as long as the number of
samples in the test data, or lists of such information, if both weighted and unweighted voting was
used or a range of minDifference values was provided.

Author(s)

Dario Strbenac, John Ormerod

Examples

trainMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)
classes <- factor(rep(c("Poor", "Good"), each = 5))

# Make first 30 genes increased in value for poor samples.
trainMatrix[1:30, 1:5] <- trainMatrix[1:30, 1:5] + 5

testMatrix <- matrix(rnorm(1000, 8, 2), ncol = 10)



networkCorrelationsSelection 49

# Make first 30 genes increased in value for sixth to tenth samples.
testMatrix[1:30, 6:10] <- testMatrix[1:30, 6:10] + 5

naiveBayesKernel(trainMatrix, classes, testMatrix)

networkCorrelationsSelection

Selection of Differentially Correlated Hub Sub-networks

Description

Ranks sub-networks by largest within-class to between-class correlation variability and chooses the
sub-networks which have the best resubstitution performance.

Usage

## S4 method for signature 'matrix'
networkCorrelationsSelection(measurements, classes, metaFeatures = NULL, ...)
## S4 method for signature 'DataFrame'

networkCorrelationsSelection(measurements, classes, metaFeatures = NULL,
featureSets, datasetName, trainParams, predictParams, resubstituteParams,
selectionName = "Differential Correlation of Sub-networks", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
networkCorrelationsSelection(measurements, target = NULL, metaFeatures = NULL, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

metaFeatures A DataFrame with the same number of samples as the numeric table of interest.
The number of derived features in this table will be different to the original input
data table. The command mcols(metaFeatureMeasurements) must return a
DataFrame which has an "original" column with as many rows as there are meta-
features and specifies the feature which the meta-feature is originally derived
from (e.g. network name).

featureSets A object of type FeatureSetCollection. The sets slot must contain a list of
two-column matrices with each row corresponding to a binary interaction. Such
sub-networks may be determined by a community detection algorithm. This
will be used to determine which features belong to which sub-networks before
calculating a statistic for each sub-network.

target If measurements is a MultiAssayExperiment, the name of the data table to be
used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.



50 networkCorrelationsSelection

trainParams A container of class TrainParams describing the classifier to use for training.

predictParams A container of class PredictParams describing how prediction is to be done.

resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

The selection of sub-networks is based on the average difference in correlations between each pair
of interactors, considering the samples within each class separately. Such differences of correlations
within each of the two classes are scaled by the average difference of correlations within each class.

More formally, let Ci,j be the correlation of the jth edge using all samples belonging to to class i.
Then, let Ci• be defined as Ci,1+Ci,2+...+Ci,e

n where e is the number of edges in the sub-network
being considered. Also, let C••, the average overall correlation, be C1•+C2•

2 . Then, the between-
class sum-of-squares (BSS) is

∑2
i=1 e(Ci• − C••)

2. Also the within-class sum-of-squares (WSS)
is
∑2

i=1

∑e
j=1(Ci,j − Ci•)

2. The sub-networks are ranked in decreasing order of BSS
WSS .

The classifier specified by trainParams and predictParams is used to calculate resubtitution error
rates using the transformation of the data set provided by metaFeatures. The set of top-ranked sub-
networks which give the lowest resubstitution error rate are finally selected.

Data tables which consist entirely of non-numeric data cannot be analysed. If measurements is
an object of class MultiAssayExperiment, the factor of sample classes must be stored in the
DataFrame accessible by the colData function with column name "class".

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

References

Network-based biomarkers enhance classical approaches to prognostic gene expression signatures,
Rebecca L Barter, Sarah-Jane Schramm, Graham J Mann and Yee Hwa Yang, 2014, BMC Sys-
tems Biology, Volume 8 Supplement 4 Article S5, https://bmcsystbiol.biomedcentral.com/
articles/10.1186/1752-0509-8-S4-S5.

See Also

interactorDifferences for an example of a function which can turn the measurements into meta-
features for classification.

https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S4-S5
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S4-S5


NSCpredictInterface 51

Examples

networksList <- list(`A Hub` = matrix(c('A', 'A', 'A', 'B', 'C', 'D'), ncol = 2),
`G Hub` = matrix(c('G', 'G', 'G', 'H', 'I', 'J'), ncol = 2))

netSets <- FeatureSetCollection(networksList)

# Differential correlation for sub-network with hub A.
measurements <- matrix(c(5.7, 10.1, 6.9, 7.7, 8.8, 9.1, 11.2, 6.4, 7.0, 5.5,

5.6, 9.6, 7.0, 8.4, 10.8, 12.2, 8.1, 5.7, 5.4, 12.1,
4.5, 9.0, 6.9, 7.0, 7.3, 6.9, 7.8, 7.9, 5.7, 8.7,
8.1, 10.6, 7.4, 7.1, 10.4, 6.1, 7.3, 2.7, 11.0, 9.1,
round(rnorm(60, 8, 1), 1)), ncol = 10, byrow = TRUE)

classes <- factor(rep(c("Good", "Poor"), each = 5))

rownames(measurements) <- LETTERS[1:10]
colnames(measurements) <- names(classes) <- paste("Patient", 1:10)

Idifferences <- interactorDifferences(measurements, netSets)

# The features are sub-networks and there are only two in this example.
resubstituteParams <- ResubstituteParams(nFeatures = 1:2,

performanceType = "balanced error", better = "lower")

predictParams <- PredictParams(NULL)
networkCorrelationsSelection(measurements, classes, metaFeatures = Idifferences,

featureSets = netSets, datasetName = "Example",
trainParams = TrainParams(naiveBayesKernel),
predictParams = predictParams,
resubstituteParams = resubstituteParams)

NSCpredictInterface Interface for pamr.predict Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.predict definition.

Usage

## S4 method for signature 'pamrtrained,matrix'
NSCpredictInterface(trained, test, ...)
## S4 method for signature 'pamrtrained,DataFrame'

NSCpredictInterface(trained, test, classes = NULL, ..., returnType = c("class", "score", "both"), verbose = 3)
## S4 method for signature 'pamrtrained,MultiAssayExperiment'

NSCpredictInterface(trained, test, targets = names(test), ...)

Arguments

trained An object of class pamrtrained.

test An object of the same class as measurements with no samples in common with
measurements used in the training stage and the same number of features as it.
Also, if a DataFrame, the class column must be absent.

classes Either NULL or a character vector of length 1, specifying the column name to
remove.



52 NSCpredictInterface

targets If test is a MultiAssayExperiment, the names of the data tables to be used.
"clinical" is also a valid value and specifies that numeric variables from the
clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or optional settings that are
passed to pamr.predict.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.predict. It selects the
highest threshold that gives the minimum error rate in the training data.

Value

Either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the
class labels and class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

See Also

pamr.predict for the function that was interfaced to.

Examples

if(require(pamr))
{

# Samples in one class with differential expression to other class.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

fit <- NSCtrainInterface(genesMatrix[, c(1:20, 26:45)], classes[c(1:20, 26:45)])
NSCpredictInterface(fit, genesMatrix[, c(21:25, 46:50)])

}



NSCselectionInterface 53

NSCselectionInterface Interface for pamr.listgenes Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.listgenes defini-
tion.

Usage

## S4 method for signature 'matrix'
NSCselectionInterface(measurements, classes, ...)
## S4 method for signature 'DataFrame'

NSCselectionInterface(measurements, classes, datasetName,
trained, ..., selectionName = "Shrunken Centroids", verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
NSCselectionInterface(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

datasetName A name for the data set used. Stored in the result.

trained The output of NSCtrainInterface, which is identical to the output of pamr.listgenes.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or extra arguments passed to
pamr.listgenes.

selectionName A name to identify this selection method by. Stored in the result.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.listgenes.

The set of features chosen is the obtained by considering the range of thresholds provided to
NSCtrainInterface and using the threshold that obtains the lowest cross-validation error rate on
the training set.

Value

An object of class SelectResult. The rankedFeatures slot will be empty.



54 NSCtrainInterface

Author(s)

Dario Strbenac

See Also

pamr.listgenes for the function that was interfaced to.

Examples

if(require(pamr))
{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
classes <- factor(rep(c("Poor", "Good"), each = 25))

trained <- NSCtrainInterface(genesMatrix, classes)
selected <- NSCselectionInterface(genesMatrix, classes, "Example", trained)

selected@chosenFeatures
}

NSCtrainInterface Interface for pamr.train Function from pamr CRAN Package

Description

Restructures variables from ClassifyR framework to be compatible with pamr.train definition.

Usage

## S4 method for signature 'matrix'
NSCtrainInterface(measurements, classes, ...)
## S4 method for signature 'DataFrame'

NSCtrainInterface(measurements, classes, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

NSCtrainInterface(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.



pairsDifferencesSelection 55

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method or extra arguments passed to
pamr.train.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

This function is an interface between the ClassifyR framework and pamr.train.

Value

A list with elements as described in pamr.train.

Author(s)

Dario Strbenac

See Also

pamr.train for the function that was interfaced to.

Examples

if(require(pamr))
{

# Samples in one class with differential expression to other class.
genesMatrix <- sapply(1:25, function(geneColumn) c(rnorm(100, 9, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn)

c(rnorm(75, 9, 1), rnorm(25, 14, 1))))
classes <- factor(rep(c("Poor", "Good"), each = 25))

NSCtrainInterface(genesMatrix, classes)
}

pairsDifferencesSelection

Selection of Pairs of Features that are Different Between Classes

Description

Ranks pre-specified pairs of features by the largest difference of the sum of measurement differences
over all samples within a class and chooses the pairs of features which have the best resubstitution
performance.

Usage

## S4 method for signature 'matrix'
pairsDifferencesSelection(measurements, classes, featurePairs = NULL, ...)
## S4 method for signature 'DataFrame'

pairsDifferencesSelection(measurements, classes, featurePairs = NULL,
datasetName, trainParams, predictParams, resubstituteParams,



56 pairsDifferencesSelection

selectionName = "Pairs Differences", verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

pairsDifferencesSelection(measurements, target = names(measurements)[1], featurePairs = NULL, ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

featurePairs An S4 object of type Pairs containing feature identifiers to calculate the sum of
differences within each class for.

target If measurements is a MultiAssayExperiment, the name of the data table to be
used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.
trainParams A container of class TrainParams describing the classifier to use for training.
predictParams A container of class PredictParams describing how prediction is to be done.
resubstituteParams

An object of class ResubstituteParams describing the performance measure to
consider and the numbers of top features to try for resubstitution classification.

selectionName A name to identify this selection method by. Stored in the result.
verbose Default: 3. A number between 0 and 3 for the amount of progress messages to

give. This function only prints progress messages if the value is 3.

Details

Instead of considering whether one feature in a pair of features is consistently lower or higher than
the other in the pair, this method takes the sum of differences across all samples within a class, to
prevent ties in the ranking of pairs of features.

Value

An object of class SelectResult or a list of such objects, if the classifier which was used for
determining the specified performance metric made a number of prediction varieties.

Author(s)

Dario Strbenac

References

Simple decision rules for classifying human cancers from gene expression profiles, Aik C Tan,
Daniel Q Naiman, Lei Xu, Raimond L. Winslow and Donald Geman, 2005, Bioinformatics, Volume
21 Issue 20, https://academic.oup.com/bioinformatics/article/21/20/3896/203010.

See Also

kTSPclassifier for a classifier which makes use of the pairs of selected features in classification.

https://academic.oup.com/bioinformatics/article/21/20/3896/203010


pamrtrained 57

Examples

featurePairs <- Pairs(c('A', 'A'), c('B', 'C'))

# Difference in differences for features A and C between classes.
measurements <- matrix(c(9.9, 10.5, 10.1, 10.9, 11.0, 6.6, 7.7, 7.0, 8.1, 6.5,

8.5, 10.5, 12.5, 10.5, 9.5, 8.5, 10.5, 12.5, 10.5, 9.5,
6.6, 7.7, 7.0, 8.1, 6.5, 11.2, 11.0, 11.1, 11.4, 12.0,
8.1, 10.6, 7.4, 7.1, 10.4, 6.1, 7.3, 2.7, 11.0, 9.1,
round(rnorm(60, 8, 1), 1)), ncol = 10, byrow = TRUE)

classes <- factor(rep(c("Good", "Poor"), each = 5))

rownames(measurements) <- LETTERS[1:10]
colnames(measurements) <- names(classes) <- paste("Patient", 1:10)

# The features are pairs and there are only two in this example.
resubstituteParams <- ResubstituteParams(nFeatures = 1:2,

performanceType = "balanced error", better = "lower")

predictParams <- PredictParams(NULL)
pairsDifferencesSelection(measurements, classes, featurePairs = featurePairs,

datasetName = "Example",
trainParams = TrainParams(kTSPclassifier),
predictParams = predictParams,
resubstituteParams = resubstituteParams)

pamrtrained Trained pamr Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

performancePlot Plot Performance Measures for Various Classifications

Description

Draws a graphical summary of a particular performance measure for a list of classifications

Usage

## S4 method for signature 'list'
performancePlot(results, aggregate = character(),

xVariable = c("classificationName", "datasetName", "selectionName",
"validation"),

performanceName = NULL,
boxFillColouring = c("classificationName", "datasetName", "selectionName",



58 performancePlot

"validation", "None"),
boxFillColours = NULL,

boxLineColouring = c("classificationName", "datasetName", "selectionName",
"validation", "None"),

boxLineColours = NULL,
rowVariable = c("None", "validation", "datasetName", "classificationName",

"selectionName"),
columnVariable = c("datasetName", "classificationName", "validation",

"selectionName", "None"),
yLimits = c(0, 1), fontSizes = c(24, 16, 12, 12), title = NULL,
xLabel = "Analysis", yLabel = performanceName,
margin = grid::unit(c(0, 0, 0, 0), "lines"), rotate90 = FALSE,
showLegend = TRUE, plot = TRUE)

Arguments

results A list of ClassifyResult objects.

aggregate A character vector of the levels of xVariable to aggregate to a single number
by taking the mean. This is particularly meaningful when the cross-validation is
leave-k-out, when k is small.

xVariable The factor to make separate boxes for.

performanceName

The name of the performance measure to make comparisons of. This is one of
the names printed in the Performance Measures field when a ClassifyResult
object is printed.

boxFillColouring

A factor to colour the boxes by.

boxFillColours A vector of colours, one for each level of boxFillColouring.
boxLineColouring

A factor to colour the box lines by.

boxLineColours A vector of colours, one for each level of boxLineColouring.

rowVariable The slot name that different levels of are plotted as separate rows of boxplots.

columnVariable The slot name that different levels of are plotted as separate columns of boxplots.

yLimits The minimum and maximum value of the performance metric to plot.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot.

xLabel Label to be used for the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

rotate90 Logical. IF TRUE, the plot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. IF TRUE, a plot is produced on the current graphics device.



performancePlot 59

Details

Possible values for slot names are "datasetName", "classificationName", and "validation".
If "None", then that graphic element is not used.

If there are multiple values for a performance measure in a single result object, it is plotted as a
boxplot, unless aggregate is TRUE, in which case the all predictions in a single result object are
considered simultaneously, so that only one performance number is calculated, and a barchart is
plotted.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- list(data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test",

LETTERS[1:10], LETTERS[10:1], 100, list(1:100, c(1:9, 11:101)),
list(c(1:3), c(2, 5, 6), c(1:4), c(5:8), 1:5),
list(function(oracle){}), predicted, actual,
validation = list("permuteFold", 2, 2))

result1 <- calcCVperformance(result1, "macro F1")

predicted <- list(data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)),

data.frame(sample = sample(10, 20, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 10)))

result2 <- ClassifyResult("Example", "Differential Variability", "Bartlett Test",
LETTERS[1:10], LETTERS[10:1], 100, list(1:100, c(1:5, 11:105)),

list(c(1:3), c(4:6), c(1, 6, 7, 9), c(5:8), c(1, 5, 10)),
list(function(oracle){}), predicted, actual,
validation = list("permuteFold", 2, 2))

result2 <- calcCVperformance(result2, "macro F1")

performancePlot(list(result1, result2), performanceName = "Macro F1 Score",
title = "Comparison", boxLineColouring = "None", columnVariable = "None")



60 plotFeatureClasses

plotFeatureClasses Plot Density, Scatterplot, Parallel Plot or Bar Chart for Features By
Class

Description

Allows the visualisation of measurements in the data set. If targets is of type Pairs, then a parallel
plot is automatically drawn. If it’s a single categorical variable, then a bar chart is automatically
drawn.

Usage

## S4 method for signature 'matrix'
plotFeatureClasses(measurements, classes, targets, ...)
## S4 method for signature 'DataFrame'

plotFeatureClasses(measurements, classes, targets, groupBy = NULL,
groupingName = NULL, whichNumericFeaturePlots = c("both", "density", "stripchart"),

measurementLimits = NULL, lineWidth = 1, dotBinWidth = 1,
xAxisLabel = NULL, yAxisLabels = c("Density", "Classes"),

showXtickLabels = TRUE, showYtickLabels = TRUE,
xLabelPositions = "auto", yLabelPositions = "auto",
fontSizes = c(24, 16, 12, 12, 12),

colours = c("#3F48CC", "#880015"), showDatasetName = TRUE, plot = TRUE)
## S4 method for signature 'MultiAssayExperiment'

plotFeatureClasses(measurements, targets, groupBy = NULL, groupingName = NULL,
showDatasetName = TRUE, ...)

Arguments

measurements A matrix, DataFrame or a MultiAssayExperiment object containing the data.
For a matrix, the rows are for features and the columns are for samples. A
column with name "class" must be present in the DataFrame stored in the
colData slot.

classes Either a vector of class labels of class factor or if the measurements are of
class DataFrame a character vector of length 1 containing the column name in
measurement is also permitted. Not used if measurements is a MultiAssayExperiment
object.

targets If measurements is a matrix or DataFrame, then a vector of numeric or charac-
ter indicies or the feature identifiers corresponding to the feature(s) to be plotted.
If measurements is a MultiAssayExperiment, then a DataFrame of 2 columns
must be specified. The first column contains the names of the tables and the sec-
ond contains the names of the variables, thus each row unambiguously specifies
a variable to be plotted.

groupBy If measurements is a DataFrame, then a character vector of length 1, which
contains the name of a categorical feature, may be specified. If measurements
is a MultiAssayExperiment, then a character vector of length 2, which contains
the name of a data table as the first element and the name of a categorical feature
as the second element, may be specified. Additionally, the value "clinical"
may be used to refer to the column annotation stored in the colData slot of the
of the MultiAssayExperiment object. A density plot will have additional lines



plotFeatureClasses 61

of different line types for each category. A strip chart plot will have a separate
strip chart created for each category and the charts will be drawn in a single
column on the graphics device. A parallel plot and bar chart plot will similarly
be laid out.

groupingName A label for the grouping variable to be used in plots.

... Unused variables by the three top-level methods passed to the internal method
which generates the plot(s).

whichNumericFeaturePlots

If the feature is a single feature and has numeric measurements, this option
specifies which types of plot(s) to draw. The default value is "both", which
draws a density plot and also a stip chart below the density plot. Other options
are "density" for drawing only a density plot and "stripchart" for drawing
only a strip chart.

measurementLimits

The minimum and maximum expression values to plot. Default: NULL. By de-
fault, the limits are automatically computed from the data values.

lineWidth Numeric value that alters the line thickness for density plots. Default: 1.

dotBinWidth Numeric value that alters the diameter of dots in the strip chart. Default: 1.

xAxisLabel The axis label for the plot’s horizontal axis. Default: NULL.

yAxisLabels A character vector of length 1 or 2. If the feature’s measurements are numeric an
whichNumericFeaturePlots has the value "both", the first value is the y-axis
label for the density plot and the second value is the y-axis label for the strip
chart. Otherwise, if the feature’s measurements are numeric and only one plot
is drawn, then a character vector of length 1 specifies the y-axis label for that
particular plot. Ignored if the feature’s measurements are categorical.

showXtickLabels

Logical. Default: TRUE. If set to FALSE, the x-axis labels are hidden.
showYtickLabels

Logical. Default: TRUE. If set to FALSE, the y-axis labels are hidden.
xLabelPositions

Either "auto" or a vector of values. The positions of labels on the x-axis. If
"auto", the placement of labels is automatically calculated.

yLabelPositions

Either "auto" or a vector of values. The positions of labels on the y-axis. If
"auto", the placement of labels is automatically calculated.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

colours The colours to plot data of each class in. The length of this vector must be as
long as the distinct number of classes in the data set.

showDatasetName

Logical. Default: TRUE. If TRUE and the data is in a MultiAssayExperiment
object, the the name of the table in which the feature is stored in is added to the
plot title.

plot Logical. Default: TRUE. If TRUE, a plot is produced on the current graphics
device.



62 PredictParams

Value

Plots are created on the current graphics device and a list of plot objects is invisibly returned. The
classes of the plot object are determined based on the type of data plotted and the number of plots
per feature generated. If the plotted variable is discrete or if the variable is numeric and one plot
type was specified, the list element is an object of class ggplot. Otherwise, if the variable is
numeric and both the density and stripchart plot types were made, the list element is an object of
class TableGrob.

Settling lineWidth and dotBinWidth to the same value doesn’t result in the density plot and the
strip chart having elements of the same size. Some manual experimentation is required to get
similarly sized plot elements.

Author(s)

Dario Strbenac

Examples

# First 25 samples and first 5 genes are mixtures of two normals. Last 25 samples are
# one normal.
genesMatrix <- sapply(1:15, function(geneColumn) c(rnorm(5, 5, 1)))
genesMatrix <- cbind(genesMatrix, sapply(1:10, function(geneColumn) c(rnorm(5, 15, 1))))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(geneColumn) c(rnorm(5, 9, 2))))
genesMatrix <- rbind(genesMatrix, sapply(1:50, function(geneColumn) rnorm(95, 9, 3)))
rownames(genesMatrix) <- paste("Gene", 1:100)
colnames(genesMatrix) <- paste("Sample", 1:50)
classes <- factor(rep(c("Poor", "Good"), each = 25), levels = c("Good", "Poor"))
plotFeatureClasses(genesMatrix, classes, targets = "Gene 4",

xAxisLabel = bquote(log[2]*'(expression)'), dotBinWidth = 0.5)

infectionResults <- c(rep(c("No", "Yes"), c(20, 5)), rep(c("No", "Yes"), c(5, 20)))
genders <- factor(rep(c("Male", "Female"), each = 10, length.out = 50))
clinicalData <- DataFrame(Gender = genders, Sugar = runif(50, 4, 10),

Infection = factor(infectionResults, levels = c("No", "Yes")),
row.names = colnames(genesMatrix))

plotFeatureClasses(clinicalData, classes, targets = "Infection")
plotFeatureClasses(clinicalData, classes, targets = "Infection", groupBy = "Gender")

dataContainer <- MultiAssayExperiment(list(RNA = genesMatrix),
colData = cbind(clinicalData, class = classes))

targetFeatures <- DataFrame(table = "RNA", feature = "Gene 50")
plotFeatureClasses(dataContainer, targets = targetFeatures,

groupBy = c("clinical", "Gender"),
xAxisLabel = bquote(log[2]*'(expression)'))

PredictParams Parameters for Classifier Prediction



previousSelection 63

Description

Collects the function to be used for making predictions and any associated parameters.

The function specified must return either a factor vector of class predictions, or a numeric vector of
scores for the second class, according to the levels of the class vector of the input data set, or a data
frame which has two columns named class and score.

Constructor

PredictParams() Creates a default PredictParams object. This assumes that the object returned
by the classifier has a list element named "class".

PredictParams(predictor,intermediate = character(0),...) Creates a PredictParams ob-
ject which stores the function which will do the class prediction, if required, and parameters
that the function will use. If the training function also makes predictions, this must be set to
NULL.

predictor Either NULL or a function to make predictions with. If it is a function, then the
first argument must accept the classifier made in the training step. The second argument
must accept a DataFrame of new data.

intermediate Character vector. Names of any variables created in prior stages in runTest
that need to be passed to the prediction function.

... Other arguments that predictor may use.

Author(s)

Dario Strbenac

Examples

predictParams <- PredictParams(predictor = DLDApredictInterface)
# For prediction by trained object created by DLDA training function.
PredictParams(predictor = NULL)
# For when the training function also does prediction and directly returns the
# predictions.

previousSelection Automated Selection of Previously Selected Features

Description

Uses the feature selection of the same cross-validation iteration of a previous classification for the
current classification task.

Usage

## S4 method for signature 'matrix'
previousSelection(measurements, ...)
## S4 method for signature 'DataFrame'

previousSelection(measurements, classes, datasetName,
classifyResult, minimumOverlapPercent = 80,
selectionName = "Previous Selection", .iteration, verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
previousSelection(measurements, ...)



64 previousSelection

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Do not specify this variable. It is ignored and only used to create consistency of
formal parameters with other feature selection methods.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name for the data set used. Stored in the result.

classifyResult An existing classification result from which to take the feature selections from.
minimumOverlapPercent

If at least this many selected features can’t be identified in the current data set,
then the selection stops with an error.

selectionName A name to identify this selection method by. Stored in the result.

.iteration Do not specify this variable. It is set by runTests if this function is being
repeatedly called by runTests.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Value

An object of class SelectResult.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
colnames(genesMatrix) <- paste("Sample", 1:50)
rownames(genesMatrix) <- paste("Gene", 1:100)
classes <- factor(rep(c("Poor", "Good"), each = 25))
resubstitute <- ResubstituteParams(nFeatures = seq(10, 100, 10),

performanceType = "error", better = "lower")
result <- runTests(genesMatrix, classes, datasetName = "Example",

classificationName = "Differential Expression",
permutations = 2, fold = 2,
params = list(SelectParams(), TrainParams(), PredictParams()))

# Genes 50 to 74 have differential expression in new data set.
newDataset <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
newDataset <- cbind(newDataset, rbind(sapply(1:25, function(sample) rnorm(49, 9, 2)),

sapply(1:25, function(sample) rnorm(25, 14, 2)),
sapply(1:25, function(sample) rnorm(26, 9, 2))))

rownames(newDataset) <- rownames(genesMatrix)
colnames(newDataset) <- colnames(genesMatrix)



previousTrained 65

newerResult <- runTests(newDataset, classes, datasetName = "Latest Data Set",
classificationName = "Differential Expression",
permutations = 2, fold = 2,

params = list(SelectParams(previousSelection,
intermediate = ".iteration",
classifyResult = result),

TrainParams(), PredictParams()))

# However, only genes 76 to 100 are chosen, because the feature selections are
# carried over from the first cross-validated classification.
features(newerResult)

#}

previousTrained Automated Usage of Previously Created Classifiers

Description

Uses the trained classifier of the same cross-validation iteration of a previous classification for the
current classification task.

Usage

## S4 method for signature 'ClassifyResult'
previousTrained(classifyResult, .iteration, verbose = 3)

Arguments

classifyResult A ClassifyResult object which stores the models fitted previously.

.iteration Do not specify this variable. It is set by runTests if this function is being
repeatedly called by runTests.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Value

A trained classifier from a previously completed classification task.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
colnames(genesMatrix) <- paste("Sample", 1:50)
rownames(genesMatrix) <- paste("Gene", 1:100)



66 randomForestInterface

classes <- factor(rep(c("Poor", "Good"), each = 25))
resubstitute <- ResubstituteParams(nFeatures = seq(10, 100, 10),

performanceType = "error", better = "lower")
result <- runTests(genesMatrix, classes, datasetName = "Example",

classificationName = "Differential Expression",
permutations = 2, fold = 2,
params = list(SelectParams(), TrainParams(), PredictParams()))

# Genes 50 to 74 have differential expression in new data set.
newDataset <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
newDataset <- cbind(newDataset, rbind(sapply(1:25, function(sample) rnorm(49, 9, 2)),

sapply(1:25, function(sample) rnorm(25, 14, 2)),
sapply(1:25, function(sample) rnorm(26, 9, 2))))

rownames(newDataset) <- rownames(genesMatrix)
colnames(newDataset) <- colnames(genesMatrix)

newerResult <- runTests(newDataset, classes, datasetName = "Latest Data Set",
classificationName = "Differential Expression",
permutations = 2, fold = 2,
params = list(SelectParams(previousSelection,

intermediate = ".iteration",
classifyResult = result),

TrainParams(previousTrained,
intermediate = ".iteration",
classifyResult = result),

PredictParams()))

models(newerResult)
#}

randomForest Trained randomForest Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

randomForestInterface An Interface for randomForest Package’s randomForest Function

Description

A random forest classifier builds multiple decision trees and uses the predictions of the trees to
determine a single prediction for each test sample.



randomForestInterface 67

Usage

## S4 method for signature 'matrix'
randomForestTrainInterface(measurements, classes, ...)
## S4 method for signature 'DataFrame'

randomForestTrainInterface(measurements, classes, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

randomForestTrainInterface(measurements, targets = names(measurements), ...)
## S4 method for signature 'randomForest,matrix'

randomForestPredictInterface(forest, test, ...)
## S4 method for signature 'randomForest,DataFrame'

randomForestPredictInterface(forest, test, ...,
returnType = c("class", "score", "both"), verbose = 3)

## S4 method for signature 'randomForest,MultiAssayExperiment'
randomForestPredictInterface(forest, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

forest A trained random forest classifier, as created by randomForestTrainInterface,
which has the same form as the output of randomForest.

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that integer variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose) or options
which are accepted by the randomForest or predict.randomForest functions.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

Value

For randomForestTrainInterface, the trained random forest. For randomForestPredictInterface,
either a factor vector of predicted classes, a matrix of scores for each class, or a table of both the
class labels and class scores, depending on the setting of returnType.



68 rankingPlot

Author(s)

Dario Strbenac

Examples

if(require(randomForest))
{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix), sep = '')
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix), sep = '')
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

trained <- randomForestTrainInterface(genesMatrix[, trainingSamples],
classes[trainingSamples])

predicted <- randomForestPredictInterface(trained, genesMatrix[, testingSamples])
}

rankingPlot Plot Pair-wise Overlap of Ranked Features

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature ranking stability. Secondly,
the overlap may be considered between different classification results. This approach compares the
feature ranking commonality between different methods. Two types of commonality are possible
to analyse. One summary is the average pair-wise overlap between a level of the comparison factor
and the other summary is the pair-wise overlap of each level of the comparison factor that is not the
reference level against the reference level. The overlaps are converted to percentages and plotted as
lineplots.

Usage

## S4 method for signature 'list'
rankingPlot(results, topRanked = seq(10, 100, 10),

comparison = c("within", "classificationName", "validation",
"datasetName", "selectionName"),

referenceLevel = NULL,
lineColourVariable = c("validation", "datasetName", "classificationName",

"selectionName", "None"),
lineColours = NULL, lineWidth = 1,

pointTypeVariable = c("datasetName", "classificationName", "validation",
"selectionName", "None"),

pointSize = 2, legendLinesPointsSize = 1,
rowVariable = c("None", "datasetName", "classificationName", "validation",

"selectionName"),
columnVariable = c("classificationName", "datasetName", "validation",



rankingPlot 69

"selectionName", "None"),
yMax = 100, fontSizes = c(24, 16, 12, 12, 12, 16),

title = if(comparison[1] == "within") "Feature Ranking Stability" else
"Feature Ranking Commonality",

xLabelPositions = seq(10, 100, 10),
yLabel = if(is.null(referenceLevel)) "Average Common Features (%)" else

paste("Average Common Features with", referenceLevel, "(%)"),
margin = grid::unit(c(1, 1, 1, 1), "lines"),
showLegend = TRUE, plot = TRUE, parallelParams = bpparam())

Arguments

results A list of ClassifyResult or SelectResult objects.

topRanked A sequence of thresholds of number of the best features to use for overlapping.

comparison The aspect of the experimental design to compare. See Details section for a
detailed description.

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

lineColourVariable

The slot name that different levels of are plotted as different line colours.

lineColours A vector of colours for different levels of the line colouring parameter. If NULL,
a default palette is used.

lineWidth A single number controlling the thickness of lines drawn.
pointTypeVariable

The slot name that different levels of are plotted as different point shapes on the
lines.

pointSize A single number specifying the diameter of points drawn.
legendLinesPointsSize

A single number specifying the size of the lines and points in the legend, if a
legend is drawn.

rowVariable The slot name that different levels of are plotted as separate rows of lineplots.

columnVariable The slot name that different levels of are plotted as separate columns of lineplots.

yMax The maximum value of the percentage to plot.

fontSizes A vector of length 6. The first number is the size of the title. The second
number is the size of the axes titles. The third number is the size of the axes
values. The fourth number is the size of the legends’ titles. The fifth number is
the font size of the legend labels. The sixth number is the font size of the titles
of grouped plots, if any are produced. In other words, when rowVariable or
columnVariable are not NULL.

title An overall title for the plot.
xLabelPositions

Locations where to put labels on the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. If TRUE, a plot is produced on the current graphics device.

parallelParams An object of class MulticoreParam or SnowParam.



70 rankingPlot

Details

Possible values for characteristics are "datasetName", "classificationName", "selectionName",
and "validation". If "None", then that graphical element is not used.

If comparison is "within", then the feature rankings are compared within a particular analy-
sis. The result will inform how stable the feature rankings are between different iterations of
cross-validation for a particular analysis. If comparison is "classificationName", then the
feature rankings are compared across different classification algorithm types, for each level of
"datasetName", "selectionName" and "validation". The result will inform how stable the
feature rankings are between different classification algorithms, for every cross-validation scheme,
selection algorithm and data set. If comparison is "selectionName", then the feature rank-
ings are compared across different feature selection algorithms, for each level of "datasetName",
"classificationName" and "validation". The result will inform how stable the feature rank-
ings are between feature selection classification algorithms, for every data set, classification algo-
rithm, and cross-validation scheme. If comparison is "validation", then the feature rankings
are compared across different cross-validation schemes, for each level of "classificationName",
"selectionName" and "datasetName". The result will inform how stable the feature rankings
are between different cross-validation schemes, for every selection algorithm, classification algo-
rithm and every data set. If comparison is "datasetName", then the feature rankings are com-
pared across different data sets, for each level of "classificationName", "selectionName" and
"validation". The result will inform how stable the feature rankings are between different data
sets, for every classification algorithm and every data set. This could be used to consider if different
experimental studies have a highly overlapping feature ranking pattern.

Calculating all pair-wise set overlaps for a large cross-validation result can be time-consuming. This
stage can be done on multiple CPUs by providing the relevant options to parallelParams.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
features <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
rankList <- list(list(features[1:100], features[c(5:1, 6:100)]),

list(features[c(1:9, 11, 10, 12:100)], features[c(1:50, 60:51, 61:100)]))
result1 <- ClassifyResult("Example", "Differential Expression",

"Example Selection", LETTERS[1:10], features,
100, rankList,

list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),
list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),

list(function(oracle){}),
list(predicted), actual, list("permuteFold", 2, 2))

predicted[, "class"] <- sample(predicted[, "class"])
rankList <- list(list(features[1:100], features[c(sample(20), 21:100)]),

list(features[c(1:9, 11, 10, 12:100)], features[c(1:50, 60:51, 61:100)]))
result2 <- ClassifyResult("Example", "Differential Variability",



ResubstituteParams 71

"Example Selection",
LETTERS[1:10], features, 100, rankList,

list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),
list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),

list(function(oracle){}),
list(predicted), actual, validation = list("permuteFold", 2, 2))

rankingPlot(list(result1, result2), pointTypeVariable = "classificationName")

oneRanking <- features[c(10, 8, 1, 2, 3, 4, 7, 9, 5, 6)]
otherRanking <- features[c(8, 2, 3, 4, 1, 10, 6, 9, 7, 5)]
oneResult <- SelectResult("Example", "One Method", 10, list(oneRanking), list(oneRanking[1:5]))
otherResult <- SelectResult("Example", "Another Method", 10, list(otherRanking), list(otherRanking[1:2]))

rankingPlot(list(oneResult, otherResult), comparison = "selectionName",
referenceLevel = "One Method", topRanked = seq(2, 8, 2),
lineColourVariable = "selectionName", columnVariable = "None",
pointTypeVariable = "None", xLabelPositions = 1:10)

ResubstituteParams Parameters for Resubstitution Error Calculation

Description

Some feature selection functions provided in the framework use resubstitution error rate to choose
the best number of features for classification. This class stores parameters related to that process.

Constructor

ResubstituteParams() Creates a default ResubstituteParams object. The number of features
tried is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The performance measure used is the balanced
error rate.

ResubstituteParams(nFeatures,performanceType,better = c("lower","higher")) Creates
a ResubstituteParams object, storing information about the number of top features to calculate
the performance measure for, the performance measure to use, and if higher or lower values
of the measure are better.

nFeatures A vector for the top number of features to test the resubstitution error rate for.
performanceType One of the eleven types of performance metrics which can be calculated

by calcCVperformance.
better Either "lower" or "higher". Determines whether higher or lower values of the

performance measure are desirable.
intermediate Character vector. Names of any variables created in prior stages by runTest

that need to be passed to the classifier.
... Other named parameters which will be used by the classifier.

Author(s)

Dario Strbenac

Examples

ResubstituteParams(nFeatures = seq(25, 1000, 25), performanceType = "error", better = "lower")



72 ROCplot

ROCplot Plot Receiver Operating Curve Graphs for Classification Results

Description

Creates one ROC plot or multiple ROC plots for a list of ClassifyR objects. One plot is created if
the data set has two classes and multiple plots are created if the data set has three or more classes.

Usage

## S4 method for signature 'list'
ROCplot(results, nBins = sapply(results, totalPredictions),

comparisonVariable = c("classificationName", "datasetName", "selectionName",
"validation", "None"), lineColours = NULL,

lineWidth = 1, fontSizes = c(24, 16, 12, 12, 12), labelPositions = seq(0.0, 1.0, 0.2),
plotTitle = "ROC", legendTitle = NULL, xLabel = "False Positive Rate",
yLabel = "True Positive Rate", plot = TRUE, showAUC = TRUE)

Arguments

results A list of ClassifyResult objects.

nBins The number of intervals to group the samples’ scores into. By default, there are
as many bins as there were predictions made, for each result object.

comparisonVariable

If the data set has two classes, then the slot name with factor levels to be used for
colouring the lines. Possible values are "datasetName", "classificationName",
and "validation". If "None", then all lines drawn will be black. Otherwise, it
specifies the variable used for plot facetting.

lineColours A vector of colours for different levels of the line colouring parameter. If NULL,
a default colour palette is used.

lineWidth A single number controlling the thickness of lines drawn.

fontSizes A vector of length 5. The first number is the size of the title. The second number
is the size of the axes titles and AUC text, if it is not part of the legend. The third
number is the size of the axes values. The fourth number is the size of the
legends’ titles. The fifth number is the font size of the legend labels.

labelPositions Locations where to put labels on the x and y axes.

plotTitle An overall title for the plot.

legendTitle A default name is used if the value is NULL. Otherwise a character name can be
provided.

xLabel Label to be used for the x-axis of false positive rate.

yLabel Label to be used for the y-axis of true positive rate.

plot Logical. If TRUE, a plot is produced on the current graphics device.

showAUC Logical. If TRUE, the AUC value of each result is added to its legend text.



runTest 73

Details

The scores stored in the results should be higher if the sample is more likely to be from the class
which the score is associated with. The score for each class must be in a column which has a column
name equal to the class name.

For cross-validated classification, all predictions from all iterations are considered simultaneously,
to calculate one curve per classification.

The number of bins determines how many pairs of TPR and FPR points will be used to draw the
plot. A higher number will result in a smoother ROC curve.

The AUC is calculated using the trapezoidal rule.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- list(data.frame(sample = LETTERS[c(1, 8, 15, 3, 11, 20, 19, 18)],
Healthy = c(0.89, 0.68, 0.53, 0.76, 0.13, 0.20, 0.60, 0.25),
Cancer = c(0.11, 0.32, 0.47, 0.24, 0.87, 0.80, 0.40, 0.75)),

data.frame(sample = LETTERS[c(11, 18, 15, 4, 6, 10, 11, 12)],
Healthy = c(0.45, 0.56, 0.33, 0.56, 0.33, 0.20, 0.60, 0.40),
Cancer = c(0.55, 0.44, 0.67, 0.44, 0.67, 0.80, 0.40, 0.60)))

actual <- factor(c(rep("Healthy", 10), rep("Cancer", 10)), levels = c("Healthy", "Cancer"))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test",

LETTERS[1:20], LETTERS[10:1], 100,
list(1:100, c(1:9, 11:101)), list(sample(10, 10), sample(10, 10)),

list(function(oracle){}), predicted, actual,
list("permuteFold", 2, 2))

predicted[[1]][c(2, 6), "Healthy"] <- c(0.40, 0.60)
predicted[[1]][c(2, 6), "Cancer"] <- c(0.60, 0.40)
result2 <- ClassifyResult("Example", "Differential Variability", "Bartlett Test",

LETTERS[1:20], LETTERS[10:1], 100, list(1:100, c(1:5, 11:105)),
list(sample(10, 10), sample(10, 10)), list(function(oracle){}),

predicted, actual, validation = list("permuteFold", 2, 2))
ROCplot(list(result1, result2), comparisonVariable = "classificationName",

plotTitle = "Cancer ROC")

runTest Perform a Single Classification

Description

For a data set of features and samples, the classification process is run. It consists of data transfor-
mation, feature selection, classifier training and testing (prediction of samples not used in training).



74 runTest

Usage

## S4 method for signature 'matrix'
runTest(measurements, classes, ...)
## S4 method for signature 'DataFrame'

runTest(measurements, classes, featureSets = NULL, metaFeatures = NULL,
minimumOverlapPercent = 80, datasetName, classificationName,

training, testing, params = list(SelectParams(), TrainParams(), PredictParams()),
verbose = 1, .iteration = NULL)

## S4 method for signature 'MultiAssayExperiment'
runTest(measurements, targets = names(measurements), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. The
sample identifiers must be present as column names of the matrix or the row
names of the DataFrame.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

featureSets An object of type FeatureSetCollection which defines sets of features or sets
of edges.

metaFeatures Either NULL or a DataFrame which has meta-features of the numeric data of
interest.

minimumOverlapPercent

If featureSets stores sets of features, the minimum overlap of feature IDs with
measurements for a feature set to be retained in the analysis. If featureSets
stores sets of network edges, the minimum percentage of edges with both vertex
IDs found in measurements that a set has to have to be retained in the analysis.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name associated with the data set used.
classificationName

A name associated with the classification.

training A vector which specifies the training samples.

testing A vector which specifies the test samples.

params A list of objects of class of TransformParams, SelectParams, TrainParams,
or PredictParams. The order they are in the list determines the order in which
the stages of classification are done in.

verbose Default: 1. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages as more lower-level func-
tions print messages.

.iteration Not to be set by a user. This value is used to keep track of the cross-validation
iteration, if called by runTests.



runTests 75

Details

This function only performs one classification and prediction. See runTests for a driver function
that enables a number of different cross-validation schemes to be applied and uses this function to
perform each iteration. datasetName and classificationName need to be provided.

Value

If called directly by the user rather than being used internally by runTests, a SelectResult object.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)
resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),

performanceType = "balanced error",
better = "lower")

runTest(measurements, classes,
datasetName = "Asthma", classificationName = "Different Means",
params = list(SelectParams(limmaSelection, "Moderated t Statistic",

resubstituteParams = resubstituteParams),
TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface)
),

training = (1:ncol(measurements)) %% 2 == 0,
testing = (1:ncol(measurements)) %% 2 != 0)

#}

runTests Reproducibly Run Various Kinds of Cross-Validation

Description

Enables doing classification schemes such as ordinary 10-fold, 100 permutations 5-fold, and leave
one out cross-validation. Processing in parallel is possible by leveraging the package BiocParallel.

Usage

## S4 method for signature 'matrix'
runTests(measurements, classes, ...)
## S4 method for signature 'DataFrame'

runTests(measurements, classes, featureSets = NULL, metaFeatures = NULL,
minimumOverlapPercent = 80, datasetName, classificationName,
validation = c("permute", "leaveOut", "fold"),
permutePartition = c("fold", "split"),
permutations = 100, percent = 25, folds = 5, leave = 2,
seed, parallelParams = bpparam(),

params = list(SelectParams(), TrainParams(), PredictParams()), verbose = 1)
## S4 method for signature 'MultiAssayExperiment'

runTests(measurements, targets = names(measurements), ...)



76 runTests

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. The
sample identifiers must be present as column names of the matrix or the row
names of the DataFrame.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

featureSets An object of type FeatureSetCollection which defines sets of features or sets
of edges.

metaFeatures Either NULL or a DataFrame which has meta-features of the numeric data of
interest.

minimumOverlapPercent

If featureSets stores sets of features, the minimum overlap of feature IDs with
measurements for a feature set to be retained in the analysis. If featureSets
stores sets of network edges, the minimum percentage of edges with both vertex
IDs found in measurements that a set has to have to be retained in the analysis.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method.

datasetName A name associated with the data set used.
classificationName

A name associated with the classification.

validation Default: "permute". "permute" for repeated permuting. "leaveOut" for leav-
ing all possible combinations of k samples as test samples. "fold" for folding
of the data set (no resampling).

permutePartition

Default: "fold". Either "fold" or "split". Only applicable if validation is
"permute". If "fold", then the samples are split into folds and in each iteration
one is used as the test set. If "split", the samples are split into two groups, the
sizes being based on the percent value. One group is used as the training set,
the other is the test set.

permutations Default: 100. Relevant when permuting is used. The number of times to do
reordering of the samples before splitting or folding them.

percent Default: 25. Used when permutation with the split method is chosen. The
percentage of samples to be in the test set.

folds Default: 5. Relevant when repeated permutations are done and permutePartition
is set to "fold" or when validation is set to "fold". The number of folds to
break the data set into. Each fold is used once as the test set.

leave Default: 2. Relevant when leave-k-out cross-validation is used. The number of
samples to leave for testing.

seed The random number generator used for repeated resampling will use this seed, if
it is provided. Allows reproducibility of repeated usage on the same input data.

parallelParams An object of class MulticoreParam or SnowParam.



samplesMetricMap 77

params A list of objects of class of TransformParams, SelectParams, TrainParams
or PredictParams. The order they are in the list determines the order in which
the stages of classification are done in.

verbose Default: 1. A number between 0 and 3 for the amount of progress messages to
give. A higher number will produce more messages as more lower-level func-
tions print messages.

Value

If the predictor function made a single prediction, then an object of class ClassifyResult. If the
predictor function made a set of predictions, then a list of such objects.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

data(asthma)

resubstituteParams <- ResubstituteParams(nFeatures = seq(5, 25, 5),
performanceType = "balanced error",
better = "lower")

runTests(measurements, classes, datasetName = "Asthma",
classificationName = "Different Means", permutations = 5,
params = list(SelectParams(differentMeansSelection, "t Statistic",

resubstituteParams = resubstituteParams),
TrainParams(DLDAtrainInterface),
PredictParams(DLDApredictInterface)
)

)
#}

samplesMetricMap Plot a Grid of Sample Error Rates or Accuracies

Description

A grid of coloured tiles is drawn. There is one column for each sample and one row for each
classification result.

Usage

## S4 method for signature 'list'
samplesMetricMap(results,

comparison = c("classificationName", "datasetName", "selectionName",
"validation"),

metric = c("error", "accuracy"), featureValues = NULL, featureName = NULL,
metricColours = list(c("#3F48CC", "#6F75D8", "#9FA3E5", "#CFD1F2", "#FFFFFF"),

c("#880015", "#A53F4F", "#C37F8A", "#E1BFC4", "#FFFFFF")),
classColours = c("#3F48CC", "#880015"), groupColours = c("darkgreen", "yellow2"),



78 samplesMetricMap

fontSizes = c(24, 16, 12, 12, 12),
mapHeight = 4, title = "Error Comparison", showLegends = TRUE,
xAxisLabel = "Sample Name", showXtickLabels = TRUE,
yAxisLabel = "Analysis", showYtickLabels = TRUE,
legendSize = grid::unit(1, "lines"), plot = TRUE)

## S4 method for signature 'matrix'
samplesMetricMap(results, classes,

metric = c("error", "accuracy"),
featureValues = NULL, featureName = NULL,

metricColours = list(c("#3F48CC", "#6F75D8", "#9FA3E5", "#CFD1F2", "#FFFFFF"),
c("#880015", "#A53F4F", "#C37F8A", "#E1BFC4", "#FFFFFF")),

classColours = c("#3F48CC", "#880015"), groupColours = c("darkgreen", "yellow2"),
fontSizes = c(24, 16, 12, 12, 12),

mapHeight = 4, title = "Error Comparison", showLegends = TRUE,
xAxisLabel = "Sample Name", showXtickLabels = TRUE,
yAxisLabel = "Analysis", showYtickLabels = TRUE,
legendSize = grid::unit(1, "lines"), plot = TRUE)

Arguments

results A list of ClassifyResult objects. Could also be a matrix, for backwards com-
patibility.

classes If results is a matrix, this is a factor vector of the same length as the number
of columns that results has.

comparison The aspect of the experimental design to compare.
metric The sample-wise metric to plot.
featureValues If not NULL, can be a named factor or named numeric vector specifying some

variable of interest to plot underneath the class bar.
featureName A label describing the information in featureValues. It must be specified if

featureValues is.
metricColours A vector of colours for metric levels.
classColours Either a vector of colours for class levels if both classes should have same colour,

or a list of length 2, with each component being a vector of the same length. The
vector has the colour gradient for each class.

groupColours A vector of colours for group levels. Only useful if groups is not NULL.
fontSizes A vector of length 5. The first number is the size of the title. The second number

is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the size of the legends’ titles. The fifth number is the font size
of the legend labels.

mapHeight Height of the map, relative to the height of the class colour bar.
title The title to place above the plot.
showLegends Logical. IF FALSE, the legend is not drawn.
xAxisLabel The name plotted for the x-axis. NULL suppresses label.
showXtickLabels

Logical. IF FALSE, the x-axis labels are hidden.
showYtickLabels

Logical. IF FALSE, the y-axis labels are hidden.
yAxisLabel The name plotted for the y-axis. NULL suppresses label.
legendSize The size of the boxes in the legends.
plot Logical. IF TRUE, a plot is produced on the current graphics device.



selectionPlot 79

Details

The names of results determine the row names that will be in the plot. The length of metricColours
determines how many bins the metric values will be discretised to.

Value

A plot is produced and a grob is returned that can be saved to a graphics device.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = LETTERS[sample(10, 100, replace = TRUE)],
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5), levels = c("Healthy", "Cancer"))
features <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
result1 <- ClassifyResult("Example", "Differential Expression", "t-test",

LETTERS[1:10], features, 100, list(1:100), list(sample(10, 10)),
list(function(oracle){}), list(predicted), actual,
list("permuteFold", 100, 5))

predicted[, "class"] <- sample(predicted[, "class"])
result2 <- ClassifyResult("Example", "Differential Variability", "Bartlett Test",

LETTERS[1:10], features, 100, list(1:100), list(sample(10, 10)),
list(function(oracle){}), list(predicted), actual,
validation = list("leave", 2))

result1 <- calcCVperformance(result1, "sample error")
result2 <- calcCVperformance(result2, "sample error")
groups <- factor(rep(c("Male", "Female"), length.out = 10))
names(groups) <- LETTERS[1:10]
cholesterol <- c(4.0, 5.5, 3.9, 4.9, 5.7, 7.1, 7.9, 8.0, 8.5, 7.2)
names(cholesterol) <- LETTERS[1:10]

wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2))
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2),

featureValues = groups, featureName = "Gender")
wholePlot <- samplesMetricMap(list(Gene = result1, Protein = result2),

featureValues = cholesterol, featureName = "Cholesterol")

selectionPlot Plot Pair-wise Overlap or Selection Size Distribution of Selected Fea-
tures

Description

Pair-wise overlaps can be done for two types of analyses. Firstly, each cross-validation iteration can
be considered within a single classification. This explores the feature selection stability. Secondly,
the overlap may be considered between different classification results. This approach compares
the feature selection commonality between different selection methods. Two types of commonality
are possible to analyse. One summary is the average pair-wise overlap between a level of the
comparison factor and the other summary is the pair-wise overlap of each level of the comparison



80 selectionPlot

factor that is not the reference level against the reference level. The overlaps are converted to
percentages and plotted as lineplots.

Additionally, a heatmap of selection size frequencies can be made.

Usage

## S4 method for signature 'list'
selectionPlot(results,

comparison = c("within", "size", "classificationName",
"validation", "datasetName", "selectionName"),

referenceLevel = NULL,
xVariable = c("classificationName", "datasetName", "validation", "selectionName"),

boxFillColouring = c("classificationName", "size", "datasetName",
"validation", "selectionName", "None"),

boxFillColours = NULL,
boxFillBinBoundaries = NULL, setSizeBinBoundaries = NULL,
boxLineColouring = c("validation", "classificationName",

"datasetName", "selectionName", "None"),
boxLineColours = NULL,
rowVariable = c("None", "validation", "datasetName",

"classificationName", "selectionName"),
columnVariable = c("datasetName", "classificationName",

"validation", "selectionName", "None"),
yMax = 100, fontSizes = c(24, 16, 12, 16),

title = if(comparison[1] == "within") "Feature Selection Stability"
else if(comparison == "size") "Feature Selection Size" else
"Feature Selection Commonality",

xLabel = "Analysis",
yLabel = if(is.null(referenceLevel) && comparison != "size") "Common Features (%)"

else if(comparison == "size") "Set Size" else
paste("Common Features with", referenceLevel, "(%)"),

margin = grid::unit(c(1, 1, 1, 1), "lines"), rotate90 = FALSE,
showLegend = TRUE, plot = TRUE, parallelParams = bpparam())

Arguments

results A list of ClassifyResult or SelectResult objects.

comparison The aspect of the experimental design to compare. See Details section for a
detailed description.

referenceLevel The level of the comparison factor to use as the reference to compare each non-
reference level to. If NULL, then each level has the average pairwise overlap
calculated to all other levels.

xVariable The factor to make separate boxes in the boxplot for.
boxFillColouring

A factor to colour the boxes by.

boxFillColours A vector of colours, one for each level of boxFillColouring. If NULL, a default
palette is used.

boxFillBinBoundaries

Used only if comparison is "size". A vector of integers, specifying the bin
boundaries of percentages of size bins observed. e.g. 0, 10, 20, 30, 40, 50.



selectionPlot 81

setSizeBinBoundaries

Used only if comparison is "size". A vector of integers, specifying the bin
boundaries of set size bins. e.g. 50, 100, 150, 200, 250.

boxLineColouring

A factor to colour the box lines by.

boxLineColours A vector of colours, one for each level of boxLineColouring. If NULL, a default
palette is used.

rowVariable The slot name that different levels of are plotted as separate rows of boxplots.

columnVariable The slot name that different levels of are plotted as separate columns of boxplots.

yMax The maximum value of the percentage to plot.

fontSizes A vector of length 4. The first number is the size of the title. The second number
is the size of the axes titles. The third number is the size of the axes values. The
fourth number is the font size of the titles of grouped plots, if any are produced.
In other words, when rowVariable or columnVariable are not NULL.

title An overall title for the plot.

xLabel Label to be used for the x-axis.

yLabel Label to be used for the y-axis of overlap percentages.

margin The margin to have around the plot.

rotate90 Logical. If TRUE, the boxplot is horizontal.

showLegend If TRUE, a legend is plotted next to the plot. If FALSE, it is hidden.

plot Logical. If TRUE, a plot is produced on the current graphics device.

parallelParams An object of class MulticoreParam or SnowParam.

Details

Possible values for characteristics are "datasetName", "classificationName", "size", "selectionName",
and "validation". If "None", then that graphical element is not used.

If comparison is "within", then the feature selection overlaps are compared within a particu-
lar analysis. The result will inform how stable the selections are between different iterations of
cross-validation for a particular analysis. If comparison is "classificationName", then the
feature selections are compared across different classification algorithm types, for each level of
"datasetName", "selectionName" and "validation". The result will inform how stable the fea-
ture selections are between different classification algorithms, for every cross-validation scheme,
selection algorithm and data set. If comparison is "selectionName", then the feature selec-
tions are compared across different feature selection algorithms, for each level of "datasetName",
"classificationName" and "validation". The result will inform how stable the feature se-
lections are between feature selection algorithms, for every data set, classification algorithm, and
cross-validation scheme. If comparison is "validation", then the feature selections are compared
across different cross-validation schemes, for each level of "classificationName", "selectionName"
and "datasetName". The result will inform how stable the feature selections are between different
cross-validation schemes, for every selection algorithm, classification algorithm and every data set.
If comparison is "datasetName", then the feature selections are compared across different data
sets, for each level of "classificationName", "selectionName", and "validation". The result
will inform how stable the feature selections are between different data sets, for every classification
algorithm and every data set. This could be used to consider if different experimental studies have
a highly overlapping feature selection pattern.

Calculating all pair-wise set overlaps can be time-consuming. This stage can be done on multiple
CPUs by providing the relevant options to parallelParams. The percentage is calculated as the
intersection of two sets of features divided by the union of the sets, multiplied by 100.



82 selectionPlot

For the selection size mode, boxFillBins is used to create bins which include the lowest value for
the first bin, and the highest value for the last bin using cut.

Value

An object of class ggplot and a plot on the current graphics device, if plot is TRUE.

Author(s)

Dario Strbenac

Examples

predicted <- data.frame(sample = sample(10, 100, replace = TRUE),
class = rep(c("Healthy", "Cancer"), each = 50))

actual <- factor(rep(c("Healthy", "Cancer"), each = 5))
features <- sapply(1:100, function(index) paste(sample(LETTERS, 3), collapse = ''))
rankList <- list(list(features[1:100], features[c(5:1, 6:100)]),

list(features[c(1:9, 11, 10, 12:100)], features[c(1:50, 60:51, 61:100)]))
result1 <- ClassifyResult("Example", "Differential Expression",

"Example Selection", LETTERS[1:10], features,
100, rankList,

list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),
list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),

list(function(oracle){}),
list(predicted), actual, list("permuteFold", 2, 2))

predicted[, "class"] <- sample(predicted[, "class"])
rankList <- list(list(features[1:100], features[c(sample(20), 21:100)]),

list(features[c(1:9, 11, 10, 12:100)], features[c(1:50, 60:51, 61:100)]))
result2 <- ClassifyResult("Example", "Differential Variability",

"Example Selection",
LETTERS[1:10], features, 100, rankList,

list(list(rankList[[1]][[1]][1:15], rankList[[1]][[2]][1:15]),
list(rankList[[2]][[1]][1:10], rankList[[2]][[2]][1:10])),

list(function(oracle){}),
list(predicted), actual, validation = list("permuteFold", 2, 2))

selectionPlot(list(result1, result2), xVariable = "classificationName",
xLabel = "Analysis", columnVariable = "None", rowVariable = "None",
boxFillColouring = "classificationName")

selectionPlot(list(result1, result2), comparison = "size",
xVariable = "classificationName", xLabel = "Analysis",
columnVariable = "None", rowVariable = "None",
boxFillColouring = "size", boxFillBinBoundaries = seq(0, 100, 10),
setSizeBinBoundaries = seq(0, 25, 5), boxLineColouring = "None")

oneRanking <- features[c(10, 8, 1, 2, 3, 4, 7, 9, 5, 6)]
otherRanking <- features[c(8, 2, 3, 4, 1, 10, 6, 9, 7, 5)]
oneResult <- SelectResult("Example", "One Method", 10, list(oneRanking), list(oneRanking[1:5]))
otherResult <- SelectResult("Example", "Another Method", 10, list(otherRanking), list(otherRanking[1:2]))

selectionPlot(list(oneResult, otherResult), comparison = "selectionName",
xVariable = "selectionName", xLabel = "Selection Method",
columnVariable = "None", rowVariable = "None",
boxFillColouring = "selectionName", boxLineColouring = "None")



SelectParams 83

SelectParams Parameters for Feature Selection

Description

Collects and checks necessary parameters required for feature selection. The empty constructor is
provided for convenience.

Constructor

SelectParams() Creates a default SelectParams object. This uses either an ordinary t-test or
ANOVA (depending on the number of classes) and tries the top 10 to top 100 features in
increments of 10, and picks the number of features with the best resubstitution balanced error
rate. Users should create an appropriate SelectParams object for the characteristics of their
data, once they are familiar with this software.

SelectParams(featureSelection, selectionName, minPresence = 1, intermediate = character(0),
subsetToSelections = TRUE, ...)

Creates a SelectParams object which stores the function which will do the selection and pa-
rameters that the function will use.

featureSelection Either a function which will do the selection or a list of such functions.
For a particular function, the first argument must be an DataFrame object. The function’s
return value must be a SelectResult object.

selectionName A name to identify this selection method by.
minPresence If a list of functions was provided, how many of those must a feature have been

selected by to be used in classification. 1 is equivalent to a set union and a number the
same length as featureSelection is equivalent to set intersection.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to a feature selection function.

subsetToSelections Whether to subset the data table(s), after feature selection has been
done.

... Other named parameters which will be used by the selection function. If featureSelection
was a list of functions, this must be a list of lists, as long as featureSelection.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
#{

SelectParams(differentMeansSelection, "t-test",
trainParams = TrainParams(), predictParams = PredictParams(),
resubstituteParams = ResubstituteParams())

# For pamr shrinkage selection.
SelectParams(NSCselectionInterface, datasetName = "Cancer",

intermediate = "trained", subsetToSelections = FALSE)
#}



84 SelectResult

SelectResult Container for Storing Feature Selection Results

Description

Contains a list of ranked names of features, from most discriminative to least discriminative, and
a list of features selected for use in classification. The names will be in a data frame if the input
data set is a MultiAssayExperiment, with the first column containing the name of the data table
the feature is from and the second column containing the name of the feature. Each vector or data
frame element in the list corresponds to a particular iteration of classifier training. Nested lists
will be present if the permutation and folding cross-validation scheme was used. This class is not
intended to be created by the user, but could be used in another software package.

Constructor

SelectResult(datasetName,selectionName,totalFeatures,rankedFeatures,chosenFeatures)

datasetName A name associated with the data set used.

selectionName A name associated with the classification.

totalFeatures The total number of features in the data set.

rankedFeatures Identifiers of all features or meta-features if meta-features were used by the clas-
sifier, from most to least discriminative.

chosenFeatures Identifiers of features or meta-features if meta-features were used by the classi-
fier selected at each fold.

Summary

A method which summarises the results is available. result is a SelectResult object.

show(result)Prints a short summary of what result contains.

Author(s)

Dario Strbenac

Examples

SelectResult("Asthma", "Moderated t-test", 50, list(1:50), list(1:10))



subtractFromLocation 85

subtractFromLocation Subtract Numeric Feature Measurements from a Location

Description

For each numeric feature, calculates the location, and subtracts all measurements from that location.

Usage

## S4 method for signature 'matrix'
subtractFromLocation(measurements, training, location = c("mean", "median"),

absolute = TRUE, verbose = 3)
## S4 method for signature 'DataFrame'

subtractFromLocation(measurements, training, location = c("mean", "median"),
absolute = TRUE, verbose = 3)

## S4 method for signature 'MultiAssayExperiment'
subtractFromLocation(measurements, training, targets = names(measurements),

location = c("mean", "median"), absolute = TRUE, verbose = 3)

Arguments

measurements A matrix, DataFrame or a MultiAssayExperiment object containing the data.
For a matrix, the rows are for features and the columns are for samples.

training A vector specifying which samples are in the training set.

location Character. Either "mean" or "median".

absolute Logical. Default: TRUE. If TRUE, then absolute values of the differences are
returned. Otherwise, they are signed.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

verbose Default: 3. A progress message is shown if this value is 3.

Details

Only the samples specified by training are used in the calculation of the location. To use all
samples for calculation of the location, simply provide indices of all the samples.

Value

The same class of variable as the input variable measurements is, with the numeric features sub-
tracted from the calculated location.

Author(s)

Dario Strbenac

Examples

aMatrix <- matrix(1:100, ncol = 10)
subtractFromLocation(aMatrix, training = 1:5, "median")



86 SVMinterface

svm Trained svm Object

Description

Enables S4 method dispatching on it.

Author(s)

Dario Strbenac

SVMinterface An Interface for e1071 Package’s Support Vector Machine Classifier.

Description

SVMtrainInterface generates a trained SVM classifier and SVMpredictInterface uses it to make
predictions on a test data set.

Usage

## S4 method for signature 'matrix'
SVMtrainInterface(measurements, classes, ...)
## S4 method for signature 'DataFrame'

SVMtrainInterface(measurements, classes, ..., verbose = 3)
## S4 method for signature 'MultiAssayExperiment'

SVMtrainInterface(measurements, targets = names(measurements), ...)
## S4 method for signature 'svm,matrix'

SVMpredictInterface(model, test, ...)
## S4 method for signature 'svm,DataFrame'

SVMpredictInterface(model, test, classes = NULL, returnType = c("class", "score", "both"), verbose = 3)
## S4 method for signature 'svm,MultiAssayExperiment'

SVMpredictInterface(model, test, targets = names(test), ...)

Arguments

measurements Either a matrix, DataFrame or MultiAssayExperiment containing the training
data. For a matrix, the rows are features, and the columns are samples. If of
type DataFrame, the data set is subset to only those features of type integer.

classes Either a vector of class labels of class factor of the same length as the number
of samples in measurements or if the measurements are of class DataFrame a
character vector of length 1 containing the column name in measurement is also
permitted. Not used if measurements is a MultiAssayExperiment object.

returnType Default: "class". Either "class", "score" or "both". Sets the return value
from the prediction to either a vector of class labels, score for a sample belonging
to the second class, as determined by the factor levels, or both labels and scores
in a data.frame.



SVMinterface 87

test An object of the same class as measurements with no samples in common with
measurements and the same number of features as it. Also, if a DataFrame, the
class column must be absent.

targets If measurements is a MultiAssayExperiment, the names of the data tables to
be used. "clinical" is also a valid value and specifies that numeric variables
from the clinical data table will be used.

model A fitted model as returned by SVMtrainInterface.

... Variables not used by the matrix nor the MultiAssayExperiment method which
are passed into and used by the DataFrame method (e.g. verbose) or options
that are used by the svm function.

verbose Default: 3. A number between 0 and 3 for the amount of progress messages to
give. This function only prints progress messages if the value is 3.

Details

If measurements is an object of class MultiAssayExperiment, the factor of sample classes must
be stored in the DataFrame accessible by the colData function with column name "class".

Value

For SVMtrainInterface, a trained SVM classifier of type svm. For SVMpredictInterface, either
a factor vector of predicted classes, a vector of secores for the second class, or a table of both the
class labels and second class scores, depending on the setting of returnType.

Author(s)

Dario Strbenac

Examples

if(require(e1071))
{

# Genes 76 to 100 have differential expression.
genesMatrix <- sapply(1:25, function(sample) c(rnorm(100, 9, 2)))
genesMatrix <- cbind(genesMatrix, sapply(1:25, function(sample)

c(rnorm(75, 9, 2), rnorm(25, 14, 2))))
classes <- factor(rep(c("Poor", "Good"), each = 25))
colnames(genesMatrix) <- paste("Sample", 1:ncol(genesMatrix))
rownames(genesMatrix) <- paste("Gene", 1:nrow(genesMatrix))
trainingSamples <- c(1:20, 26:45)
testingSamples <- c(21:25, 46:50)

classifier <- SVMtrainInterface(genesMatrix[, trainingSamples],
classes[trainingSamples], kernel = "linear")

SVMpredictInterface(classifier, genesMatrix[, testingSamples])
}



88 TrainParams

TrainParams Parameters for Classifier Training

Description

Collects and checks necessary parameters required for classifier training. The empty constructor is
provided for convenience.

Constructor

TrainParams() Creates a default TrainParams object. The classifier function is DLDA. Users
should create an appropriate TrainParams object for the characteristics of their data, once
they are familiar with this software.

TrainParams(classifier, intermediate = character(0), getFeatures = NULL, ...)

Creates a TrainParams object which stores the function which will do the classifier building
and parameters that the function will use.

classifier A function which will construct a classifier, and also possibly make the predic-
tions. The first argument must be a DataFrame object. The second argument must be a
vector of classes. If the function also makes predictions and the value of the predictor
setting of PredictParams is therefore NULL, the third argument must be a DataFrame of
test data. The function must also accept a parameter named verbose. The function’s
return value can be either a trained classifier if the function only does training or a vector
or data frame of class predictions if it also does prediction with the test set samples.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to classifier.

getFeatures A function may be specified that extracts the selected features from the trained
model. This is relevant if using a classifier that does feature selection within training (e.g.
random forest). The function must return a list of two vectors. The first vector contains
the ranked features (or empty if the training algorithm doesn’t produce rankings) and the
second vector contains the selected features.

... Other named parameters which will be used by the classifier.

Author(s)

Dario Strbenac

Examples

#if(require(sparsediscrim))
trainParams <- TrainParams(DLDAtrainInterface)



TransformParams 89

TransformParams Parameters for Data Transformation

Description

Collects and checks necessary parameters required for transformation. The empty constructor is
for when no data transformation is desired. One data transformation function is distributed. See
subtractFromLocation.

Constructor

TransformParams(transform,intermediate = character(0),...) Creates a TransformParams
object which stores the function which will do the transformation and parameters that the func-
tion will use.

transform A function which will do the transformation. The first argument must be a
DataFrame object.

intermediate Character vector. Names of any variables created in prior stages by runTest
that need to be passed to a feature selection function.

... Other named parameters which will be used by the transformation function.

Author(s)

Dario Strbenac

Examples

transformParams <- TransformParams(subtractFromLocation, location = "median")
# Subtract all values from training set median, to obtain absolute deviations.



Index

∗Topic datasets
asthma, 3

[,FeatureSetCollection,integerOrNumeric,missing,ANY-method
(FeatureSetCollection), 23

[[,FeatureSetCollection,ANY,missing-method
(FeatureSetCollection), 23

actualClasses (ClassifyResult), 9
actualClasses,ClassifyResult-method

(ClassifyResult), 9
asthma, 3

bartlett.test, 4
bartlettSelection, 4
bartlettSelection,DataFrame-method

(bartlettSelection), 4
bartlettSelection,matrix-method

(bartlettSelection), 4
bartlettSelection,MultiAssayExperiment-method

(bartlettSelection), 4
BiocParallel, 75

calcCVperformance, 71
calcCVperformance (calcPerformance), 5
calcCVperformance,ClassifyResult-method

(calcPerformance), 5
calcExternalPerformance

(calcPerformance), 5
calcExternalPerformance,factor,factor-method

(calcPerformance), 5
calcNormFactors, 17
calcPerformance, 5
character, 10
characterOrDataFrame, 7
characterOrDataFrame-class

(characterOrDataFrame), 7
classes (asthma), 3
Classify, 8
classifyInterface, 8
classifyInterface,DataFrame-method

(classifyInterface), 8
classifyInterface,matrix-method

(classifyInterface), 8

classifyInterface,MultiAssayExperiment-method
(classifyInterface), 8

ClassifyResult, 6, 7, 9, 12, 58, 65, 69, 72,
77, 78, 80

ClassifyResult,character,character,character,character,character-method
(ClassifyResult), 9

ClassifyResult-class (ClassifyResult), 9
cut, 82

data.frame, 9
DataFrame, 4, 8, 11, 14, 16, 21, 25, 26, 29,

31–33, 35, 37, 39, 40, 42, 44, 47, 49,
53, 54, 56, 60, 63, 64, 67, 74, 76, 83,
85, 86, 88, 89

density, 47
differentMeansSelection, 11
differentMeansSelection,DataFrame-method

(differentMeansSelection), 11
differentMeansSelection,matrix-method

(differentMeansSelection), 11
differentMeansSelection,MultiAssayExperiment-method

(differentMeansSelection), 11
distribution, 12
distribution,ClassifyResult-method

(distribution), 12
dlda, 13
dlda-class (dlda), 13
DLDAinterface, 14
DLDApredictInterface (DLDAinterface), 14
DLDApredictInterface,dlda,DataFrame-method

(DLDAinterface), 14
DLDApredictInterface,dlda,matrix-method

(DLDAinterface), 14
DLDApredictInterface,dlda,MultiAssayExperiment-method

(DLDAinterface), 14
DLDAtrainInterface (DLDAinterface), 14
DLDAtrainInterface,DataFrame-method

(DLDAinterface), 14
DLDAtrainInterface,matrix-method

(DLDAinterface), 14
DLDAtrainInterface,MultiAssayExperiment-method

(DLDAinterface), 14
DMDselection, 15

90



INDEX 91

DMDselection,DataFrame-method
(DMDselection), 15

DMDselection,matrix-method
(DMDselection), 15

DMDselection,MultiAssayExperiment-method
(DMDselection), 15

edgeR, 18
edgeRselection, 17
edgeRselection,DataFrame-method

(edgeRselection), 17
edgeRselection,matrix-method

(edgeRselection), 17
edgeRselection,MultiAssayExperiment-method

(edgeRselection), 17
edgesToHubNetworks, 19
elasticNetFeatures, 20
elasticNetFeatures,multnet-method

(elasticNetFeatures), 20
elasticNetGLMinterface, 21
elasticNetGLMpredictInterface

(elasticNetGLMinterface), 21
elasticNetGLMpredictInterface,multnet,DataFrame-method

(elasticNetGLMinterface), 21
elasticNetGLMpredictInterface,multnet,matrix-method

(elasticNetGLMinterface), 21
elasticNetGLMpredictInterface,multnet,MultiAssayExperiment-method

(elasticNetGLMinterface), 21
elasticNetGLMtrainInterface

(elasticNetGLMinterface), 21
elasticNetGLMtrainInterface,DataFrame-method

(elasticNetGLMinterface), 21
elasticNetGLMtrainInterface,matrix-method

(elasticNetGLMinterface), 21
elasticNetGLMtrainInterface,MultiAssayExperiment-method

(elasticNetGLMinterface), 21
estimateDisp, 17

factor, 4, 8, 11, 14, 17, 21, 26, 32, 33, 35, 37,
39, 40, 42, 44, 47, 49, 53, 54, 56, 60,
67, 74, 76, 86

featureNames (ClassifyResult), 9
featureNames,ClassifyResult-method

(ClassifyResult), 9
features (ClassifyResult), 9
features,ClassifyResult-method

(ClassifyResult), 9
FeatureSetCollection, 19, 23, 25, 31, 49,

74, 76
FeatureSetCollection,list-method

(FeatureSetCollection), 23
FeatureSetCollection-class

(FeatureSetCollection), 23

FeatureSetCollectionOrNULL, 24
FeatureSetCollectionOrNULL-class

(FeatureSetCollectionOrNULL),
24

featureSetSummary, 24
featureSetSummary,DataFrame-method

(featureSetSummary), 24
featureSetSummary,matrix-method

(featureSetSummary), 24
featureSetSummary,MultiAssayExperiment-method

(featureSetSummary), 24
fisherDiscriminant, 26
fisherDiscriminant,DataFrame-method

(fisherDiscriminant), 26
fisherDiscriminant,matrix-method

(fisherDiscriminant), 26
fisherDiscriminant,MultiAssayExperiment-method

(fisherDiscriminant), 26
forestFeatures, 27
forestFeatures,randomForest-method

(forestFeatures), 27
functionOrList, 28
functionOrList-class (functionOrList),

28
functionOrNULL, 28
functionOrNULL-class (functionOrNULL),

28

geom_histogram, 13
getLocationsAndScales, 16, 29, 37, 41
getLocationsAndScales,DataFrame-method

(getLocationsAndScales), 29
getLocationsAndScales,matrix-method

(getLocationsAndScales), 29
getLocationsAndScales,MultiAssayExperiment-method

(getLocationsAndScales), 29
glmFit, 17
glmnet, 20, 21

integerOrNumeric, 30
integerOrNumeric-class

(integerOrNumeric), 30
interactorDifferences, 30, 50
interactorDifferences,DataFrame-method

(interactorDifferences), 30
interactorDifferences,matrix-method

(interactorDifferences), 30
interactorDifferences,MultiAssayExperiment-method

(interactorDifferences), 30

knn, 32
kNNinterface, 32



92 INDEX

kNNinterface,DataFrame-method
(kNNinterface), 32

kNNinterface,matrix-method
(kNNinterface), 32

kNNinterface,MultiAssayExperiment-method
(kNNinterface), 32

KolmogorovSmirnovSelection, 33
KolmogorovSmirnovSelection,DataFrame-method

(KolmogorovSmirnovSelection),
33

KolmogorovSmirnovSelection,matrix-method
(KolmogorovSmirnovSelection),
33

KolmogorovSmirnovSelection,MultiAssayExperiment-method
(KolmogorovSmirnovSelection),
33

ks.test, 33
kTSPclassifier, 35, 56
kTSPclassifier,DataFrame-method

(kTSPclassifier), 35
kTSPclassifier,matrix-method

(kTSPclassifier), 35
kTSPclassifier,MultiAssayExperiment-method

(kTSPclassifier), 35
KullbackLeiblerSelection, 37
KullbackLeiblerSelection,DataFrame-method

(KullbackLeiblerSelection), 37
KullbackLeiblerSelection,matrix-method

(KullbackLeiblerSelection), 37
KullbackLeiblerSelection,MultiAssayExperiment-method

(KullbackLeiblerSelection), 37

length,FeatureSetCollection-method
(FeatureSetCollection), 23

leveneSelection, 38
leveneSelection,DataFrame-method

(leveneSelection), 38
leveneSelection,matrix-method

(leveneSelection), 38
leveneSelection,MultiAssayExperiment-method

(leveneSelection), 38
likelihoodRatioSelection, 40
likelihoodRatioSelection,DataFrame-method

(likelihoodRatioSelection), 40
likelihoodRatioSelection,matrix-method

(likelihoodRatioSelection), 40
likelihoodRatioSelection,MultiAssayExperiment-method

(likelihoodRatioSelection), 40
limmaSelection, 42
limmaSelection,DataFrame-method

(limmaSelection), 42
limmaSelection,matrix-method

(limmaSelection), 42

limmaSelection,MultiAssayExperiment-method
(limmaSelection), 42

list, 9, 29, 74
lmFit, 42

matrix, 4, 8, 11, 14, 16, 17, 21, 25, 26, 29,
31–33, 35, 37, 39, 40, 42, 44, 47, 49,
53, 54, 56, 60, 64, 67, 74, 76, 85, 86

measurements (asthma), 3
MixmodCluster, 45
mixmodCluster, 44
mixmodels, 43
MixModelsListsSet, 44, 46
MixModelsListsSet,list-method

(MixModelsListsSet), 46
MixModelsListsSet-class

(MixModelsListsSet), 46
mixModelsPredict (mixmodels), 43
mixModelsPredict,MixModelsListsSet,DataFrame-method

(mixmodels), 43
mixModelsPredict,MixModelsListsSet,matrix-method

(mixmodels), 43
mixModelsPredict,MixModelsListsSet,MultiAssayExperiment-method

(mixmodels), 43
mixModelsTrain (mixmodels), 43
mixModelsTrain,DataFrame-method

(mixmodels), 43
mixModelsTrain,matrix-method

(mixmodels), 43
mixModelsTrain,MultiAssayExperiment-method

(mixmodels), 43
models (ClassifyResult), 9
models,ClassifyResult-method

(ClassifyResult), 9
MultiAssayExperiment, 4, 8, 9, 11, 14, 16,

17, 21, 25, 26, 29, 31–33, 35, 37, 39,
40, 42, 44, 47, 49, 53, 54, 56, 60, 64,
67, 74, 76, 84–86

MulticoreParam, 69, 76, 81
multnet, 46
multnet-class (multnet), 46

naiveBayesKernel, 47
naiveBayesKernel,DataFrame-method

(naiveBayesKernel), 47
naiveBayesKernel,matrix-method

(naiveBayesKernel), 47
naiveBayesKernel,MultiAssayExperiment-method

(naiveBayesKernel), 47
networkCorrelationsSelection, 49
networkCorrelationsSelection,DataFrame-method

(networkCorrelationsSelection),
49



INDEX 93

networkCorrelationsSelection,matrix-method
(networkCorrelationsSelection),
49

networkCorrelationsSelection,MultiAssayExperiment-method
(networkCorrelationsSelection),
49

NSCpredictInterface, 51
NSCpredictInterface,pamrtrained,DataFrame-method

(NSCpredictInterface), 51
NSCpredictInterface,pamrtrained,matrix-method

(NSCpredictInterface), 51
NSCpredictInterface,pamrtrained,MultiAssayExperiment-method

(NSCpredictInterface), 51
NSCselectionInterface, 53
NSCselectionInterface,DataFrame-method

(NSCselectionInterface), 53
NSCselectionInterface,matrix-method

(NSCselectionInterface), 53
NSCselectionInterface,MultiAssayExperiment-method

(NSCselectionInterface), 53
NSCtrainInterface, 53, 54
NSCtrainInterface,DataFrame-method

(NSCtrainInterface), 54
NSCtrainInterface,matrix-method

(NSCtrainInterface), 54
NSCtrainInterface,MultiAssayExperiment-method

(NSCtrainInterface), 54

Pairs, 35, 56, 60
pairsDifferencesSelection, 36, 55
pairsDifferencesSelection,DataFrame-method

(pairsDifferencesSelection), 55
pairsDifferencesSelection,matrix-method

(pairsDifferencesSelection), 55
pairsDifferencesSelection,MultiAssayExperiment-method

(pairsDifferencesSelection), 55
pamr.listgenes, 53, 54
pamr.predict, 51, 52
pamr.train, 54, 55
pamrtrained, 57
pamrtrained-class (pamrtrained), 57
performance (ClassifyResult), 9
performance,ClassifyResult-method

(ClassifyResult), 9
performancePlot, 57
performancePlot,list-method

(performancePlot), 57
plotFeatureClasses, 60
plotFeatureClasses,DataFrame-method

(plotFeatureClasses), 60
plotFeatureClasses,matrix-method

(plotFeatureClasses), 60

plotFeatureClasses,MultiAssayExperiment-method
(plotFeatureClasses), 60

predict.glmnet, 21
predict.randomForest, 67
predictions (ClassifyResult), 9
predictions,ClassifyResult-method

(ClassifyResult), 9
PredictParams, 4, 11, 16, 17, 33, 37, 39, 41,

42, 50, 56, 62, 74, 77
PredictParams,ANY-method

(PredictParams), 62
PredictParams,functionOrNULL-method

(PredictParams), 62
PredictParams-class (PredictParams), 62
previousSelection, 63
previousSelection,DataFrame-method

(previousSelection), 63
previousSelection,matrix-method

(previousSelection), 63
previousSelection,MultiAssayExperiment-method

(previousSelection), 63
previousTrained, 65
previousTrained,ClassifyResult-method

(previousTrained), 65

randomForest, 27, 66, 67
randomForest-class (randomForest), 66
randomForestInterface, 66
randomForestPredictInterface

(randomForestInterface), 66
randomForestPredictInterface,randomForest,DataFrame-method

(randomForestInterface), 66
randomForestPredictInterface,randomForest,matrix-method

(randomForestInterface), 66
randomForestPredictInterface,randomForest,MultiAssayExperiment-method

(randomForestInterface), 66
randomForestTrainInterface

(randomForestInterface), 66
randomForestTrainInterface,DataFrame-method

(randomForestInterface), 66
randomForestTrainInterface,matrix-method

(randomForestInterface), 66
randomForestTrainInterface,MultiAssayExperiment-method

(randomForestInterface), 66
rankingPlot, 68
rankingPlot,list-method (rankingPlot),

68
ResubstituteParams, 4, 11, 16, 18, 34, 37,

39, 41, 42, 50, 56, 71
ResubstituteParams,ANY,ANY,ANY-method

(ResubstituteParams), 71
ResubstituteParams,numeric,character,character-method

(ResubstituteParams), 71



94 INDEX

ResubstituteParams-class
(ResubstituteParams), 71

ROCplot, 72
ROCplot,list-method (ROCplot), 72
rowFtests, 11
rowttests, 11
runTest, 63, 71, 73, 83, 88, 89
runTest,DataFrame-method (runTest), 73
runTest,matrix-method (runTest), 73
runTest,MultiAssayExperiment-method

(runTest), 73
runTests, 5, 7, 9, 64, 65, 74, 75, 75
runTests,DataFrame-method (runTests), 75
runTests,matrix-method (runTests), 75
runTests,MultiAssayExperiment-method

(runTests), 75

sampleNames (ClassifyResult), 9
sampleNames,ClassifyResult-method

(ClassifyResult), 9
samplesMetricMap, 77
samplesMetricMap,list-method

(samplesMetricMap), 77
samplesMetricMap,matrix-method

(samplesMetricMap), 77
selectionPlot, 79
selectionPlot,list-method

(selectionPlot), 79
SelectParams, 74, 77, 83
SelectParams,ANY-method (SelectParams),

83
SelectParams,functionOrList-method

(SelectParams), 83
SelectParams-class (SelectParams), 83
SelectResult, 5, 11, 16, 18, 34, 38, 39, 41,

43, 50, 53, 56, 64, 69, 80, 83, 84
SelectResult,character,character,numeric,list,list-method

(SelectResult), 84
SelectResult-class (SelectResult), 84
show,ClassifyResult-method

(ClassifyResult), 9
show,FeatureSetCollection-method

(FeatureSetCollection), 23
show,SelectResult-method

(SelectResult), 84
SnowParam, 69, 76, 81
stat_density, 13
stats, 4
subtractFromLocation, 85, 89
subtractFromLocation,DataFrame-method

(subtractFromLocation), 85
subtractFromLocation,matrix-method

(subtractFromLocation), 85

subtractFromLocation,MultiAssayExperiment-method
(subtractFromLocation), 85

svm, 86, 87
svm-class (svm), 86
SVMinterface, 86
SVMpredictInterface (SVMinterface), 86
SVMpredictInterface,svm,DataFrame-method

(SVMinterface), 86
SVMpredictInterface,svm,matrix-method

(SVMinterface), 86
SVMpredictInterface,svm,MultiAssayExperiment-method

(SVMinterface), 86
SVMtrainInterface (SVMinterface), 86
SVMtrainInterface,DataFrame-method

(SVMinterface), 86
SVMtrainInterface,matrix-method

(SVMinterface), 86
SVMtrainInterface,MultiAssayExperiment-method

(SVMinterface), 86

totalPredictions (ClassifyResult), 9
totalPredictions,ClassifyResult-method

(ClassifyResult), 9
TrainParams, 4, 11, 16, 17, 33, 37, 39, 41, 42,

50, 56, 74, 77, 88
TrainParams,ANY-method (TrainParams), 88
TrainParams,function-method

(TrainParams), 88
TrainParams-class (TrainParams), 88
TransformParams, 74, 77, 89
TransformParams,ANY-method

(TransformParams), 89
TransformParams,function-method

(TransformParams), 89
TransformParams-class

(TransformParams), 89
tunedParameters (ClassifyResult), 9
tunedParameters,ClassifyResult-method

(ClassifyResult), 9


	asthma
	bartlettSelection
	calcPerformance
	characterOrDataFrame
	classifyInterface
	ClassifyResult
	differentMeansSelection
	distribution
	dlda
	DLDAinterface
	DMDselection
	edgeRselection
	edgesToHubNetworks
	elasticNetFeatures
	elasticNetGLMinterface
	FeatureSetCollection
	FeatureSetCollectionOrNULL
	featureSetSummary
	fisherDiscriminant
	forestFeatures
	functionOrList
	functionOrNULL
	getLocationsAndScales
	integerOrNumeric
	interactorDifferences
	kNNinterface
	KolmogorovSmirnovSelection
	kTSPclassifier
	KullbackLeiblerSelection
	leveneSelection
	likelihoodRatioSelection
	limmaSelection
	mixmodels
	MixModelsListsSet
	multnet
	naiveBayesKernel
	networkCorrelationsSelection
	NSCpredictInterface
	NSCselectionInterface
	NSCtrainInterface
	pairsDifferencesSelection
	pamrtrained
	performancePlot
	plotFeatureClasses
	PredictParams
	previousSelection
	previousTrained
	randomForest
	randomForestInterface
	rankingPlot
	ResubstituteParams
	ROCplot
	runTest
	runTests
	samplesMetricMap
	selectionPlot
	SelectParams
	SelectResult
	subtractFromLocation
	svm
	SVMinterface
	TrainParams
	TransformParams
	Index

