Package 'HDCytoData'

April 11, 2019

Version 1.2.11

Title Collection of high-dimensional cytometry benchmark datasets in Bioconductor object formats														
Description Data package containing a collection of high-dimensional cytometry benchmark datasets saved in SummarizedExperiment and flowSet Bioconductor object formats, including row and column metadata describing samples, cell populations (clusters), and protein marker														
<pre>URL https://github.com/lmweber/HDCytoData</pre>														
<pre>BugReports https://github.com/lmweber/HDCytoData/issues</pre>														
License MIT + file LICENSE														
biocViews ExperimentHub, ExperimentData, ExpressionData, FlowCytometryData, Homo_sapiens_Data, ImmunoOncologyData														
Depends ExperimentHub, SummarizedExperiment, flowCore														
Imports utils, methods														
VignetteBuilder knitr														
Suggests BiocStyle, knitr, rmarkdown, FlowSOM, Rtsne, ggplot2														
RoxygenNote 6.0.1														
git_url https://git.bioconductor.org/packages/HDCytoData														
git_branch RELEASE_3_8														
git_last_commit b39e82e														
git_last_commit_date 2019-01-30														
Date/Publication 2019-04-11														
Author Lukas M. Weber [aut, cre], Charlotte Soneson [aut]														
Maintainer Lukas M. Weber < lukmweber@gmail.com>														
R topics documented:														
Bodenmiller_BCR_XL HDCytoData Krieg_Anti_PD_1 Levine_13dim Levine_32dim Mosmann_rare														

	Nilsson_rare Samusik_01 Samusik_all																		 				 		12
Index																									16
Bodei	nmiller_BCR_	XL	'B	ode	eni	nil	llei	r	BC	CR	X	L	' d	at	as	et									

Description

Mass cytometry (CyTOF) dataset from Bodenmiller et al. (2012), consisting of 8 paired samples (16 samples) of stimulated (BCR-XL) and unstimulated peripheral blood cells from healthy individuals. This dataset can be used to benchmark algorithms for differential analysis, in particular detection of differential states within cell populations.

Usage

```
Bodenmiller_BCR_XL_SE(metadata = FALSE)
Bodenmiller_BCR_XL_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

Details

This is a mass cytometry (CyTOF) dataset from Bodenmiller et al. (2012), consisting of paired samples of peripheral blood cells from healthy individuals, where one sample from each pair was stimulated with B cell receptor / Fc receptor cross-linker (BCR-XL), and the other sample is the reference. The dataset contains strong differential expression of several signaling markers in several cell populations; one of the strongest effects is differential expression of phosphorylated S6 (pS6) in the population of B cells.

This dataset can be used to benchmark algorithms for differential analysis, in particular detection of differential states within cell populations (e.g. differential expression of pS6 in B cells).

There are 8 paired samples (i.e. 16 samples in total), and a total of 172,791 cells. The dataset contains expression levels of 24 protein markers (10 surface lineage markers used to define cell populations or clusters, and 14 intracellular signaling functional markers). The surface markers are classified as 'cell type' markers, and the signaling markers as 'cell state' markers.

Cell population or cluster labels are available from Nowicka et al. (2017), where these were generated using a strategy of expert-guided manual merging of automatically generated clusters from the FlowSOM clustering algorithm (Van Gassen et al., 2015).

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains group IDs, patient IDs, sample IDs, and cell population IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein

marker ('cell type' or 'cell state'). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet. The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed with the description accessor function for the individual flowFrames; this includes filenames, additional sample information, additional marker information, and cell population information.

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for mass cytometry data is the asinh with cofactor = 5.

Original source: Bodenmiller et al. (2012): https://www.ncbi.nlm.nih.gov/pubmed/22902532

Original link to raw data (Cytobank, experiment 15713): https://community.cytobank.org/cytobank/experiments/15713/d

Additional information (Citrus wiki page): https://github.com/nolanlab/citrus/wiki/PBMC-Example-1

Cell population labels from: Nowicka et al. (2017), v2: https://f1000research.com/articles/6-748/v2

This dataset has previously been used to benchmark algorithms for differential analysis by ourselves and other authors, including Bruggner et al. (2014) (https://www.ncbi.nlm.nih.gov/pubmed/24979804/), Nowicka et al. (2017) (https://f1000research.com/articles/6-748/v2), and Weber et al. (2018) (https://www.biorxiv.org/content/early/2018/11/22/349738).

Data files are also available from FlowRepository (FR-FCM-ZYL8): http://flowrepository.org/id/FR-FCM-ZYL8

Value

Returns a SummarizedExperiment or flowSet object.

References

Bodenmiller et al. (2012). "Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators." Nature Biotechnology, 30(9), 858-867: https://www.ncbi.nlm.nih.gov/pubmed/22902532

Bruggner et al. (2014), "Automated identification of stratifying signatures in cellular subpopulations." PNAS, 111(26), E2770-E2777: https://www.ncbi.nlm.nih.gov/pubmed/24979804/

Nowicka et al. (2017). "CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets." F1000Research, v2: https://f1000research.com/articles/6-748/v2

Van Gassen et al. (2015). "FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data." Cytometry Part A, 87A, 636-645: https://www.ncbi.nlm.nih.gov/pubmed/25573116

Weber et al. (2018). "diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering." bioRxiv: https://www.biorxiv.org/content/early/2018/11/22/349738

Examples

```
Bodenmiller_BCR_XL_SE()
Bodenmiller_BCR_XL_flowSet()
```

4 Krieg_Anti_PD_1

HDCytoData

Data package of high-dimensional cytometry datasets

Description

Data package containing a collection of high-dimensional cytometry datasets saved in SummarizedExperiment and flowSet Bioconductor object formats, hosted on Bioconductor ExperimentHub.

Details

This package contains a set of publicly available high-dimensional flow cytometry and mass cytometry (CyTOF) datasets, which have been formatted into SummarizedExperiment and flowSet Bioconductor object formats.

The objects contain the cell-level expression values, as well as row and column metadata. The row metadata includes sample IDs, group IDs, and true cell population labels or cluster labels (where available). The column metadata includes channel names, protein marker names, and protein marker classes (cell type or cell state).

These datasets have been used in our previous work and publications for benchmarking purposes, e.g. to benchmark clustering algorithms or methods for differential analysis. They are provided here in the SummarizedExperiment and flowSet formats to make them easier to access.

The package contains the following datasets, which can be grouped into datasets useful for benchmarking either (i) clustering algorithms or (ii) methods for differential analysis.

Differential analysis:

• Bodenmiller_BCR_XL

(For more datasets, see the updated development version of the HDCytoData package, available in the development version of Bioconductor.)

For additional details on each dataset, including references and raw data sources, see the help files for each dataset.

For a short tutorial showing how to load the data objects, see the package vignette.

Note that flow and mass cytometry datasets should be transformed prior to performing any down-stream analyses, such as clustering. Standard transforms include the asinh with cofactor parameter equal to 5 (for mass cytometry data) or 150 (for flow cytometry data).

The steps to prepare each data object from the raw data files are included in the make-data scripts in the directory inst/scripts.

Krieg_Anti_PD_1

'Krieg_Anti_PD_1' dataset

Description

Mass cytometry (CyTOF) dataset from Krieg et al. (2018), consisting of 20 baseline samples (prior to treatment) of peripheral blood from melanoma skin cancer patients subsequently treated with anti-PD-1 immunotherapy. The samples are split across 2 conditions (non-responders and responders) and 2 batches. This dataset can be used to benchmark algorithms for differential analysis, in particular detection of differentially abundant rare cell populations.

Krieg_Anti_PD_1 5

Usage

```
Krieg_Anti_PD_1_SE(metadata = FALSE)
Krieg_Anti_PD_1_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

Details

This is a mass cytometry (CyTOF) dataset from Krieg et al. (2018), who used mass cytometry to characterize immune cell subsets in peripheral blood from melanoma skin cancer patients treated with anti-PD-1 immunotherapy. This study found that the frequency of CD14+CD16-HLA-DRhi monocytes in baseline samples (taken from patients prior to treatment) was a strong predictor of survival in response to immunotherapy treatment. In particular, the frequency of a small subpopulation of CD14+CD33+HLA-DRhiICAM-1+CD64+CD141+CD86+CD11c+CD38+PD-L1+CD11b+ monocytes in baseline samples was strongly associated with responder status following immunotherapy treatment. Note that this dataset contains a strong batch effect, due to sample acquisition on two different days (Krieg et al., 2018).

This dataset can be used to benchmark algorithms for differential analysis, in particular detection of differentially abundant rare cell populations (i.e. the small subpopulation of CD14+CD33+HLA-DRhiICAM-1+CD64+CD141+CD86+CD11c+CD38+PD-L1+CD11b+ monocytes).

The dataset contains 20 baseline samples (i.e. samples taken prior to treatment), from patients subsequently classified into 2 groups (9 non-responders and 11 responders). Samples are also split across 2 batches ('batch23' and 'batch29'), due to sample acquisition on two different days. The total number of cells is 85,715.

There are 24 'cell type' markers used to characterize cell subpopulations. (One additional cell type marker – CD45 – is also available, but should be excluded from most analyses since almost all cells show very high expression of CD45; so it does not help distinguish subpopulations, and may dominate other signals. Therefore, CD45 has been classified as 'none' in the marker_info table.)

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains group IDs, batch IDs, and sample IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein marker ('cell type' or 'cell state'; for this dataset, all proteins are cell type markers). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet. The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed with the description accessor function for the individual flowFrames; this includes filenames, additional sample information, and additional marker information.

6 Levine_13dim

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for mass cytometry data is the asinh with cofactor = 5.

Original source: Krieg et al. (2018): https://www.ncbi.nlm.nih.gov/pubmed/29309059

Original link to raw data (FlowRepository, FR-FCM-ZY34): http://flowrepository.org/id/FR-FCM-ZY34

This dataset was previously used to benchmark algorithms for differential analysis in our article, Weber et al. (2018): https://www.biorxiv.org/content/early/2018/11/22/349738. (For additional details on the dataset, see Supplementary Note 3: Benchmark datasets.)

Data files are also available from FlowRepository (FR-FCM-ZYL8): http://flowrepository.org/id/FR-FCM-ZYL8

Value

Returns a SummarizedExperiment or flowSet object.

References

Krieg et al. (2018), "High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy." Nature Medicine, 24, 144-153: https://www.ncbi.nlm.nih.gov/pubmed/29309059

Weber et al. (2018). "diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering." bioRxiv: https://www.biorxiv.org/content/early/2018/11/22/349738

Examples

```
Krieg_Anti_PD_1_SE()
Krieg_Anti_PD_1_flowSet()
```

Levine_13dim

'Levine_13dim' dataset

Description

Mass cytometry (CyTOF) dataset from Levine et al. (2015), containing 13 dimensions (surface protein markers). Manually gated cell population labels are available for 24 populations. Cells are human bone marrow cells from a single healthy donor. This dataset can be used to benchmark clustering algorithms.

Usage

```
Levine_13dim_SE(metadata = FALSE)
Levine_13dim_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

Levine_13dim 7

Details

This is a 13-dimensional mass cytometry (CyTOF) data set, consisting of expression levels of 13 surface marker proteins. Cell population labels are available for 24 manually gated populations. Cells are human bone marrow cells from a single healthy donor. Manually gated cell population labels were provided by the original authors.

This dataset can be used to benchmark clustering algorithms.

The dataset contains cells from a single patient; a total of 167,044 cells (81,747 manually gated and 85,297 unclassified); 24 manually gated cell population IDs (as well as 'unassigned'); and a total of 13 surface marker proteins.

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains the manually gated cell population IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein marker ('cell type' or 'cell state'; for this dataset, all proteins are cell type markers). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet (note that for this dataset, there is only one sample). The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed with the description accessor function for the individual flowFrames; this includes additional sample information (where available), marker information, and cell population information.

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for mass cytometry data is the asinh with cofactor = 5.

Original source: "benchmark data set 1" in Levine et al. (2015): https://www.ncbi.nlm.nih.gov/pubmed/26095251

Original link to raw data: https://www.cytobank.org/cytobank/experiments/46259 (download the FCS files with Actions -> Export -> Download Files -> All FCS Files)

This dataset was previously used to benchmark clustering algorithms for high-dimensional cytometry in our article, Weber and Robinson (2016): https://www.ncbi.nlm.nih.gov/pubmed/27992111

 $Data\ files\ are\ also\ available\ from\ FlowRepository\ (FR-FCM-ZZPH):\ http://flowrepository.org/id/FR-FCM-ZZPH$

Value

Returns a SummarizedExperiment or flowSet object.

References

Levine et al. (2015), "Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis", Cell, 162, 184-197: https://www.ncbi.nlm.nih.gov/pubmed/26095251

Weber and Robinson (2016), "Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data", Cytometry Part A, 89A, 1084-1096: https://www.ncbi.nlm.nih.gov/pubmed/27992111

8 Levine_32dim

Examples

```
Levine_13dim_SE()
Levine_13dim_flowSet()
```

Levine_32dim

'Levine_32dim' dataset

Description

Mass cytometry (CyTOF) dataset from Levine et al. (2015), containing 32 dimensions (surface protein markers). Manually gated cell population labels are available for 14 populations. Cells are human bone marrow cells from 2 healthy donors. This dataset can be used to benchmark clustering algorithms.

Usage

```
Levine_32dim_SE(metadata = FALSE)
Levine_32dim_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

Details

This is a 32-dimensional mass cytometry (CyTOF) data set, consisting of expression levels of 32 surface marker proteins. Cell population labels are available for 14 manually gated populations. Cells are human bone marrow cells from 2 healthy donors. Manually gated cell population labels were provided by the original authors.

This dataset can be used to benchmark clustering algorithms.

The dataset contains cells from 2 patients ('H1' and 'H2'); a total of 265,627 cells (104,184 manually gated and 161,443 unclassified); 14 manually gated cell population IDs (as well as 'unassigned'); and a total of 32 surface marker proteins.

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains patient IDs and manually gated cell population IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein marker ('cell type' or 'cell state'; for this dataset, all proteins are cell type markers). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet. The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names

Mosmann_rare 9

are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed with the description accessor function for the individual flowFrames; this includes additional sample information (where available), marker information, and cell population information.

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for mass cytometry data is the asinh with cofactor = 5.

Original source: "benchmark data set 2" in Levine et al. (2015): https://www.ncbi.nlm.nih.gov/pubmed/26095251

Original link to raw data: https://www.cytobank.org/cytobank/experiments/46102 (download the .zip file shown under "Exported Files")

This dataset was previously used to benchmark clustering algorithms for high-dimensional cytometry in our article, Weber and Robinson (2016): https://www.ncbi.nlm.nih.gov/pubmed/27992111

Data files are also available from FlowRepository (FR-FCM-ZZPH): http://flowrepository.org/id/FR-FCM-ZZPH

Value

Returns a SummarizedExperiment or flowSet object.

References

Levine et al. (2015), "Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis", Cell, 162, 184-197: https://www.ncbi.nlm.nih.gov/pubmed/26095251

Weber and Robinson (2016), "Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data", Cytometry Part A, 89A, 1084-1096: https://www.ncbi.nlm.nih.gov/pubmed/27992111

Examples

```
Levine_32dim_SE()
Levine_32dim_flowSet()
```

Mosmann_rare

'Mosmann_rare' dataset

Description

Flow cytometry dataset from Mosmann et al. (2014), containing 14 dimensions (7 surface protein markers and 7 signaling markers). Manually gated cell population labels are available for one rare population of activated (cytokine-producing) memory CD4 T cells. Cells are human peripheral blood cells exposed to influenza antigens, from a single healthy donor. This dataset can be used to benchmark clustering algorithms for rare cell populations.

Usage

```
Mosmann_rare_SE(metadata = FALSE)
Mosmann_rare_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

10 Mosmann_rare

Details

This is a 14-dimensional flow cytometry dataset, consisting of expression levels of 7 surface protein markers and 7 signaling markers. Cell population labels are available for one rare population of activated (cytokine-producing) memory CD4 T cells. Cells are human peripheral blood cells exposed to influenza antigens, from a single healthy donor.

This dataset can be used to benchmark clustering algorithms for rare cell populations.

The dataset contains cells from a single patient; a total of 396,460 cells (including 109 manually gated cells from the rare population of interest); and a total of 14 protein markers (7 surface protein markers and 7 signaling markers).

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains the manually gated cell population IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein marker ('cell type' or 'cell state'). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet (note that for this dataset, there is only one sample). The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed with the description accessor function for the individual flowFrames; this includes additional sample information (where available), marker information, and cell population information.

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for flow cytometry data is the asinh with cofactor = 150.

Original source: Figure 4 in Mosmann et al. (2014): https://www.ncbi.nlm.nih.gov/pubmed/24532172

Original link to raw data: http://flowrepository.org/id/FR-FCM-ZZ8J (filename: "JMW034-J16OFVQX_G2 001 3_D07.fcs"; see Supplementary Information file 3 for full list of filenames)

This dataset was previously used to benchmark clustering algorithms for high-dimensional cytometry in our article, Weber and Robinson (2016): https://www.ncbi.nlm.nih.gov/pubmed/27992111

Data files are also available from FlowRepository (FR-FCM-ZZPH): http://flowrepository.org/id/FR-FCM-ZZPH

Value

Returns a SummarizedExperiment or flowSet object.

References

Mosmann et al. (2014), "SWIFT - Scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation", Cytometry Part A, 85A, 422-433: https://www.ncbi.nlm.nih.gov/pubmed/24532172

Weber and Robinson (2016), "Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data", Cytometry Part A, 89A, 1084-1096: https://www.ncbi.nlm.nih.gov/pubmed/27992111

Nilsson_rare 11

Examples

```
Mosmann_rare_SE()
Mosmann_rare_flowSet()
```

Nilsson_rare

'Nilsson_rare' dataset

Description

Flow cytometry dataset from Nilsson et al. (2013), containing 13 dimensions (surface protein markers). Manually gated cell population labels are available for one rare population of hematopoietic stem cells (HSCs). Cells are human bone marrow cells from a single healthy donor. This dataset can be used to benchmark clustering algorithms for rare cell populations.

Usage

```
Nilsson_rare_SE(metadata = FALSE)
Nilsson_rare_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

Details

This is a 13-dimensional flow cytometry dataset, consisting of expression levels of 13 surface protein markers. Cell population labels are available for one rare population of hematopoietic stem cells (HSCs). Cells are human bone marrow cells from a single healthy donor.

This dataset can be used to benchmark clustering algorithms for rare cell populations.

The dataset contains cells from a single patient; a total of 44,140 cells (including 358 manually gated cells from the rare population of interest); and a total of 13 surface marker proteins.

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains the manually gated cell population IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein marker ('cell type' or 'cell state'; for this dataset, all proteins are cell type markers). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet (note that for this dataset, there is only one sample). The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed

12 Samusik_01

with the description accessor function for the individual flowFrames; this includes additional sample information (where available), marker information, and cell population information.

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for flow cytometry data is the asinh with cofactor = 150.

Original source: Figure 2 in Nilsson et al. (2013): https://www.ncbi.nlm.nih.gov/pubmed/23839904 Original link to raw data: http://flowrepository.org/id/FR-FCM-ZZ6L

This dataset was previously used to benchmark clustering algorithms for high-dimensional cytometry in our article, Weber and Robinson (2016): https://www.ncbi.nlm.nih.gov/pubmed/27992111

Data files are also available from FlowRepository (FR-FCM-ZZPH): http://flowrepository.org/id/FR-FCM-ZZPH

Value

Returns a SummarizedExperiment or flowSet object.

References

Nilsson et al. (2013), "Frequency determination of rare populations by flow cytometry: A hematopoietic stem cell perspective", Cytometry Part A, 83A, 721-727: http://www.ncbi.nlm.nih.gov/pubmed/23839904

Weber and Robinson (2016), "Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data", Cytometry Part A, 89A, 1084-1096: https://www.ncbi.nlm.nih.gov/pubmed/27992111

Examples

```
Nilsson_rare_SE()
Nilsson_rare_flowSet()
```

Samusik_01

'Samusik_01' dataset

Description

Mass cytometry (CyTOF) dataset from Samusik et al. (2016), containing 39 dimensions (surface protein markers). Manually gated cell population labels are available for 24 populations. The full dataset ('Samusik_all') contains cells from 10 replicate bone marrow samples from C57BL/6J mice (i.e. samples from 10 different mice); this dataset ('Samusik_01') contains the data from sample 01 only. This dataset can be used to benchmark clustering algorithms.

Usage

```
Samusik_01_SE(metadata = FALSE)
Samusik_01_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

Samusik_01 13

Details

This is a 39-dimensional mass cytometry (CyTOF) data set, consisting of expression levels of 39 surface marker proteins. Cell population labels are available for 24 manually gated populations. Manually gated cell population labels were provided by the original authors. The full dataset ('Samusik_all') contains cells from 10 replicate bone marrow samples from C57BL/6J mice (i.e. samples from 10 different mice); this dataset ('Samusik 01') contains the data from sample 01 only.

This dataset can be used to benchmark clustering algorithms.

The 'Samusik_01' dataset contains cells from 1 mouse (sample '01'); a total of 86,864 cells (53,173 manually gated and 33,691 unclassified); 24 manually gated cell population IDs (as well as 'unassigned'); and a total of 39 surface marker proteins.

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains sample IDs and manually gated cell population IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein marker ('cell type' or 'cell state'; for this dataset, all proteins are cell type markers). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet (note that for this dataset, there is only one sample). The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed with the description accessor function for the individual flowFrames; this includes additional sample information (where available), marker information, and cell population information.

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for mass cytometry data is the asinh with cofactor = 5.

Original source: Samusik et al. (2016): https://www.ncbi.nlm.nih.gov/pubmed/27183440

Original link to raw data (.zip file): "https://web.stanford.edu/~samusik/Panorama BM 1-10.zip"

This dataset was previously used to benchmark clustering algorithms for high-dimensional cytometry in our article, Weber and Robinson (2016): https://www.ncbi.nlm.nih.gov/pubmed/27992111

Data files are also available from FlowRepository (FR-FCM-ZZPH): http://flowrepository.org/id/FR-FCM-ZZPH

Value

Returns a SummarizedExperiment or flowSet object.

References

Samusik et al. (2016), "Automated mapping of phenotype space with single-cell data", Nature Methods, 13(6), 493-496: https://www.ncbi.nlm.nih.gov/pubmed/27183440

Weber and Robinson (2016), "Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data", Cytometry Part A, 89A, 1084-1096: https://www.ncbi.nlm.nih.gov/pubmed/27992111

14 Samusik_all

Examples

```
Samusik_01_SE()
Samusik_01_flowSet()
```

Samusik_all

'Samusik_all' dataset

Description

Mass cytometry (CyTOF) dataset from Samusik et al. (2016), containing 39 dimensions (surface protein markers). Manually gated cell population labels are available for 24 populations. This dataset contains cells from 10 replicate bone marrow samples from C57BL/6J mice (i.e. samples from 10 different mice). This dataset can be used to benchmark clustering algorithms.

Usage

```
Samusik_all_SE(metadata = FALSE)
Samusik_all_flowSet(metadata = FALSE)
```

Arguments

metadata

logical value indicating whether ExperimentHub metadata (describing the overall dataset) should be returned only, or if the whole dataset should be loaded. Default = FALSE, which loads the whole dataset.

Details

This is a 39-dimensional mass cytometry (CyTOF) data set, consisting of expression levels of 39 surface marker proteins. Cell population labels are available for 24 manually gated populations. Manually gated cell population labels were provided by the original authors. This dataset contains cells from 10 replicate bone marrow samples from C57BL/6J mice (i.e. samples from 10 different mice).

This dataset can be used to benchmark clustering algorithms.

The 'Samusik_all' dataset contains cells from 10 mice (samples '01' to '10); a total of 841,644 cells (514,386 manually gated and 327,258 unclassified); 24 manually gated cell population IDs (as well as 'unassigned'); and a total of 39 surface marker proteins.

The dataset is provided in two Bioconductor object formats: SummarizedExperiment and flowSet. In each case, cells are stored in rows, and protein markers in columns (this is the usual format used for flow and mass cytometry data).

For the link{SummarizedExperiment}, row and column metadata can be accessed with the rowData and colData accessor functions from the SummarizedExperiment package. The row data contains sample IDs and manually gated cell population IDs. The column data contains channel names, protein marker names, and a factor marker_class to identify the class of each protein marker ('cell type' or 'cell state'; for this dataset, all proteins are cell type markers). The expression values for each cell can be accessed with assay. The expression values are formatted as a single table.

For the flowSet, the expression values are stored in a separate table for each sample. Each sample is represented by one flowFrame object within the overall flowSet. The expression values can be accessed with the exprs function from the flowCore package. Row metadata is stored as additional columns of data within the flowFrame for each sample; note that factor values are converted to numeric values, since the expression tables must be numeric matrices. Channel names

Samusik_all 15

are stored in the column names of the expression tables. Additional row and column metadata is stored in the description slots, which can be accessed with the description accessor function for the individual flowFrames; this includes additional sample information (where available), marker information, and cell population information.

Prior to performing any downstream analyses, the expression values should be transformed. A standard transformation used for mass cytometry data is the asinh with cofactor = 5.

Original source: Samusik et al. (2016): https://www.ncbi.nlm.nih.gov/pubmed/27183440

Original link to raw data (.zip file): "https://web.stanford.edu/~samusik/Panorama BM 1-10.zip"

This dataset was previously used to benchmark clustering algorithms for high-dimensional cytometry in our article, Weber and Robinson (2016): https://www.ncbi.nlm.nih.gov/pubmed/27992111

 $Data\ files\ are\ also\ available\ from\ FlowRepository\ (FR-FCM-ZZPH):\ http://flowrepository.org/id/FR-FCM-ZZPH$

Value

Returns a SummarizedExperiment or flowSet object.

References

Samusik et al. (2016), "Automated mapping of phenotype space with single-cell data", Nature Methods, 13(6), 493-496: https://www.ncbi.nlm.nih.gov/pubmed/27183440

Weber and Robinson (2016), "Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data", Cytometry Part A, 89A, 1084-1096: https://www.ncbi.nlm.nih.gov/pubmed/27992111

Examples

Samusik_all_SE()
Samusik_all_flowSet()

Index

```
*Topic datasets
    Bodenmiller_BCR_XL, 2
    HDCytoData, 4
    Krieg_Anti_PD_1, 4
    Levine_13dim, 6
    Levine_32dim, 8
    Mosmann_rare, 9
    Nilsson_rare, 11
    Samusik_01, 12
    Samusik_all, 14
asinh, 3, 4, 6, 7, 9, 10, 12, 13, 15
assay, 3, 5, 7, 8, 10, 11, 13, 14
Bodenmiller_BCR_XL, 2, 4
Bodenmiller_BCR_XL_flowSet
         (Bodenmiller_BCR_XL), 2
Bodenmiller_BCR_XL_SE
         (Bodenmiller_BCR_XL), 2
colData, 2, 5, 7, 8, 10, 11, 13, 14
description, 3, 5, 7, 9, 10, 12, 13, 15
exprs, 3, 5, 7, 8, 10, 11, 13, 14
flowCore, 3, 5, 7, 8, 10, 11, 13, 14
flowFrame, 3, 5, 7, 8, 10, 11, 13, 14
flowSet, 2-15
HDCytoData, 4
HDCytoData-package (HDCytoData), 4
Krieg_Anti_PD_1, 4
Krieg_Anti_PD_1_flowSet
         (Krieg_Anti_PD_1), 4
Krieg_Anti_PD_1_SE (Krieg_Anti_PD_1), 4
Levine_13dim, 6
Levine_13dim_flowSet (Levine_13dim), 6
Levine_13dim_SE (Levine_13dim), 6
Levine_32dim, 8
Levine_32dim_flowSet (Levine_32dim), 8
Levine_32dim_SE (Levine_32dim), 8
Mosmann_rare, 9
```

```
Mosmann_rare_flowSet (Mosmann_rare), 9
Mosmann_rare_SE (Mosmann_rare), 9
Nilsson_rare, 11
Nilsson_rare_flowSet (Nilsson_rare), 11
Nilsson_rare_SE (Nilsson_rare), 11
rowData, 2, 5, 7, 8, 10, 11, 13, 14
Samusik_01, 12
Samusik_01_flowSet (Samusik_01), 12
Samusik_01_SE (Samusik_01), 12
Samusik_all, 14
Samusik_all_flowSet (Samusik_all), 14
Samusik_all_SE (Samusik_all), 14
SummarizedExperiment, 2-15
```