
csaw : ChIP-seq analysis with windows
User’s Guide

Aaron T. L. Lun 1

1The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia

October 13, 2017

Abstract

This document contains instructions on how to use csaw for differential binding analyses of
ChIP-seq data with windows. It covers read counting into windows, filtering for windows of
interest, normalization of sample-specific biases, variance modelling and hypothesis testing,
summarization of windows into regions, and visualization and annotation of detected regions.

First edition: 15 August 2012
Last revised: 17 September 2017
Last compiled: 12 October 2017

Package

csaw 1.11.3

http://bioconductor.org/packages/csaw
http://bioconductor.org/packages/csaw


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 How to get help . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 How to cite this package . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Converting reads to counts . . . . . . . . . . . . . . . . . . . . 9

2.1 Types of input data . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Counting reads into windows . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Filtering out low-quality reads . . . . . . . . . . . . . . . . . . . 11

2.2.3 Avoiding problematic genomic regions . . . . . . . . . . . . . . . 12

2.2.4 Additional notes about parameter specification . . . . . . . . . . 13

2.2.5 Increasing speed and memory efficiency . . . . . . . . . . . . . 13

2.2.6 Assigning reads into bins . . . . . . . . . . . . . . . . . . . . . 14

2.3 Experiments involving paired-end data . . . . . . . . . . . . . . 15

2.4 Estimating the average fragment length . . . . . . . . . . . . . . 17

2.4.1 Using cross-correlation plots . . . . . . . . . . . . . . . . . . . 17

2.4.2 Variable fragment lengths between libraries . . . . . . . . . . . . 18

2.5 Choosing an appropriate window size . . . . . . . . . . . . . . . 19

2.6 Miscellaneous functions for non-standard counting . . . . . . . 20

2.6.1 Counting over manually specified regions . . . . . . . . . . . . . 20

2.6.2 Strand-specific counting . . . . . . . . . . . . . . . . . . . . . 20

2



csaw User’s Guide

3 Filtering out uninteresting windows. . . . . . . . . . . . . . . 22

3.1 Independent filtering for count data . . . . . . . . . . . . . . . . 22

3.2 By count size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 By proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 By global enrichment . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 By local enrichment . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Mimicking single-sample peak callers . . . . . . . . . . . . . . . 25

3.5.2 Identifying local maxima . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 With negative controls . . . . . . . . . . . . . . . . . . . . . . 26

3.6 By prior information . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Some final comments about filtering . . . . . . . . . . . . . . . . 28

4 Calculating normalization factors . . . . . . . . . . . . . . . . 30

4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Eliminating composition biases . . . . . . . . . . . . . . . . . . . 30

4.2.1 Using the TMM method on binned counts . . . . . . . . . . . . . 30

4.2.2 Motivating the use of large bins instead of windows . . . . . . . . 31

4.2.3 Visualizing normalization outcomes with MA plots . . . . . . . . . 32

4.3 Eliminating efficiency biases . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Using the TMM method on high-abundance regions . . . . . . . . 33

4.3.2 Filtering windows prior to normalization . . . . . . . . . . . . . . 34

4.3.3 Checking normalization with MA plots . . . . . . . . . . . . . . . 34

4.4 Choosing between normalization strategies. . . . . . . . . . . . 35

4.5 Scaling normalization with spike-in chromatin . . . . . . . . . . 36

4.6 Dealing with trended biases . . . . . . . . . . . . . . . . . . . . . 37

4.6.1 Applying loess-based normalization to the counts . . . . . . . . . 37

4.6.2 Characteristics of loess normalization . . . . . . . . . . . . . . . 37

4.6.3 Checking normalization with MA plots . . . . . . . . . . . . . . . 38

4.7 A word on other biases . . . . . . . . . . . . . . . . . . . . . . . 39

3

http://bioconductor.org/packages/csaw


csaw User’s Guide

5 Testing for differential binding . . . . . . . . . . . . . . . . . . 40

5.1 Introduction to edgeR . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.2 Setting up the data . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Estimating the dispersions . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 Stabilising estimates with empirical Bayes . . . . . . . . . . . . . 41

5.2.2 Modelling variable dispersions between windows . . . . . . . . . 43

5.3 Testing for DB windows . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 What to do without replicates . . . . . . . . . . . . . . . . . . . . 44

5.5 Examining replicate similarity with MDS plots . . . . . . . . . . . 45

6 Correction for multiple testing . . . . . . . . . . . . . . . . . . 47

6.1 Problems with false discovery rate control. . . . . . . . . . . . . 47

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.2 Restoring FDR control with clustered windows . . . . . . . . . . . 48

6.2 Clustering windows into regions . . . . . . . . . . . . . . . . . . 48

6.2.1 Clustering with external information . . . . . . . . . . . . . . . . 48

6.2.2 Quick and dirty clustering . . . . . . . . . . . . . . . . . . . . . 49

6.3 Summarizing the direction of DB per cluster . . . . . . . . . . . 51

6.3.1 Based on the contribution to the combined p-value . . . . . . . . . 51

6.3.2 Based on the most significant window . . . . . . . . . . . . . . . 51

6.4 Squeezing out more detection power . . . . . . . . . . . . . . . 53

6.4.1 Integrating results from multiple window sizes . . . . . . . . . . . 53

6.4.2 Weighting windows on abundance . . . . . . . . . . . . . . . . 54

6.4.3 Filtering after testing but before correction . . . . . . . . . . . . . 55

6.5 FDR control in difficult situations . . . . . . . . . . . . . . . . . . 55

6.5.1 Clustering only on DB windows for diffuse marks . . . . . . . . . 55

6.5.2 Using the empirical FDR for noisy data . . . . . . . . . . . . . . 56

6.6 Further points on data management . . . . . . . . . . . . . . . . 57

7 Post-processing steps . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 Adding gene-based annotation . . . . . . . . . . . . . . . . . . . 58

4

http://bioconductor.org/packages/csaw
http://bioconductor.org/packages/edgeR


csaw User’s Guide

7.2 Checking bimodality for TF studies . . . . . . . . . . . . . . . . . 60

7.3 Saving the results to file . . . . . . . . . . . . . . . . . . . . . . . 60

7.4 Simple visualization of genomic coverage . . . . . . . . . . . . . 61

8 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1.1 Obtaining the FastQ files . . . . . . . . . . . . . . . . . . . . . 63

8.1.2 Alignment and processing to produce BAM files . . . . . . . . . . 64

8.2 Session information . . . . . . . . . . . . . . . . . . . . . . . . . 64

5

http://bioconductor.org/packages/csaw


Chapter 1

Introduction

1.1 Scope

This document gives an overview of the Bioconductor package csaw for detecting differential
binding (DB) in ChIP-seq experiments. csaw uses sliding windows to identify significant
changes in binding patterns for transcription factors (TFs) or histone marks across different
biological conditions [1]. However, it can also be applied to any sequencing technique where
reads represent coverage of enriched genomic regions. The statistical methods described here
are based upon those in the edgeR package [2]. Knowledge of edgeR is useful but not a
prerequesite for reading this guide.

1.2 How to get help

Most questions about csaw should be answered by the documentation. Every function men-
tioned in this guide has its own help page. For example, a detailed description of the argu-
ments and output of the windowCounts function can be obtained by typing ?windowCounts

or help(windowCounts) at the R prompt. Further detail on the methods or the underlying
theory can be found in the references at the bottom of each help page.

The authors of the package always appreciate receiving reports of bugs in the package
functions or in the documentation. The same goes for well-considered suggestions for im-
provements. Other questions about how to use csaw are best sent to the Bioconductor
support site at https://support.bioconductor.org. Please send requests for general assis-
tance and advice to the support site, rather than to the individual authors. Users post-
ing to the support site for the first time may find it helpful to read the posting guide at
http://www.bioconductor.org/help/support/posting-guide.

1.3 How to cite this package

Most users of csaw should cite the following in any publications:
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A. T. Lun and G. K. Smyth. csaw: a Bioconductor package for differential binding
analysis of ChIP-seq data using sliding windows. Nucleic Acids Res., 44(5):e45,
Mar 2016

Anyone who uses the Bioconductor workflow to construct their analyses should also cite:

A. T. L. Lun and G. K. Smyth. From reads to regions: a Bioconductor workflow
to detect differential binding in ChIP-seq data. F1000Research, 4, 2015

For people interested in combined p-values, their use in DB analyses was proposed in:

A. T. Lun and G. K. Smyth. De novo detection of differentially bound regions for
ChIP-seq data using peaks and windows: controlling error rates correctly. Nucleic
Acids Res., 42(11):e95, Jul 2014

The DB analyses shown here use methods from the edgeR package, which has its own citation
recommendations. See the appropriate section of the edgeR user’s guide for more details.

1.4 Quick start

A typical ChIP-seq analysis in csaw would look something like that described below. This
assumes that a vector of file paths to sorted and indexed BAM files is provided in bam.files

and a design matrix in supplied in design. The code is split across several steps:

1. Loading in data from BAM files.

library(csaw)

param <- readParam(minq=50)

data <- windowCounts(bam.files, ext=110, width=10, param=param)

2. Filtering out uninteresting regions.

library(edgeR)

keep <- aveLogCPM(asDGEList(data)) >= -1

data <- data[keep,]

3. Calculating normalization factors.

binned <- windowCounts(bam.files, bin=TRUE, width=10000, param=param)

data <- normOffsets(binned, se.out=data)

4. Identifying DB windows.

y <- asDGEList(data)

y <- estimateDisp(y, design)

fit <- glmQLFit(y, design, robust=TRUE)

results <- glmQLFTest(fit)

5. Correcting for multiple testing.

merged <- mergeWindows(rowRanges(data), tol=1000L)

tabcom <- combineTests(merged$id, results$table)
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In this guide, the behavior of each step will be demonstrated with some publicly available
data. The dataset below focuses on changes in the binding profile of the NFYA protein
between embryonic stem cells and terminal neurons [5]. This will be used as a case study for
most of the code examples throughout the guide.

bam.files <- c("es_1.bam", "es_2.bam", "tn_1.bam", "tn_2.bam")

design <- model.matrix(~factor(c('es', 'es', 'tn', 'tn')))

colnames(design) <- c("intercept", "cell.type")

A comprehensive listing of the datasets used in this guide is provided in Section 8.1, along
with instructions on how to obtain and process them for entry into the csaw pipeline.

8

http://bioconductor.org/packages/csaw
http://bioconductor.org/packages/csaw


Chapter 2

Converting reads to counts

Hello, reader. A little box like this will be present at the start of each chapter. The
idea is to list the objects from previous chapters that are needed to run the code in the
current chapter. Hopefully, it’ll provide a nice segue between chapters for tired eyes. At
this point, all we need are the bam.files that we defined in the introduction above.

2.1 Types of input data

Sorted and indexed BAM (i.e., binary SAM) files [6] are required as input into the read
counting functions in csaw . Sorting should be performed on the genomic coordinates of
the mapped reads. Each read should only have one alignment in the file, i.e., secondary
alignments should not be present.

For a given BAM file named ‘xxx.bam’, the corresponding index file should be named as
‘xxx.bam.bai’ in the same directory. The sensibility of the supplied index is not checked prior
to counting. A common mistake is to replace or update the BAM file without updating the
index. This will cause csaw to return incorrect results when it attempts to load alignments
from the new BAM file.

2.2 Counting reads into windows

2.2.1 Overview

The windowCounts function uses a sliding window approach to count fragments for a set of
libraries. For single-end data, the fragment corresponding to a read is imputed by directionally
extending each read to the average fragment length. We define a window as a fixed-width
genomic interval, and we count the number of fragments overlapping that window in each
library. This is repeated after sliding the window along the genome to a new position. A count
is then obtained for each window in each library, thus quantifying protein binding intensity
across the genome.
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frag.len <- 110

win.width <- 10

param <- readParam(minq=50)

data <- windowCounts(bam.files, ext=frag.len, width=win.width, param=param)

The function returns a RangedSummarizedExperiment object where the matrix of counts is
stored as the first entry in the assays slot. Each row corresponds to a genomic window
while each column corresponds to a library. The coordinates of each window are stored in
the rowRanges slot. The total number of reads in each library (also referred to as the library
size) is stored as totals in the colData slot.

head(assay(data))

## [,1] [,2] [,3] [,4]

## [1,] 3 3 1 3

## [2,] 5 6 1 3

## [3,] 7 5 0 0

## [4,] 4 7 0 0

## [5,] 3 7 0 0

## [6,] 1 2 2 6

head(rowRanges(data))

## GRanges object with 6 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [3003701, 3003710] *
## [2] chr1 [3003751, 3003760] *
## [3] chr1 [3003801, 3003810] *
## [4] chr1 [3004001, 3004010] *
## [5] chr1 [3004051, 3004060] *
## [6] chr1 [3007551, 3007560] *
## -------

## seqinfo: 66 sequences from an unspecified genome

data$totals

## [1] 17196528 20040530 23118590 22075821

For single-end data, we estimate the average fragment length from a cross-correlation plot (see
Section 2.4) for use as ext. Alternatively, the length can be estimated from diagnostics during
ChIP or library preparation, e.g., post-fragmentation gel electrophoresis images. Typical
values range from 100 to 300 bp, depending on the efficiency of sonication and the use of
size selection steps in library preparation.

10
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width

forward
read

reverse
read

fragment length (ext)

The width argument defines the window size, which we interpret as the width of the binding
site for the target protein. This is user-specified and has important implications for the power
and resolution of a DB analysis, which are discussed in Section 2.5. For TF analyses with
small windows, the choice of spacing interval will also be affected by the choice of window
size – see Section 2.2.5 for more details.

2.2.2 Filtering out low-quality reads

Read extraction from the BAM files is controlled with the param argument in windowCounts.
This takes a readParam object that specifies a number of extraction parameters. The idea is
to define the readParam object once in the entire analysis pipeline, which is then reused for
all relevant functions. This ensures that read loading is consistent throughout the analysis.
param

## Extracting reads in single-end mode

## Duplicate removal is turned off

## Minimum allowed mapping score is 50

## Reads are extracted from both strands

## No restrictions are placed on read extraction

## No regions are specified to discard reads

## Using SerialParam with 1 worker

In the example above, reads are filtered out based on the minimum mapping score with
the minq argument. Low mapping scores are indicative of incorrectly and/or non-uniquely
aligned sequences. Removal of these reads is highly recommended as it will ensure that only
the reliable alignments are supplied to csaw . The exact value of the threshold depends on
the range of scores provided by the aligner. The subread program [7] was used to align the
reads in this dataset, so a value of 50 might be appropriate.

Reads mapping to the same genomic position can be marked as putative PCR duplicates
using software like the MarkDuplicates program from the Picard suite. Marked reads in the
BAM file can be ignored during counting by setting dedup=TRUE in the readParam object.
This reduces the variability caused by inconsistent amplification between replicates, and avoid
spurious duplicate-driven DB between groups. An example of counting with duplicate removal
is shown below, where fewer reads are used from each library relative to data$totals.

dedup.param <- readParam(minq=50, dedup=TRUE)

demo <- windowCounts(bam.files, ext=frag.len, width=win.width,
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param=dedup.param)

demo$totals

## [1] 13925800 13826445 16342981 18905912

Duplicate removal is generally not recommended for routine DB analyses. This is because it
caps the number of reads at each position, reducing DB detection power in high-abundance
regions. Spurious differences may also be introduced when the same upper bound is applied
to libraries of varying size. However, it may be unavoidable in some cases, e.g., involving
libraries generated from low quantities of DNA. Duplicate removal is also acceptable for
paired-end data, as exact overlaps for both paired reads are required to define duplicates.
This greatly reduces the probability of incorrectly discarding read pairs from non-duplicate
DNA fragments (assuming that a pair-aware method was used during duplicate marking).

2.2.3 Avoiding problematic genomic regions

Read extraction and counting can be restricted to particular chromosomes by specifying the
names of the chromosomes of interest in restrict. This avoids the need to count reads on
unassigned contigs or uninteresting chromosomes, e.g., the mitochondrial genome for ChIP-
seq studies targeting nuclear factors. Alternatively, it allows windowCounts to work on huge
datasets or in limited memory by analyzing only one chromosome at a time.

restrict.param <- readParam(restrict=c("chr1", "chr10", "chrX"))

Reads lying in certain regions can also be removed by specifying the coordinates of those
regions in discard. This is intended to remove reads that are wholly aligned within known
repeat regions but were not removed by the minq filter. Repeats are problematic as changes
in repeat copy number or accessibility between conditions can lead to spurious DB. Removal
of reads within repeat regions can avoid detection of these irrelevant differences.

repeats <- GRanges("chr1", IRanges(3000001, 3041000)) # telomere

discard.param <- readParam(discard=repeats)

Coordinates of annotated repeats can be obtained from several different sources. A curated
blacklist of problematic regions is available from the ENCODE project [8], and can be obtained
at https://sites.google.com/site/anshulkundaje/projects/blacklists. This list is constructed
empirically from the ENCODE datasets and includes obvious offenders like telomeres, mi-
crosatellites and some rDNA genes. Alternatively, repeats can be predicted from the genome
sequence using software like RepeatMasker. These calls are available from the UCSC website
(e.g., hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/chromOut.tar.gz for mouse) or
they can be extracted from an appropriate masked BSgenome object.

Using discard is more appropriate than simply ignoring windows that overlap the repeat
regions. For example, a large window might contain both repeat and non-repeat regions.
Discarding the window because of the former will compromise detection of DB features in
the latter. Of course, any DB sites within the discarded regions will be lost from downstream
analyses. Some caution is therefore required when specifying the regions of disinterest. For
example, many more repeats are called by RepeatMasker than are present in the ENCODE
blacklist, so the use of the former may result in loss of potentially interesting features.
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2.2.4 Additional notes about parameter specification

Users can modify an existing readParam object using the reform method. The example
below copies param and replaces minq and discard with new values. This is safer than
directly modifying the slots, as appropriate type/value checking of each class member is
performed.

another.param <- reform(param, minq=20, discard=repeats)

another.param

## Extracting reads in single-end mode

## Duplicate removal is turned off

## Minimum allowed mapping score is 20

## Reads are extracted from both strands

## No restrictions are placed on read extraction

## Reads in 1 region will be discarded

## Using SerialParam with 1 worker

Users are encouraged to construct their own readParam objects and apply them consistently
throughout their analyses. A good measure of synchronisation between windowCounts calls
is to check that the values of ...$totals are identical between calls. This suggests that the
same reads are being extracted from the BAM files in each call.

2.2.5 Increasing speed and memory efficiency

The spacing parameter controls the distance between adjacent windows in the genome. By
default, this is set to 50 bp, i.e., sliding windows are shifted 50 bp forward at each step.
Using a higher value will reduce computational work as fewer features need to be counted.
This may be useful when machine memory is limited. Of course, spatial resolution is lost
with larger spacings. Adjacent positions are not counted and thus cannot be distinguished.

demo <- windowCounts(bam.files, spacing=100, ext=frag.len,

width=win.width, param=param)

head(rowRanges(demo))

## GRanges object with 6 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [3003701, 3003710] *
## [2] chr1 [3003801, 3003810] *
## [3] chr1 [3004001, 3004010] *
## [4] chr1 [3008301, 3008310] *
## [5] chr1 [3008401, 3008410] *
## [6] chr1 [3009201, 3009210] *
## -------

## seqinfo: 66 sequences from an unspecified genome

For analyses with large windows, we suggest increasing the spacing to a fraction of the
specified width. This reduces the computational work by decreasing the number of windows
and extracted counts. Any loss in spatial resolution due to a larger spacing interval is negligible
compared to that already lost by using a large window size. Conversely, spacing should not
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be larger than ext/2 for analyses with small windows. This ensures that a narrow binding
site will not be overlooked if it falls between two windows. If ext is also very small, spacing
should be set to width to avoid loading too many small windows.

Windows that are overlapped by few fragments are filtered out based on the filter argument.
A window is removed if the sum of counts across all libraries is below filter. This improves
memory efficiency by discarding the majority of low-abundance windows corresponding to
uninteresting background regions. The default value of the filter threshold is 10, though
it can be raised to reduce memory usage for large libraries. More sophisticated filtering is
recommended and should be applied later (see Chapter 3).

demo <- windowCounts(bam.files, ext=frag.len, width=win.width,

filter=30, param=param)

head(assay(demo))

## [,1] [,2] [,3] [,4]

## [1,] 5 14 2 9

## [2,] 5 2 19 6

## [3,] 4 6 17 4

## [4,] 6 8 16 5

## [5,] 3 11 16 5

## [6,] 5 11 13 2

Users can parallelize read counting and several other functions by setting BPPARAM in the param
object. This will load and process reads from multiple BAM files simultaneously. The number
of workers and type of parallelization can be specified using BiocParallelParam objects. By
default, parallelization is turned off (i.e., set to a SerialParam object) because it seems to
provide little benefit for small files or on systems with I/O bottlenecks.

param$BPPARAM

## class: SerialParam

## bpisup: TRUE; bpnworkers: 1; bptasks: 0; bpjobname: BPJOB

## bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE

## bptimeout: 2592000; bpprogressbar: FALSE

## bplogdir: NA

2.2.6 Assigning reads into bins

Setting bin=TRUE will direct windowCounts to count reads into contiguous bins across the
genome. Here, spacing is set to width such that each window forms a bin. Only the 5′ end
of each read is used for counting into bins, without any directional extension. (For paired-end
data, the midpoint of the originating fragment is used – see below.)

demo <- windowCounts(bam.files, width=1000, bin=TRUE, param=param)

head(rowRanges(demo))

## GRanges object with 6 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [3000001, 3001000] *
## [2] chr1 [3001001, 3002000] *
## [3] chr1 [3002001, 3003000] *
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## [4] chr1 [3003001, 3004000] *
## [5] chr1 [3004001, 3005000] *
## [6] chr1 [3005001, 3006000] *
## -------

## seqinfo: 66 sequences from an unspecified genome

The filter argument is automatically set to 1, which means that counts will be returned for
each non-empty genomic bin. Users should set width to a reasonably large value, to avoid
running out of memory with a large number of small bins. We can also force windowCounts

to return bins for all bins by setting filter=0 manually.

2.3 Experiments involving paired-end data

ChIP experiments with paired-end sequencing are accomodated by setting pe="both" in the
param object supplied to windowCounts. Read extension is not required as the genomic interval
spanned by the originating fragment is explicitly defined as that between the 5′ positions of
the paired reads. The number of fragments overlapping each window is then counted as
previously described. By default, only proper pairs are used in which the two paired reads are
on the same chromosome, face inward and are no more than max.frag apart.

pe.bam <- "example-pet.bam"

pe.param <- readParam(max.frag=400, pe="both")

demo <- windowCounts(pe.bam, ext=250, param=pe.param)

demo$totals

## [1] 11744040

A suitable value for max.frag is chosen by examining the distribution of fragment sizes from
the getPESizes function. In this example, we might use a value of around 400 bp as it is
larger than the vast majority of fragment sizes. The plot can also be used to examine the
quality of the PE sequencing procedure. The location of the mode should be consistent with
the fragmentation and size selection steps in library preparation.

out <- getPESizes(pe.bam)

frag.sizes <- out$sizes[out$sizes<=800]

hist(frag.sizes, breaks=50, xlab="Fragment sizes (bp)",

ylab="Frequency", main="", col="grey80")

abline(v=400, col="red")
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The number of fragments exceeding the maximum size is recorded for quality control. The
getPESizes function also returns the number of single reads, pairs with one unmapped read,
improperly orientated pairs and inter-chromosomal pairs. A non-negligble proportion of these
reads may be indicative of problems with paired-end alignment or sequencing.

c(out$diagnostics, too.large=sum(out$sizes > 400))

## total.reads mapped.reads single mate.unmapped unoriented

## 33498954 27420853 0 2000261 74582

## inter.chr too.large

## 761432 130242

Note that all of the paired-end methods in csaw depend on correct mate information for
each alignment. This is usually enforced by the aligner in the output BAM file. Any file
manipulations that might break the synchronisation should be corrected (e.g., with the Fix-
MateInformation program from the Picard suite) prior to read counting.

Paired-end data can also be treated as single-end by specifiying pe="first" or "second"

in the readParam constructor. This will only use the first or second read of each read pair,
regardless of the validity of the pair or the relative quality of the alignments. This setting may
be useful for contrasting paired- and single-end analyses, or in disastrous situations where
paired-end sequencing has failed, e.g., due to ligation between DNA fragments.

first.param <- readParam(pe="first")

demo <- windowCounts(pe.bam, param=first.param)

demo$totals

## [1] 13715351
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2.4 Estimating the average fragment length

2.4.1 Using cross-correlation plots

Cross-correlation plots are generated directly from BAM files using the correlateReads func-
tion. This provides a measure of the immunoprecipitation (IP) efficiency of a ChIP-seq ex-
periment [9]. Efficient IP should yield a smooth peak at a delay distance corresponding to
the average fragment length. This reflects the strand-dependent bimodality of reads around
narrow regions of enrichment, e.g., TF binding sites.

max.delay <- 500

dedup.on <- reform(param, dedup=TRUE)

x <- correlateReads(bam.files, max.delay, param=dedup.on)

plot(0:max.delay, x, type="l", ylab="CCF", xlab="Delay (bp)")

The location of the peak is used as an estimate of the fragment length for read extension
in windowCounts. An estimate of ~110 bp is obtained from the plot above. We can do this
more precisely with the maximizeCcf function, which returns a similar value.

maximizeCcf(x)

## [1] 110

A sharp spike may also be observed in the plot at a distance corresponding to the read
length. This is thought to be an artifact, caused by the preference of aligners towards
uniquely mapped reads. Duplicate removal is typically required here (i.e., set dedup=TRUE in
readParam) to reduce the size of this spike. Otherwise, the fragment length peak will not be
visible as a separate entity. The size of the smooth peak can also be compared to the height
of the spike to assess the signal-to-noise ratio of the data [10]. Poor IP efficiency will result
in a smaller or absent peak as bimodality is less pronounced.

Cross-correlation plots can also be used for fragment length estimation of narrow histone
marks such as histone acetylation and H3K4 methylation. However, they are less effective for
regions of diffuse enrichment where bimodality is not obvious (e.g., H3K27 trimethylation).

17

http://bioconductor.org/packages/csaw


csaw User’s Guide

n <- 1000

h3ac <- correlateReads("h3ac.bam", n, param=dedup.on)

h3k27me3 <- correlateReads("h3k27me3.bam", n, param=dedup.on)

h3k4me2 <- correlateReads("h3k4me2.bam", n, param=dedup.on)

plot(0:n, h3ac, col="blue", ylim=c(0, 0.1), xlim=c(0, 1000),

xlab="Delay (bp)", ylab="CCF", pch=16, type="l", lwd=2)

lines(0:n, h3k27me3, col="red", pch=16, lwd=2)

lines(0:n, h3k4me2, col="forestgreen", pch=16, lwd=2)

legend("topright", col=c("blue", "red", "forestgreen"),

c("H3Ac", "H3K27me3", "H3K4me2"), pch=16)

2.4.2 Variable fragment lengths between libraries

The windowCounts function also supports the use of library-specific fragment lengths. For
example, libraries with less efficient fragmentation will have larger fragment lengths and wider
peaks. Single-end reads in the peaks of such libraries will require more directional extension
to impute a fragment interval that covers the binding site. However, some work is required
to avoid detecting irrelevant DB from differences in peak widths. This is done by resizing
the inferred fragments to the same length in all libraries. (Consider a bimodal peak, present
in several libraries that have different fragment lengths. Resizing ensures that the subpeak
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on the forward strand is centered at the same location in each library. The same applies for
the subpeak on the reverse strand.) Thus, the effect of differences in peak width between
libraries can be largely mitigated.

Variable read extension is performed in windowCounts by setting ext to a list with two ele-
ments. The first element is a vector where each entry specifies the average fragment length
to be used for the corresponding library. The second specifies the final length to which the
inferred fragments are to be resized. If the second element is set to NA, no rescaling is per-
formed and the library-specific fragment sizes are used directly. This also works for analyses
with paired-end data, though the first element of ext will be ignored as directional exten-
sion is not performed. The example below rescales all fragments to 200 bp in all libraries.
Extension information is stored in the RangedSummarizedExperiment object for later use.

multi.frag.lens <- list(c(100, 150, 200, 250), 200)

demo <- windowCounts(bam.files, ext=multi.frag.lens, filter=30, param=param)

demo$ext

## [1] 100 150 200 250

metadata(demo)$final

## [1] 200

In general, use of different extension lengths is unnecessary in well-controlled datasets. Differ-
ence in lengths between libraries are usually smaller than 50 bp. This is less than the inherent
variability in fragment lengths within each library (see the histogram for the paired-end data
in Section 2.3). The effect on the coverage profile of within-library variability in lengths will
likely mask the effect of small between-library differences in the average lengths. Thus, an
ext list should only be specified for datasets that exhibit large differences in the average
fragment sizes between libraries.

2.5 Choosing an appropriate window size

We interpret the window size as the width of the binding “footprint” for the target protein,
where the protein residues directly contact the DNA. TF analyses typically use a small window
size, e.g., 10 - 20 bp, which maximizes spatial resolution for optimal detection of narrow
regions of enrichment. For histone marks, widths of at least 150 bp are recommended [11].
This corresponds to the length of DNA wrapped up in each nucleosome, which is the smallest
relevant unit for histone mark enrichment. We consider diffuse marks as chains of adjacent
histones, for which the combined footprint may be very large (e.g., 1-10 kbp).

The choice of window size controls the compromise between spatial resolution and count size.
Larger windows will yield larger read counts that can provide more power for DB detection.
However, spatial resolution is also lost for large windows whereby adjacent features can no
longer be distinguished. Reads from a DB site may be counted alongside reads from a non-
DB site (e.g., non-specific background) or even those from an adjacent site that is DB in the
opposite direction. This will result in the loss of DB detection power.

We might expect to be able to infer the optimal window size from the data, e.g., based on the
width of the enriched regions. However, in practice, a clear-cut choice of distance/window
size is rarely found in real datasets. For many non-TF targets, the widths of the enriched
regions can be highly variable, suggesting that no single window size is optimal. Indeed, even
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if all enriched regions were of constant width, the width of the DB events occurring within
those regions may be variable. This is especially true of diffuse marks where the compromise
between resolution and power is more arbitrary.

We suggest performing an initial DB analysis with small windows to maintain spatial reso-
lution. The widths of the final merged regions (see Section 6.2.2) can provide an indication
of the appropriate window size. Alternatively, the analysis can be repeated with a series of
larger windows, and the results combined (see Section 6.4.1). This examines a spread of
resolutions for more comprehensive detection of DB regions.

2.6 Miscellaneous functions for non-standard counting

2.6.1 Counting over manually specified regions

The csaw package focuses on counting reads into windows. However, it may be occasionally
desirable to use the same conventions (e.g., duplicate removal, quality score filtering) when
counting reads into pre-specified regions. This can be performed with the regionCounts

function, which is largely a wrapper for countOverlaps from the GenomicRanges package.

my.regions <- GRanges(c("chr11", "chr12", "chr15"),

IRanges(c(75461351, 95943801, 21656501),

c(75461610, 95944810, 21657610)))

reg.counts <- regionCounts(bam.files, my.regions, ext=frag.len, param=param)

head(assay(reg.counts))

## [,1] [,2] [,3] [,4]

## [1,] 37 57 103 102

## [2,] 0 0 1 0

## [3,] 15 17 16 7

2.6.2 Strand-specific counting

Techniques like CLIP-seq, MeDIP-seq or CAGE provide strand-specific sequence information.
The csaw package can analyze these datasets through strand-specific counting. This can
be done manually setting the forward slot in the readParam object to TRUE or FALSE, to
count only forward- or reverse-strand reads respectively in windowCounts or regionCounts.
Alternatively, the strandedCounts wrapper function can be used to obtain strand-specific
counts for each window or region. The strand of each output range indicates the strand on
which reads were counted for that row. Up to two rows can be generated for each window
or region, depending on filtering.

ss.param <- reform(param, forward=NULL)

ss.counts <- strandedCounts(bam.files, ext=frag.len, width=win.width,

param=ss.param)

strand(rowRanges(ss.counts))

## factor-Rle of length 656381 with 70 runs

## Lengths: 48361 46926 15963 15666 27617 ... 657 1289 1217 49 75

## Values : + - + - + ... - + - + -
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## Levels(3): + - *

Note that strandedCounts operates internally by calling windowCounts (or regionCounts)
twice with different settings for param$forward. Any value for forward in the input param

object will be ignored. In fact, the function will only accept a NULL value for this slot. This
is intended to protect the user, as any attempt to re-use the ss.param object in functions
that are not designed for strand specificity will (appropriately) raise an error.
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Chapter 3

Filtering out uninteresting
windows

This chapter will require the frag.len, param and data from the last chapter, as well as
the bam.files vector we defined at the start. We’ll also need the aveLogCPM function
from csaw , so load the package if you haven’t done so already.

3.1 Independent filtering for count data

Many of the low abundance windows in the genome correspond to background regions in
which DB is not expected. Indeed, windows with low counts will not provide enough evi-
dence against the null hypothesis to obtain sufficiently low p-values for DB detection. Sim-
ilarly, some approximations used in the statistical analysis will fail at low counts. Removing
such uninteresting or ineffective tests reduces the severity of the multiple testing correction,
increases detection power amongst the remaining tests and reduces computational work.

Filtering is valid so long as it is independent of the test statistic under the null hypothesis
[12]. In the negative binomial (NB) framework, this (probably) corresponds to filtering on
the overall NB mean. The DB p-values retained after filtering on the overall mean should
be uniform under the null hypothesis, by analogy to the normal case. Row sums can also be
used for datasets where the effective library sizes are not very different, or where the counts
are assumed to be Poisson-distributed between biological replicates.

In edgeR, the log-transformed overall NB mean is referred to as the average abundance. This
is computed with the aveLogCPM function, as shown below for each window.

abundances <- aveLogCPM(asDGEList(data))

summary(abundances)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -2.211 -2.189 -2.110 -2.041 -1.971 9.811

For demonstration purposes, an arbitrary threshold of -1 is used here to filter the window
abundances. This restricts the analysis to windows with abundances above this threshold.
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keep.simple <- abundances > -1

filtered.data <- data[keep.simple,]

summary(keep.simple)

## Mode FALSE TRUE

## logical 3674738 15072

The exact choice of filter threshold may not be obvious. In particular, there is often no
clear distinction in abundances between genuine binding and background events, e.g., due to
the presence of many weak but genuine binding sites. A threshold that is too small will be
ineffective, whereas a threshold that is too large may decrease power by removing true DB
sites. Arbitrariness is unavoidable when balancing these opposing considerations.

Nonetheless, several strategies for defining the threshold are described below. Users should
start by choosing one of these filtering approaches to implement in their analyses. Each
approach yields a logical vector that can be used in the same way as keep.simple.

3.2 By count size

The simplest approach is to simply filter according to the count size. This removes windows
for which the counts are simply too low for modelling and hypothesis testing. The code below
retains windows with (library size-adjusted) average counts greater than 5.

keep <- abundances > aveLogCPM(5, lib.size=mean(data$totals))

summary(keep)

## Mode FALSE TRUE

## logical 3621824 67986

However, a count-based filter becomes less effective as the library size increases. More win-
dows will be retained with greater sequencing depth, even in uninteresting background regions.
This increases both computational work and the severity of the multiplicity correction. The
threshold may also be inappropriate when library sizes are very different.

3.3 By proportion

One approach is to to assume that only a certain proportion - say, 0.1% - of the genome is
genuinely bound. This corresponds to the top proportion of high-abundance windows. The
total number of windows is calculated from the genome length and the spacing interval used
in windowCounts. The filterWindows function returns the ratio of the rank of each window
to this total, where higher-abundance windows have larger ranks. Users can then retain those
windows with rank ratios above the unbound proportion of the genome.

keep <- filterWindows(data, type="proportion")$filter > 0.999

sum(keep)

## [1] 54620
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This approach is simple and has the practical advantage of maintaining a constant number of
windows for the downstream analysis. However, it may not adapt well to different datasets
where the proportion of bound sites can vary. Using an inappropriate percentage of binding
sites will result in the loss of potential DB regions or inclusion of background regions.

3.4 By global enrichment

An alternative approach involves choosing a filter threshold based on the fold change over
the level of non-specific enrichment. The degree of background enrichment is estimated
by counting reads into large bins across the genome. Binning is necessary here to increase
the size of the counts when examining low-density background regions. This ensures that
precision is maintained when estimating the background abundance.

bin.size <- 2000L

binned <- windowCounts(bam.files, bin=TRUE, width=bin.size, param=param)

The median of the average abundances across all bins is computed and used as a global
estimate of the background coverage. This global background is then compared to the
window-based abundances. This determines whether a window is driven by background
enrichment, and thus, unlikely to be interesting. However, some care is required as the sizes
of the regions used for read counting are different between bins and windows. The average
abundance of each bin must be scaled down to be comparable to those of the windows.

With type="global", the filterWindows function returns the increase in the abundance of
each window over the global background. Windows are filtered by setting some minimum
threshold on this increase. The aim is to eliminate the majority of uninteresting windows
prior to further analysis. Here, a fold change of 3 is necessary for a window to be considered
as containing a binding site. This approach has an intuitive and experimentally relevant
interpretation that adapts to the level of non-specific enrichment in the dataset.

filter.stat <- filterWindows(data, background=binned, type="global")

keep <- filter.stat$filter > log2(3)

sum(keep)

## [1] 20588

The effect of filtering can also be visualized with a histogram. This allows users to confirm
that the bulk of (assumed) background bins are discarded upon filtering. Note that bins
containing genuine binding sites will usually not be visible on such plots. This is due to the
dominance of the background-containing bins throughout the genome.

hist(filter.stat$back.abundances, xlab="Adjusted bin log-CPM", breaks=100,

main="", col="grey80", xlim=c(min(filter.stat$back.abundances), 0))

global.bg <- filter.stat$abundances - filter.stat$filter

abline(v=global.bg[1], col="red", lwd=2)

abline(v=global.bg[1]+log2(3), col="blue", lwd=2)

legend("topright", lwd=2, col=c('red', 'blue'),

legend=c("Background", "Threshold"))
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Of course, the pre-specified minimum fold change may be too aggressive when binding is
weak. For TF data, a large cut-off works well as narrow binding sites will have high read
densities and are unlikely to be lost during filtering. Smaller minimum fold changes are
recommended for diffuse marks where the difference from background is less obvious.

3.5 By local enrichment

3.5.1 Mimicking single-sample peak callers

Local background estimators can also be constructed, which avoids inappropriate filtering
when there are differences in background coverage across the genome. Here, the 2 kbp
region surrounding each window will be used as the “neighborhood” over which a local
estimate of non-specific enrichment for that window can be obtained. The counts for these
regions are first obtained with the regionCounts function. This should be synchronized with
windowCounts by using the same param, if any non-default settings were used.

surrounds <- 2000

neighbor <- suppressWarnings(resize(rowRanges(data), surrounds, fix="center"))

wider <- regionCounts(bam.files, regions=neighbor, ext=frag.len, param=param)

We apply filterWindows with type="local" to compute enrichment values, i.e., the increase
in the abundance of each window over its neighborhood. In this function, counts for each
window are subtracted from the counts for its neighborhood. This ensures that any enriched
regions or binding sites inside the window will not interfere with estimation of its local
background. The width of the window is also subtracted from that of its neighborhood, to
reflect the effective size of the latter after subtraction of counts. Based on the fold-differences
in widths, the abundance of the neighborhood is scaled down for a valid comparison to
that of the corresponding window. Enrichment values are subsequently calculated from the
differences in scaled abundances.

filter.stat <- filterWindows(data, wider, type="local")

summary(filter.stat$filter)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
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## -8.7479 0.4775 0.6075 0.6202 0.7514 8.6100

Filtering can then be performed using a quantile- or fold change-based threshold on the
enrichment values. In this scenario, a 3-fold increase in enrichment over the neighborhood
abundance is required for retention of each window. This roughly mimics the behavior of
single-sample peak-calling programs such as MACS [13].

keep <- filter.stat$filter > log2(3)

sum(keep)

## [1] 9539

Note that this procedure also assumes that no other enriched regions are present in each
neighborhood. Otherwise, the local background will be overestimated and windows may be
incorrectly filtered out. This may be problematic for diffuse histone marks or TFBS clusters
where enrichment may be observed in both the window and its neighborhood.

If this seems too complicated, an alternative is to identify locally enriched regions using
peak-callers like MACS. Filtering can then be performed to retain only windows within called
peaks. However, peak calling must be done independently of the DB status of each window.
If libraries are of similar size or biological variability is low, reads can be pooled into one
library for single-sample peak calling [4]. This is equivalent to filtering on the average count
and avoids loss of the type I error control from data snooping.

3.5.2 Identifying local maxima

Another strategy is to use the findMaxima function to identify local maxima in the read density
across the genome. The code below will determine if each window is a local maximum, i.e.,
whether it has the highest average abundance within 1 kbp on either side. The data can then
be filtered to retain only these locally maximal windows. This can also be combined with
other filters to ensure that the retained windows have high absolute abundance.

maxed <- findMaxima(rowRanges(data), range=1000, metric=abundances)

summary(maxed)

## Mode FALSE TRUE

## logical 2823683 866127

This approach is very aggressive and should only be used (sparingly) in datasets where binding
is sharp, simple and isolated. Complex binding events involving diffuse enrichment or adjacent
binding sites will not be handled well. For example, DB detection will fail if a low-abundance
DB window is ignored in favor of a high-abundance non-DB neighbor.

3.5.3 With negative controls

Negative controls for ChIP-seq refer to input or IgG libraries where the IP step has been
skipped or compromised with an irrelevant antibody, respectively. This accounts for sequenc-
ing/mapping biases in ChIP-seq data. IgG controls also quantify the amount of non-specific
enrichment throughout the genome. These controls are mostly irrelevant when testing for DB
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between ChIP samples. However, they can be used to filter out windows where the average
abundance across the ChIP samples is below the abundance of the control. To illustrate, let
us add an input library to our NF-YA data set in the code below.

with.input <- c(bam.files, "input.bam")

in.demo <- windowCounts(with.input, ext=frag.len, param=param)

chip <- in.demo[,1:4] # All ChIP libraries

control <- in.demo[,5] # All control libraries

Some additional work is required to account for composition biases that are likely to be present
when comparing ChIP to negative control samples (see Section 4.2). A simple strategy for
normalization involves counting reads into large bins, which are used in scaleControlFilter

to compute a normalization factor.

in.binned <- windowCounts(with.input, bin=TRUE, width=10000, param=param)

chip.binned <- in.binned[,1:4]

control.binned <- in.binned[,5]

scale.info <- scaleControlFilter(chip.binned, control.binned)

We use the filterWindows function with type="control" to compute the enrichment of the
ChIP counts over the control counts for each window. This uses scale.info to adjust for
composition biases between ChIP and control samples. A larger prior.count of 5 is also used
to compute the average abundance. This protects against inflated log-fold changes when the
count for the window in the control sample is near zero. By comparison, the global and local
background estimates require less protection (prior.count=2, by default) as they are derived
from larger bins with more counts.

filter.stat <- filterWindows(chip, control, type="control", prior.count=5,

scale.info=scale.info)

The log-fold enrichment of the ChIP sample over the control is then computed for each
window, after normalizing for composition bias with the binned counts. The example below
requires a 3-fold or greater increase in abundance over the control to retain each window.

keep <- filter.stat$filter > log2(3)

sum(keep)

## [1] 5910

As an aside, the csaw pipeline can also be applied to search for “DB” between ChIP libraries
and control libraries. The ChIP and control libraries can be treated as separate groups, in
which most “DB” events are expected to be enriched in the ChIP samples. If this is the
case, the filtering procedure described above is inappropriate as it will select for windows
with differences between ChIP and control samples. This compromises the assumption of the
null hypothesis during testing, resulting in loss of type I error control.

3.6 By prior information

When only a subset of genomic regions are of interest, DB detection power can be improved
by removing windows lying outside of these regions. Such regions could include promoters,
enhancers, gene bodies or exons. Alternatively, sites could be defined from a previous ex-
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periment or based on the genome sequence, e.g., TF motif matches. The example below
retrieves the coordinates of the broad gene bodies from the mouse genome, including the 3
kbp region upstream of the TSS that represents the putative promoter region for each gene.

library(TxDb.Mmusculus.UCSC.mm10.knownGene)

broads <- genes(TxDb.Mmusculus.UCSC.mm10.knownGene)

broads <- resize(broads, width(broads)+3000, fix="end")

head(broads)

## GRanges object with 6 ranges and 1 metadata column:

## seqnames ranges strand | gene_id

## <Rle> <IRanges> <Rle> | <character>

## 100009600 chr9 [ 21062393, 21078496] - | 100009600

## 100009609 chr7 [ 84940169, 84967009] - | 100009609

## 100009614 chr10 [ 77708446, 77712009] + | 100009614

## 100009664 chr11 [ 45805083, 45842878] + | 100009664

## 100012 chr4 [144157556, 144165651] - | 100012

## 100017 chr4 [134745412, 134771004] - | 100017

## -------

## seqinfo: 66 sequences (1 circular) from mm10 genome

Windows can be filtered to only retain those which overlap with the regions of interest.
Discerning users may wish to distinguish between full and partial overlaps, though this should
not be a significant issue for small windows. This could also be combined with abundance
filtering to retain windows that contain putative binding sites in the regions of interest.

suppressWarnings(keep <- overlapsAny(rowRanges(data), broads))

sum(keep)

## [1] 2017611

Any information used here should be independent of the DB status under the null in the
current dataset. For example, DB calls from a separate dataset and/or independent annota-
tion can be used without problems. However, using DB calls from the same dataset to filter
regions would violate the null assumption and compromise type I error control.

In addition, this filter is unlike the others in that it does not operate on the abundance of
the windows. It is possible that the set of retained windows may be very small, e.g., if no
non-empty windows overlap the pre-defined regions of interest. Thus, it may be better to
apply this filter before the multiplicity correction but after DB testing. This ensures that
there are sufficient windows for stable estimation of the downstream statistics.

3.7 Some final comments about filtering

It should be stressed that these filtering strategies do not eliminate subjectivity. Some thought
is still required in selecting an appropriate proportion of bound sites or minimum fold change
above background for each method. Rather, these filters provide a relevant interpretation for
what would otherwise be an arbitrary threshold on the abundance.

As a general rule, users should filter less aggressively if there is any uncertainty about the
features of interest. In particular, the thresholds shown in this chapter for each filtering
statistic are fairly mild. This ensures that more potentially DB windows are retained for
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testing. Use of an aggressive filter risks the complete loss of detection for such windows,
even if power is improved among those that are retained. Low numbers of retained windows
may also lead to unstable estimates during, e.g., normalization, variance modelling.

Different filters can also be combined in more advanced applications, e.g., by running data[keep1
& keep2,] for filter vectors keep1 and keep2. Any benefit will depend on the type of filters
involved. The greatest effect is observed for filters that operate on different principles. For
example, the low-count filter can be combined with others to ensure that all retained win-
dows surpass some minimum count. This is especially relevant for the local background
filters, where a large enrichment value does not guarantee a large count.
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Calculating normalization factors

This chapter will need to use the bam.files vector again (from the introduction). We’ll
also need the param object that we defined in Chapter 2, as well as the filtered.data

object that we constructed in Chapter 3. You’ll notice that character vectors containing
paths to other BAM files are defined throughout this chapter. However, these are only
present for demonstration purposes and aren’t necessary for the main NF-YA example.

4.1 Overview

The complexity of the ChIP-seq technique gives rise to a number of different biases in the
data. For a DB analysis, library-specific biases are of particular interest as they can introduce
spurious differences between conditions. This includes composition biases, efficiency biases
and trended biases. Thus, normalization between libraries is required to remove these biases
prior to any statistical analysis. Several normalization strategies are presented here, though
users should only pick one to use for any given analysis. Advice on choosing the most
appropriate method is scattered throughout the chapter, so read carefully.

4.2 Eliminating composition biases

4.2.1 Using the TMM method on binned counts

As the name suggests, composition biases are formed when there are differences in the com-
position of sequences across libraries. Highly enriched regions consume more sequencing
resources and thereby suppress the representation of other regions. Differences in the mag-
nitude of suppression between libraries can lead to spurious DB calls. Scaling by library size
fails to correct for this as composition biases can still occur in libraries of the same size.

To remove composition biases in csaw , reads are counted into large bins and the counts are
used for normalization with the normOffsets wrapper function. This uses the trimmed mean
of M-values (TMM) method [14] to correct for any systematic fold change in the coverage
of the bins. The assumption here is that most bins represent non-DB background regions, so
any consistent difference across bins must be technical bias.
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binned <- windowCounts(bam.files, bin=TRUE, width=10000, param=param)

filtered.data <- normOffsets(binned, se.out=filtered.data)

filtered.data$norm.factors

## [1] 1.0075434 0.9745238 1.0137867 1.0046093

The TMM method trims away putative DB bins (i.e., those with extreme M-values) and
computes normalization factors from the remainder to use in edgeR. The size of each library
is scaled by the corresponding factor to obtain an effective library size for modelling. A larger
normalization factor results in a larger effective library size and is conceptually equivalent to
scaling each individual count downwards, given that the ratio of that count to the (effective)
library size will be smaller. Check out the edgeR user’s guide for more information.

In the above code, the normOffsets call computes normalization factors from the bin-level
counts in binned (see Section 4.2.2). It then returns a modified version of filtered.data,
where the normalization factors are stored alongside the window -level counts for further
analysis. Composition biases affect both bin- and window-level counts, so transferring nor-
malization factors between the counts is valid – provided that the library sizes are the same
between the two sets of counts, as the factors are interpreted with respect to the library sizes.
(In csaw , separate calls to windowCounts with the same readParam object will always yield
the same library sizes in totals.)

Note that normOffsets skips the precision weighting step in the TMM method. Weighting
aims to increase the contribution of bins with high counts, as these yield more precise M-
values. However, high-abundance bins are more likely to contain binding sites and thus are
more likely to be DB compared to background regions. If any DB regions should survive
trimming, upweighting them would be counterproductive.

4.2.2 Motivating the use of large bins instead of windows

By definition, read coverage is low for background regions of the genome. This can result
in a large number of zero counts and undefined M-values when reads are counted into small
windows. Adding a prior count is only a superficial solution as the chosen prior will have undue
influence on the estimate of the normalization factor when many counts are low. The variance
of the fold change distribution is also higher for low counts, which reduces the effectiveness of
the trimming procedure. These problems can be overcome by using large bins to increase the
size of the counts, thus improving the precision of TMM normalization. The normalization
factors computed from the bin-level counts are then applied to the window-level counts of
interest.

Of course, this strategy requires the user to supply a bin size. If the bins are too large,
background and enriched regions will be included in the same bin. This makes it difficult to
trim away bins corresponding to enriched regions. On the other hand, the counts will be too
low if the bins are too small. Testing multiple bin sizes is recommended to ensure that the
estimates are robust to any changes. A value of 10 kbp is usually suitable for most datasets.

demo <- windowCounts(bam.files, bin=TRUE, width=5000, param=param)

normOffsets(demo, se.out=FALSE)

## [1] 1.0093596 0.9754046 1.0105468 1.0051082

demo <- windowCounts(bam.files, bin=TRUE, width=15000, param=param)

normOffsets(demo, se.out=FALSE)
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## [1] 1.007559 0.972134 1.016096 1.004775

We use se.out=FALSE to instruct normOffsets to return the normalization factors directly.
This is more convenient than returning a RangedSummarizedExperiment object and extract-
ing the normalization factors with ...$norm.factors. Here, the factors are consistently close
to unity, which suggests that composition bias is negligble in this dataset. See Section 4.3.3
for some examples with greater bias.

4.2.3 Visualizing normalization outcomes with MA plots

The effectiveness of normalization can be examined using a MA plot. A single main cloud of
points should be present, consisting primarily of background regions. Separation into multiple
discrete points indicates that the counts are too low and that larger bin sizes should be used.
Composition biases manifest as a vertical shift in the position of this cloud. Ideally, the
log-ratios of the corresponding normalization factors should pass through the centre of the
cloud. This indicates that undersampling has been identified and corrected.

par(mfrow=c(1, 3), mar=c(5, 4, 2, 1.5))

adj.counts <- cpm(asDGEList(binned), log=TRUE)

normfacs <- filtered.data$norm.factors

for (i in seq_len(length(bam.files)-1)) {

cur.x <- adj.counts[,1]

cur.y <- adj.counts[,1+i]

smoothScatter(x=(cur.x+cur.y)/2+6*log2(10), y=cur.x-cur.y,

xlab="A", ylab="M", main=paste("1 vs", i+1))

all.dist <- diff(log2(normfacs[c(i+1, 1)]))

abline(h=all.dist, col="red")

}
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4.3 Eliminating efficiency biases

4.3.1 Using the TMM method on high-abundance regions

Efficiency biases in ChIP-seq data refer to fold changes in enrichment that are introduced by
variability in IP efficiencies between libraries. These technical differences are not biologically
interesting and must be removed. This can be achieved by assuming that high-abundance
windows contain binding sites. Consider the following H3K4me3 data set, where reads are
counted into 150 bp windows.

me.files <- c("h3k4me3_mat.bam", "h3k4me3_pro.bam")

me.demo <- windowCounts(me.files, width=150, param=param)

High-abundance windows are chosen using a global filtering approach described in Section 3.4.
Here, the binned counts in me.bin are only used for defining the background abundance, not
for computing normalization factors.

me.bin <- windowCounts(me.files, bin=TRUE, width=10000, param=param)

keep <- filterWindows(me.demo, me.bin, type="global")$filter > log2(3)

filtered.me <- me.demo[keep,]

The TMM method is then applied to eliminate systematic differences across those windows.
This also assumes that most binding sites in the genome are not DB. Thus, any systematic
differences in coverage among the high-abundance windows must be caused by differences
in IP efficiency between libraries or some other technical issue. Scaling by the normalization
factors will subseqeuently remove these bises between libraries.

filtered.me <- normOffsets(filtered.me, se.out=TRUE)

me.eff <- filtered.me$norm.factors

me.eff

## [1] 0.791484 1.263449

The above process seems rather involved, but this is only because we need to work our
way through counting and normalization for a new data set. Only normOffsets is actually
performing the normalization step. We set se.out=TRUE so that the normalization factors
are stored alongside the window counts for use in the downstream edgeR analysis. As a
demonstration, we repeat this procedure on another data set involving H3 acetylation.

ac.files <- c("h3ac.bam", "h3ac_2.bam")

ac.demo <- windowCounts(ac.files, width=150, param=param)

ac.bin <- windowCounts(ac.files, bin=TRUE, width=10000, param=param)

keep <- filterWindows(ac.demo, ac.bin, type="global")$filter > log2(5)

filtered.ac <- ac.demo[keep,]

filtered.ac <- normOffsets(filtered.ac, se.out=TRUE)

ac.eff <- filtered.ac$norm.factors

ac.eff

## [1] 1.2012717 0.8324512
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Normalization for efficiency biases assumes that most binding sites are not DB. Genuine
biological differences may be removed when the assumption of a non-DB majority does not
hold, e.g., overall binding is truly lower in one condition. In such cases, it is safer to normalize
for composition biases – see Section 4.4 for a discussion of the choice between normalization
methods.

4.3.2 Filtering windows prior to normalization

Normalization for efficiency biases is performed on window-level counts instead of bin counts.
This is possible as the former should be large enough after filtering and retention of high-
abundance windows. It is not necessary to use larger windows or bins to compute the
normalization factors. Indeed, direct use of the windows of interest ensures removal of
systematic differences prior to downstream analyses.

The filtering procedure needs to be stringent to avoid retaining windows from background
regions. These will interfere with calculation of normalization factors from binding sites. This
is due to the lower coverage for background regions, as well as the fact that they are not
affected by efficiency bias (and cannot contribute to its estimation). Conversely, attempting
to use the computed factors on windows from background regions will result in incorrect
normalization of those windows. Thus, it is usually better to err on the side of caution
and filter aggressively to ensure that background regions are not retained in downstream
analyses. Obviously, though, retaining too few windows will result in unstable estimates of
the normalization factors.

4.3.3 Checking normalization with MA plots

The effect of normalization can be visualized with MA plots. Plots are constructed using
counts for 10 kbp bins, rather than with those from the windows. This is useful as the
behavior of the entire genome can be examined, rather than just that of the high-abundance
windows. It also allows calculation of and comparison to the factors for composition bias.

me.comp <- normOffsets(me.bin, se.out=FALSE)

me.comp

## [1] 1.2801380 0.7811658

ac.comp <- normOffsets(ac.bin, se.out=FALSE)

ac.comp

## [1] 0.9049943 1.1049793

The clouds at low and high A-values represent the background and bound regions, respec-
tively. The normalization factors from removal of composition bias (dashed) pass through
the former, whereas the factors to remove efficiency bias (full) pass through the latter. A
non-zero M-value location for the high A-value cloud represents a systematic difference be-
tween libraries for the bound regions, either due to genuine DB or variable IP efficiency. This
also induces composition bias, leading to a non-zero M-value for the background cloud.

par(mfrow=c(1,2))

for (main in c("H3K4me3", "H3ac")) {

if (main=="H3K4me3") {

bins <- me.bin
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comp <- me.comp

eff <- me.eff

} else {

bins <- ac.bin

comp <- ac.comp

eff <- ac.eff

}

adjc <- cpm(asDGEList(bins), log=TRUE)

smoothScatter(x=rowMeans(adjc), y=adjc[,1]-adjc[,2],

xlab="A", ylab="M", main=main)

abline(h=log2(eff[1]/eff[2]), col="red")

abline(h=log2(comp[1]/comp[2]), col="red", lty=2)

}

4.4 Choosing between normalization strategies

The normalization strategies for composition and efficiency biases are mutually exclusive, as
only one set of normalization factors will ultimately be used in edgeR. The choice between
the two methods depends on whether one assumes that the systematic differences at high
abundances represent genuine DB events. If so, the binned TMM method from Section 4.2
should be used to remove composition bias. This will preserve the assumed DB, at the cost of
ignoring any efficiency biases that might be present. Otherwise, if the systematic differences
are not genuine DB, they must represent efficiency bias and should be removed by applying
the TMM method on high-abundance windows (Section 4.3). Some understanding of the
biological context is useful in making this decision, e.g., comparing a wild-type against a
knock-out for the target protein should result in systematic DB, while overall levels of histone
marking are expected to be consistent in most conditions.
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For the main NF-YA example, there is no expectation of constant binding between cell types.
Thus, normalization factors will be computed to remove composition biases. This ensures that
any genuine systematic changes in binding will still be picked up. In general, normalization
for composition bias is a good starting point for any analysis. This can be considered as the
“default” strategy unless there is evidence for a confounding efficiency bias.

4.5 Scaling normalization with spike-in chromatin

Several studies have used spike-in chromatin for scaling normalization of ChIP-seq data [15,
16]. Briefly, a constant amount of chromatin from a different species is added to each
sample at the start of the ChIP-seq protocol. The mixture is processed and sequenced in the
usual manner, using an antibody that can bind epitopes of interest from both species. The
coverage of the spiked-in foreign chromatin is then quantified in each library. As the quantity
of foreign chromatin should be constant in each sample, the coverage of binding sites on
the foreign genome should also be the same between libraries. Any difference in coverage
between libraries represents some technical bias that should be removed by scaling.

This normalization strategy can be implemented in csaw with some work. Assuming that the
reference genome includes appropriate sequences from the foreign genome, coverage is quan-
tified across genomic windows with windowCounts. Filtering is performed to select for high-
abundance windows in the foreign genome (see Section 4.3), yielding counts for all enriched
spike-in regions. (The filtered object is named spike.data in the code below.) Normalization
factors are computed by applying the TMM method on these counts via normOffsets. This
aims to identify the fold-change in coverage between samples that is attributable to technical
effects.

endog.data <- normOffsets(spike.data, se.out=endog.data)

In the code above, the spike-in normalization factors are returned in a modified copy of en
dog.data for further analysis of the endogenous windows. We assume that the library sizes in
totals are the same between spike.data and endog.data, which should be the case if they
were formed by subsetting the output of a single windowCounts call. This ensures that the
normalization factors computed from the spike-in windows are applicable to the endogenous
windows.

Compared to the previous normalization methods, the spike-in approach does not distinguish
between composition and efficiency biases. Instead, it uses the fold-differences in the coverage
of spiked-in binding sites to empirically measure and remove the net bias between libraries.
This avoids the need for assumptions regarding the origin of any systematic differences be-
tween libraries. That said, spike-in normalization involves some strong assumptions of its own.
In particular, the same ratio of spike-in chromatin to endogenous chromatin is assumed to be
present in each sample. This requires accurate quantitation of the chromatin in each sample,
followed by precise addition of small spike-in quantities. Furthermore, the spike-in chromatin
is assumed to behave in the same manner as endogenous chromatin throughout the ChIP-seq
protocol. Whether these assumptions are reasonable will depend on the experimenter and
the nature of the spike-in chromatin.
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4.6 Dealing with trended biases

4.6.1 Applying loess-based normalization to the counts

In more extreme cases, the bias may vary with the average abundance to form a trend. One
possible explanation is that changes in IP efficiency will have little effect at low-abundance
background regions and more effect at high-abundance binding sites. Thus, the magnitude
of the bias between libraries will change with abundance. The trend cannot be corrected with
scaling methods as no single scaling factor will remove differences at all abundances. Rather,
non-linear methods are required, such as cyclic loess or quantile normalization.

One such implementation is provided in normOffsets by setting type="loess". This is based
on the fast loess algorithm [17] with minor adaptations to handle low counts. A matrix is
produced that contains an offset term for each bin/window in each library. This offset matrix
can then be directly used in edgeR, assuming that the bins or windows used in normalization
are also the ones to be tested for DB. We demonstrate this procedure below, using filtered
counts for 2 kbp windows in the H3 acetylation data set. (This window size is chosen purely
for aesthetics in this demonstration, as the trend is less obvious at smaller widths. Obviously,
users should pick a more appropriate value for their analysis.)

ac.demo2 <- windowCounts(ac.files, width=2000L, param=param)

filtered <- filterWindows(ac.demo2, ac.bin, type="global")

keep <- filtered$filter > log2(4)

ac.demo2 <- ac.demo2[keep,]

ac.demo2 <- normOffsets(ac.demo2, type="loess", se.out=TRUE)

ac.off <- assay(ac.demo2, "offset")

head(ac.off)

## [,1] [,2]

## [1,] 0.1382389 -0.1382389

## [2,] 0.1382389 -0.1382389

## [3,] 0.1673179 -0.1673179

## [4,] 0.1805067 -0.1805067

## [5,] 0.2021534 -0.2021534

## [6,] 0.2144910 -0.2144910

When se.out=TRUE, the offsets are stored in the RangedSummarizedExperiment object as an
"offsets" entry in the assays slot. Each offset represents the log-transformed scaling factor
that needs to be applied to the corresponding entry of the count matrix for its normalization.
Any operations like subsetting that are applied to modify the object will also be applied to
the offsets, allowing for synchronised processing.

4.6.2 Characteristics of loess normalization

Loess normalization of trended biases is quite similar to TMM normalization for efficiency
biases described in Section 4.3. Both methods assume a non-DB majority across features, and
will not be appropriate if there is a change in overall binding. Loess normalization involves
a slightly stronger assumption of a non-DB majority at every abundance, not just across all
bound regions. This is necessary to remove trended biases but may also discard genuine
changes, such as a subset of DB sites at very high abundances.
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Compared to TMM normalization, the accuracy of loess normalization is less dependent on
stringent filtering. This is because the use of a trend accommodates changes in the bias
between high-abundance binding sites and low-abundance background regions. Nonetheless,
some filtering is still necessary to avoid inaccuracies in loess fitting at low abundances. Any
filter statistic for the windows should be based on the average abundance from aveLogCPM,
such as those calculated using filterWindows. An average abundance threshold will act as
a clean vertical cutoff in the MA plots above. This avoids introducing spurious trends at the
filter boundary that might affect normalization.

4.6.3 Checking normalization with MA plots

We examine the MA plots to determine whether normalization was successful. Any abundance-
dependent trend in the M-values should be eliminated after applying the offsets to the log-
counts. This is done by subtraction, though note that the offsets are base e while most
log-values in edgeR are reported as base 2.

par(mfrow=c(1,2))

# MA plot without normalization.

ac.y <- asDGEList(ac.demo2)

adjc <- cpm(ac.y, log=TRUE)

abval <- aveLogCPM(ac.y)

mval <- adjc[,1]-adjc[,2]

fit <- loessFit(x=abval, y=mval)

smoothScatter(abval, mval, ylab="M", xlab="Average logCPM",

main="Raw", ylim=c(-2,2), xlim=c(0, 7))

o <- order(abval)

lines(abval[o], fit$fitted[o], col="red")

# Repeating after normalization.

re.adjc <- log2(assay(ac.demo2)+0.5) - ac.off/log(2)

mval <- re.adjc[,1]-re.adjc[,2]

fit <- loessFit(x=abval, y=mval)

smoothScatter(abval, re.adjc[,1]-re.adjc[,2], ylab="M", xlab="Average logCPM",

main="Normalized", ylim=c(-2,2), xlim=c(0, 7))

lines(abval[o], fit$fitted[o], col="red")
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4.7 A word on other biases

No normalization is performed to adjust for differences in mappability or sequencability be-
tween different regions of the genome. Region-specific biases are assumed to be constant
between libraries. This is generally reasonable as the biases depend on fixed properties of the
genome sequence such as GC content. Thus, biases should cancel out during DB comparisons.
Any variability between samples will just be absorbed into the dispersion estimate.

That said, explicit normalization to correct these biases can improve results for some datasets.
Procedures like GC correction could decrease the observed variability by removing systematic
differences between replicates. Of course, this also assumes that the targeted differences
have no biological relevance. Detection power may be lost if this is not true. For example,
differences in the GC content distribution can be driven by technical bias as well as biology,
e.g., when protein binding is associated with a specific GC composition.
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Testing for differential binding

Here, we’ll need the filtered.data generated in Chapter 3 (and modified in Chapter 4),
and the design matrix from the introduction. We’ll also need the original data from
Chapter 2, but just for a demonstration. Finally, we’ll be executing a number of edgeR
functions, so make sure the edgeR package is loaded if you’ve been skipping chapters.

5.1 Introduction to edgeR

5.1.1 Overview

Low counts per window are typically observed in ChIP-seq datasets, even for genuine binding
sites. Any statistical analysis to identify DB sites must be able to handle discreteness in the
data. Count-based models are ideal for this purpose. In this guide, the quasi-likelihood (QL)
framework in the edgeR package is used [18]. Counts are modelled using NB distributions
that account for overdispersion between biological replicates [19]. Each window can then be
tested for significant DB between conditions.

Of course, any statistical method can be used if it is able to accept a count matrix and a
vector of normalization factors (or more generally, a matrix of offsets). The choice of edgeR
is primarily motivated by its performance relative to some published alternatives [20]. This
author’s desire to increase his h-index may also be a factor [21].

5.1.2 Setting up the data

A DGEList object is first constructed from the count matrix in filtered.data. If normaliza-
tion factors or offsets are present in the RangedSummarizedExperiment object – see Chapter 4
– they will automatically be extracted and used to construct the DGEList object. Otherwise,
they can be manually passed to the asDGEList function. If offsets are available, they will
generally override the normalization factors in the downstream edgeR analysis.

y <- asDGEList(filtered.data)
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The experimental design is described by a design matrix. In this case, the only relevant factor
is the cell type of each sample. A generalized linear model (GLM) will be fitted to the counts
for each window using the specified design [22]. This provides a general framework for the
analysis of complex experiments with multiple factors. Readers are referred to the user’s
guide in edgeR for more details on parametrization.

design

## intercept cell.type

## 1 1 0

## 2 1 0

## 3 1 1

## 4 1 1

## attr(,"assign")

## [1] 0 1

## attr(,"contrasts")

## attr(,"contrasts")$`factor(c("es", "es", "tn", "tn"))`

## [1] "contr.treatment"

5.2 Estimating the dispersions

5.2.1 Stabilising estimates with empirical Bayes

Under the QL framework, both the QL and NB dispersions are used to model biological
variability in the data [18]. The former ensures that the NB mean-variance relationship is
properly specified with appropriate contributions from the Poisson and Gamma components.
The latter accounts for variability and uncertainty in the dispersion estimate. However, limited
replication in most ChIP-seq experiments means that each window does not contain enough
information for precise estimation of either dispersion.

This problem is overcome in edgeR by sharing information across windows. For the NB
dispersions, a mean-dispersion trend is fitted across all windows to model the mean-variance
relationship [22]. The raw QL dispersion for each window is estimated after fitting a GLM
with the trended NB dispersion. Another mean-dependent trend is fitted to the raw QL
estimates. An empirical Bayes (EB) strategy is then used to stabilize the raw QL dispersion
estimates by shrinking them towards the second trend [18]. The ideal amount of shrinkage
is determined from the variability of the dispersions.

y <- estimateDisp(y, design)

summary(y$trended.dispersion)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.02979 0.08471 0.08958 0.09344 0.10319 0.11643

fit <- glmQLFit(y, design, robust=TRUE)

summary(fit$var.post)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.05018 1.06045 1.08750 1.08315 1.11546 16.85074

41

http://bioconductor.org/packages/csaw
http://bioconductor.org/packages/edgeR
http://bioconductor.org/packages/edgeR


csaw User’s Guide

The effect of EB stabilisation can be visualized by examining the biological coefficient of
variation (for the NB dispersion) and the quarter-root deviance (for the QL dispersion). These
plots can also be used to decide whether the fitted trend is appropriate. Sudden irregulaties
may be indicative of an underlying structure in the data which cannot be modelled with the
mean-dispersion trend. Discrete patterns in the raw dispersions are indicative of low counts
and suggest that more aggressive filtering is required.

par(mfrow=c(1,2))

o <- order(y$AveLogCPM)

plot(y$AveLogCPM[o], sqrt(y$trended.dispersion[o]), type="l", lwd=2,

ylim=c(0, 1), xlab=expression("Ave."~Log[2]~"CPM"),

ylab=("Biological coefficient of variation"))

plotQLDisp(fit)

A strong trend may also be observed where the NB dispersion drops sharply with increasing
average abundance. This is due to the disproportionate impact of artifacts such as map-
ping errors and PCR duplicates at low counts. It is difficult to accurately fit an empirical
curve to these strong trends. As a consequence, the dispersions at high abundances may be
overestimated. Filtering of low-abundance regions (as described in Chapter 3) provides some
protection by removing the strongest part of the trend. Users can compare raw and filtered
results to see whether it makes any difference. Filtering has an additional benefit of removing
those tests that have low power due to the magnitude of the dispersions.

relevant <- rowSums(assay(data)) >= 20 # weaker filtering than 'filtered.data'

yo <- asDGEList(data[relevant], norm.factors=normfacs)

yo <- estimateDisp(yo, design)

oo <- order(yo$AveLogCPM)

plot(yo$AveLogCPM[oo], sqrt(yo$trended.dispersion[oo]), type="l", lwd=2,

ylim=c(0, max(sqrt(yo$trended))), xlab=expression("Ave."~Log[2]~"CPM"),

ylab=("Biological coefficient of variation"))

lines(y$AveLogCPM[o], sqrt(y$trended[o]), lwd=2, col="grey")

legend("topright", c("raw", "filtered"), col=c("black", "grey"), lwd=2)
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5.2.2 Modelling variable dispersions between windows

Any variability in the dispersions across windows is modelled in edgeR by the prior degrees
of freedom (d.f.). A large value for the prior d.f. indicates that the variability is low. This
means that more EB shrinkage can be performed to reduce uncertainty and maximize power.
However, strong shrinkage is not appropriate if the dispersions are highly variable. Fewer
prior degrees of freedom (and less shrinkage) are required to maintain type I error control.

summary(fit$df.prior)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.4146 63.9234 63.9234 63.8403 63.9234 63.9234

On occasion, the estimated prior degrees of freedom will be infinite. This is indicative of a
strong batch effect where the dispersions are consistently large. A typical example involves
uncorrected differences in IP efficiency across replicates. In severe cases, the trend may fail
to pass through the bulk of points as the variability is too low to be properly modelled in the
QL framework. This problem is usually resolved with appropriate normalization.

Note that the prior degrees of freedom should be robustly estimated [23]. Obviously, this
protects against large positive outliers (e.g., highly variable windows) but it also protects
against near-zero dispersions at low counts. These will manifest as large negative outliers
after a log transformation step during estimation [24]. Without robustness, incorporation of
these outliers will inflate the observed variability in the dispersions. This results in a lower
estimated prior d.f. and reduced DB detection power.

5.3 Testing for DB windows

The effect of specific factors can be tested to identify windows with significant differential
binding. In the QL framework, p-values are computed using the QL F-test [18]. This is
more appropriate than using the likelihood ratio test as the F-test accounts for uncertainty
in the dispersion estimates. Associated statistics such as log-fold changes and log-counts per
million are also computed for each window.
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results <- glmQLFTest(fit, contrast=c(0, 1))

head(results$table)

## logFC logCPM F PValue

## 1 0.2658122 -0.9510726 0.1310345 0.71851958

## 2 0.2822485 -0.9569048 0.1432359 0.70630110

## 3 1.7984741 -0.8761307 5.5293213 0.02169863

## 4 0.7675744 -0.9927300 1.0302966 0.31379997

## 5 0.9151089 0.3623894 3.0527285 0.08525857

## 6 1.0975166 1.1882202 5.1842582 0.02604486

The null hypothesis here is that the cell type has no effect. The contrast argument in the
glmQLFTest function specifies which factors are of interest. In this case, a contrast of c(0,
1) defines the null hypothesis as 0*intercept + 1*cell.type = 0, i.e., that the log-fold
change between cell types is zero. DB windows can then be identified by rejecting the null.
Specification of the contrast is explained in greater depth in the edgeR user’s manual.

Once the significance statistics have been calculated, they can be stored in row metadata of
the RangedSummarizedExperiment object. This ensures that the statistics and coordinates
are processed together, e.g., when subsetting to select certain windows.

rowData(filtered.data) <- cbind(rowData(filtered.data), results$table)

5.4 What to do without replicates

Designing a ChIP-seq experiment without any replicates is strongly discouraged. Without
replication, the reproducibility of any findings cannot be determined. Nonetheless, it may
be helpful to salvage some information from datasets that lack replicates. This is done by
supplying a “reasonable” value for the NB dispersion during GLM fitting (e.g., 0.05 - 0.1,
based on past experience). DB windows are then identified using the likelihood ratio test.

fit.norep <- glmFit(y, design, dispersion=0.05)

results.norep <- glmLRT(fit.norep, contrast=c(0, 1))

head(results.norep$table)

## logFC logCPM LR PValue

## 1 0.2684752 -0.9510726 0.2120285 0.645182146

## 2 0.2780084 -0.9569048 0.2272337 0.633582614

## 3 1.8018136 -0.8761307 8.2161956 0.004151815

## 4 0.7577212 -0.9927300 1.5872704 0.207716548

## 5 0.9143437 0.3623894 4.2229915 0.039879791

## 6 1.0965133 1.1882202 7.5864545 0.005880849

Obviously, this approach has a number of pitfalls. The lack of replicates means that the
biological variability in the data cannot be modelled. Thus, it becomes impossible to gauge the
sensibility of the supplied NB dispersions in the analysis. Another problem is spurious DB due
to inconsistent PCR duplication between libraries. Normally, inconsistent duplication results
in a large QL dispersion for the affected window, such that significance is downweighted.
However, estimation of the QL dispersion is not possible without replicates. This means that
duplicates may need to be removed to protect against false positives.
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5.5 Examining replicate similarity with MDS plots

As a quality control measure, the window counts can be used to examine the similarity of
replicates through multi-dimensional scaling (MDS) plots. The distance between each pair of
libraries is computed as the square root of the mean squared log-fold change across the top
set of bins with the highest absolute log-fold changes. A small top set visualizes the most
extreme differences whereas a large set visualizes overall differences. Checking a range of top
values may be useful when the scope of DB is unknown. Again, counting with large bins is
recommended as fold changes will be undefined in the presence of zero counts.

par(mfrow=c(2,2), mar=c(5,4,2,2))

adj.counts <- cpm(y, log=TRUE)

for (top in c(100, 500, 1000, 5000)) {

out <- plotMDS(adj.counts, main=top, col=c("blue", "blue", "red", "red"),

labels=c("es.1", "es.2", "tn.1", "tn.2"), top=top)

}

Replicates from different groups should form separate clusters in the MDS plot, as observed
above. This indicates that the results are reproducible and that the effect sizes are large.
Mixing between replicates of different conditions indicates that the biological difference has
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no effect on protein binding, or that the data is too variable for any effect to manifest. Any
outliers should also be noted as their presence may confound the downstream analysis. In
the worst case, outlier samples may need to be removed to obtain sensible results.
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Correction for multiple testing

All right, we’re almost there. This chapter needs the results object from the last
chapter, as well as filtered.data from Chapter 3. A few other things are also required
for some of the optional sections below – namely, broads from Chapter 3, and ac.files

and param from Chapters 4 and 2, respectively.

6.1 Problems with false discovery rate control

6.1.1 Overview

The false discovery rate (FDR) is usually the most appropriate measure of error for high-
throughput experiments. Control of the FDR can be provided by applying the Benjamini-
Hochberg (BH) method [25] to a set of p-values. This is less conservative than the alternatives
(e.g., Bonferroni) yet still provides some measure of error control. The most obvious approach
is to apply the BH method to the set of p-values across all windows. This will control the
FDR across the set of putative DB windows.

However, the FDR across all detected windows is not necessarily the most relevant error
rate. Interpretation of ChIP-seq experiments is more concerned with regions of the genome
in which (differential) protein binding is found, rather than the individual windows. In other
words, the FDR across all detected DB regions is usually desired. This is not equivalent to
that across all DB windows as each region will often consist of multiple overlapping windows.
Control of one will not guarantee control of the other [4].

To illustrate this difference, consider an analysis where the FDR across all window positions is
controlled at 10%. In the results, there are 18 adjacent window positions forming one cluster
and 2 windows forming a separate cluster. Each cluster represents a region. The first set
of windows is a truly DB region whereas the second set is a false positive. A window-based
interpretation of the FDR is correct as only 2 of the 20 window positions are false positives.
However, a region-based interpretation results in an actual FDR of 50%.

47



csaw User’s Guide

6.1.2 Restoring FDR control with clustered windows

Misinterpretation of the FDR can be avoided by obtaining a single p-value for each region.
In particular, several strategies can be used to cluster adjacent windows into regions. A
combined p-value can then be computed for each cluster, based on the p-values of the
constituent windows [26]. This tests the joint null hypothesis for each cluster, i.e., that
no enrichment is observed across any sites within the corresponding region. The combined
p-values are then adjusted using the BH method to control the region-level FDR.

An alternative approach is to choose a single window to represent each cluster/region. For
example, the window with the highest average abundance in each cluster can be used. This
is sensible for analyses involving sharp binding events, where each cluster is expected to be
small and contain no more than one binding site. Thus, a single window (and p-value) can
reasonably be used as a representative of the entire region. The BH method can then be
applied to the corresponding p-values of the representative windows from all clusters.

Both approaches are available in the csaw package. The combining procedure is known as
Simes’ method and is implemented in the combineTests function. Similarly, selection of a
representative window can be performed using the getBestTest function. Examples of their
usage are shown below, along with demonstrations of the different clustering strategies.

6.2 Clustering windows into regions

6.2.1 Clustering with external information

Combined p-values can be computed for a pre-defined set of regions based on the windows
overlapping those regions. The most obvious source of pre-defined regions is that of annotated
features such as promoters or gene bodies. Alternatively, called peaks can be used provided
that sufficient care has been taken to avoid loss of error control from data snooping [4]. In
either case, the findOverlaps function from the GenomicRanges package can be used to
identify all windows in or overlapping each specified region.

olap <- findOverlaps(broads, rowRanges(filtered.data))

olap

## Hits object with 15546 hits and 0 metadata columns:

## queryHits subjectHits

## <integer> <integer>

## [1] 7 8690

## [2] 7 8691

## [3] 7 8692

## [4] 18 10377

## [5] 18 10378

## ... ... ...

## [15542] 24037 8504

## [15543] 24037 8505

## [15544] 24040 8218

## [15545] 24040 8219

## [15546] 24040 8220

## -------

48

http://bioconductor.org/packages/csaw
http://bioconductor.org/packages/csaw
http://bioconductor.org/packages/GenomicRanges


csaw User’s Guide

## queryLength: 24044 / subjectLength: 15072

The combineOverlaps function can be used to combine the p-values for all windows in each
region. This is a wrapper around combineTests for Hits objects. It returns a single combined
p-value (and its BH-adjusted value) for each region. The number of windows in each region
that change by more than

√
2 in either direction are also reported. Regions that do not

overlap any windows have values of NA in all fields for the corresponding rows.

tabbroad <- combineOverlaps(olap, results$table)

head(tabbroad[!is.na(tabbroad$PValue),])

## nWindows logFC.up logFC.down PValue FDR direction

## 7 3 3 0 0.0001268923 0.002164191 up

## 18 4 4 0 0.0001364321 0.002197021 up

## 22 1 1 0 0.1770427969 0.248193525 up

## 23 5 5 0 0.0017574170 0.010373809 up

## 25 4 0 0 0.9862104787 0.989983933 mixed

## 28 3 3 0 0.0028433595 0.014606067 up

At this point, one might imagine that it would be simpler to just collect and analyze counts
over the pre-defined regions. This is a valid strategy but will yield different results. Con-
sider a promoter containing two separate sites that are identically DB in opposite directions.
Counting reads across the promoter will give equal counts for each condition so changes
within the promoter will not be detected. Similarly, imprecise boundaries for called peaks
can lead to loss of DB detection power due to “contamination” by reads from background
regions. In both cases, window-based methods may be more robust as each interval of the
promoter/peak region is examined separately [4].

6.2.2 Quick and dirty clustering

Clustering can also be performed with a simple single-linkage algorithm in the mergeWindows

function. This approach avoids potential problems with the other clustering strategies, e.g.,
peak-calling errors, incorrect or incomplete annotation. Windows that are less than tol

apart are considered to be adjacent and are grouped into the same cluster. The chosen tol

represents the minimum distance at which two binding events are treated as separate sites.
Large values (500 - 1000 bp) reduce redundancy and favor a region-based interpretation of
the results, while smaller values (< 200 bp) allow resolution of individual binding sites.

merged <- mergeWindows(rowRanges(filtered.data), tol=1000L)

merged$region

## GRanges object with 4422 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [6466701, 6466760] *
## [2] chr1 [7088951, 7088960] *
## [3] chr1 [7397851, 7398110] *
## [4] chr1 [9541401, 9541510] *
## [5] chr1 [9545251, 9545360] *
## ... ... ... ...

## [4418] chrX [164076151, 164076560] *
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## [4419] chrX [166170351, 166170410] *
## [4420] chrY [ 259151, 259360] *
## [4421] chrY [ 90808801, 90808860] *
## [4422] chrY [ 90812401, 90812910] *
## -------

## seqinfo: 66 sequences from an unspecified genome

A combined p-value is computed for each cluster with the combineTests function. The BH
method is then applied to control the FDR across all detected clusters. The number of up
or down windows can be used to gauge whether binding increases or decreases across the
cluster. A complex DB event may be present if both up and down are substantially non-zero
(i.e., opposing changes within the region) or if the total number of windows is much larger
than either number (e.g., interval of constant binding adjacent to the DB interval).

tabcom <- combineTests(merged$id, results$table)

head(tabcom)

## nWindows logFC.up logFC.down PValue FDR direction

## 1 2 0 0 0.71851958 0.78374287 up

## 2 1 1 0 0.02169863 0.05704598 up

## 3 6 6 0 0.07813458 0.14160292 up

## 4 3 3 0 0.04190250 0.09016684 up

## 5 3 3 0 0.05998063 0.11602553 up

## 6 2 2 0 0.01396821 0.04263914 up

If many adjacent windows are present, very large clusters may be formed that are difficult
to interpret. We perform a simple check below to determine whether most clusters are of
an acceptable size. Huge clusters indicate that more aggressive filtering from Chapter 3 is
required. This mitigates chaining effects by reducing the density of windows in the genome.

summary(width(merged$region))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 10.0 60.0 110.0 159.2 160.0 15710.0

Alternatively, chaining can be limited by setting max.width to restrict the size of the merged
intervals. Clusters substantially larger than max.width are split into several smaller subclusters
of roughly equal size. The chosen value should be small enough so as to separate DB regions
from unchanged neighbors, yet large enough to avoid misinterpretation of the FDR. Any
value from 2000 to 10000 bp is recommended. This paramater can also interpreted as the
maximum distance at which two binding sites are considered part of the same event.

merged.max <- mergeWindows(rowRanges(filtered.data), tol=1000L, max.width=5000L)

summary(width(merged.max$region))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 10 60 110 158 160 4410
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6.3 Summarizing the direction of DB per cluster

6.3.1 Based on the contribution to the combined p-value

Summarizing the direction of DB for each cluster requires some care as the direction of DB can
differ between constituent windows. The direction field returned by combineTests specifies
which DB direction contributes to the combined p-value. If "up", the combined p-value for
this cluster is driven by p-values of windows with positive log-fold changes. If "down", the
combined p-value is driven by windows with negative log-fold changes. If "mixed", windows
with both positive and negative log-fold changes are involved. This allows the dominant DB
in significant clusters to be quickly summarized, as shown below.

is.sig.region <- tabcom$FDR <= 0.05

table(tabcom$direction[is.sig.region])

##

## down up

## 223 1321

The same approach is used with the output of combineOverlaps for gene-based clusters. This
requires some protection against NA values for genes that contain no windows.

is.sig.gene <- tabcom$FDR <= 0.05

table(tabbroad$direction[is.sig.gene])

##

## down mixed up

## 95 42 1369

Mixed clusters represent complex DB events where the shape of the binding profile changes,
i.e., not just a scaling increase/decrease to binding intensity. This includes regions with
multiple peaks changing in opposite directions, or peaks that change in shape or position
between conditions. Regions labelled as "up" or "down" may also correspond to complex DB
events, but will not be labelled as "mixed" if the significance calculations are dominated by
windows changing in only one direction. For rigorous identification of mixed clusters, users
are advised to use the mixedClusters function instead of combineTests.

6.3.2 Based on the most significant window

Another approach is to define the direction of change for each cluster as that of the window
with the strongest DB. This is useful when a log-fold change is required for each cluster, e.g.,
for plotting. In contrast, taking the average log-fold change across all windows in a cluster will
understate the magnitude of DB. Identification of the most significant (i.e., “best”) window
is performed using the getBestTest function. This reports the index of the window with the
lowest p-value in each cluster, as well as the associated statistics.

tab.best <- getBestTest(merged$id, results$table)

head(tab.best)

## best logFC logCPM F PValue FDR

## 1 2 0.2822485 -0.956904846 0.1432359 1.00000000 1.00000000
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## 2 3 1.7984741 -0.876130650 5.5293213 0.02169863 0.05967123

## 3 7 1.2159952 1.118954838 6.0483890 0.09930409 0.17467091

## 4 11 1.4411557 0.005806843 5.4781813 0.06687240 0.13207225

## 5 14 1.4995733 -0.675937198 4.5880362 0.10768422 0.18624848

## 6 17 2.1478277 -0.816330919 7.7552044 0.01396821 0.04430949

In addition, it is often useful to report the start location of the best window within each
cluster. This allows users to easily identify a relevant DB subinterval in large regions. For
example, the sequence of the DB subinterval can be extracted for motif discovery.

tabcom$best.logFC <- tab.best$logFC

tabcom$best.start <- start(rowRanges(filtered.data))[tab.best$best]

head(tabcom[,c("best.logFC", "best.start")])

## best.logFC best.start

## 1 0.2822485 6466751

## 2 1.7984741 7088951

## 3 1.2159952 7398001

## 4 1.4411557 9541451

## 5 1.4995733 9545301

## 6 2.1478277 9748451

The same approach can be applied to the overlaps between windows and pre-specified regions,
using the getBestOverlaps wrapper function. This is demonstrated below for the broad gene
body example. As with combineOverlaps, regions with no windows are assigned NA in the
output table, but these are removed here to show some actual results.

tab.best.broad <- getBestOverlaps(olap, results$table)

tabbroad$best.logFC <- tab.best.broad$logFC

tabbroad$best.start <- start(rowRanges(filtered.data))[tab.best.broad$best]

head(tabbroad[!is.na(tabbroad$PValue),c("best.logFC", "best.start")])

## best.logFC best.start

## 7 4.5767466 32657051

## 18 3.9835426 8259301

## 22 0.9872845 118937801

## 23 3.6001698 92934401

## 25 -0.3387857 71596001

## 28 2.6344767 4137001

Typically, the best window will only be used as a descriptive measure for each cluster. How-
ever, more statistical rigour is required if these windows are treated as the features of interest
over which the error rate is to be controlled. A Bonferroni correction is applied to the p-value
of each best window to obtain the corresponding PValue in tab.best. This is necessary to
account for the implicit multiple testing across all windows in each cluster.
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6.4 Squeezing out more detection power

6.4.1 Integrating results from multiple window sizes

Repeating the analysis with different window sizes may uncover new DB events at different
resolutions. Multiple sets of DB results are integrated by clustering adjacent windows together
(even if they differ in size) and combining p-values within each of the resulting clusters. The
example below uses the H3 acetylation data from Chapter 4. Some filtering is performed to
avoid excessive chaining in this demonstration. Corresponding tables of DB results should
also be obtained – for brevity, mock results are used here.

ac.small <- windowCounts(ac.files, width=150L, spacing=100L,

filter=25, param=param)

ac.large <- windowCounts(ac.files, width=1000L, spacing=500L,

filter=35, param=param)

ns <- nrow(ac.small)

mock.small <- data.frame(logFC=rnorm(ns), logCPM=0, PValue=runif(ns))

nl <- nrow(ac.large)

mock.large <- data.frame(logFC=rnorm(nl), logCPM=0, PValue=runif(nl))

The consolidateSizes function is then applied to combine these results. This merges win-
dows of all sizes into a single set of clusters, and computes a combined p-value from the
associated p-values for each cluster. However, if a cluster contains many small windows, the
DB results for the small window size will contribute most to the combined p-value. This is
not ideal when results from all window sizes are of equal interest. Equal contributions from
each window size can be enforced by setting equiweight=TRUE, whereby a weighted version
of Simes’ method [27] is used. The weight assigned to each window is inversely proportional
to the number of windows of that size in the same cluster.

cons <- consolidateSizes(list(ac.small, ac.large),

list(mock.small, mock.large),

equiweight=TRUE, merge.args=list(tol=1000))

cons$region

## GRanges object with 29892 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [4571001, 4572500] *
## [2] chr1 [4783501, 4787000] *
## [3] chr1 [4806501, 4809500] *
## [4] chr1 [4856501, 4859500] *
## [5] chr1 [5082501, 5084500] *
## ... ... ... ...

## [29888] chrY [ 897001, 899000] *
## [29889] chrY [ 1010001, 1012000] *
## [29890] chrY [ 1244001, 1246500] *
## [29891] chrY [ 1285001, 1287000] *
## [29892] chrY [90738501, 90740500] *
## -------

## seqinfo: 66 sequences from an unspecified genome
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The same function can also be used to consolidate windows of varying size that overlap
pre-specified regions. This is done by specifying the region argument, as shown below.

cons.broad <- consolidateSizes(list(ac.small, ac.large),

list(mock.small, mock.large),

region=broads, equiweight=TRUE)

In this manner, DB results from multiple window widths can be gathered together and re-
ported as a single set of regions. Consolidation is most useful for histone marks and other
analyses involving diffuse regions of enrichment. For such studies, the ideal window size is
not known or may not even exist, e.g., if the widths of the enriched regions are variable.

6.4.2 Weighting windows on abundance

Windows that are more likely to be DB can be upweighted to improve detection power. For
example, in TF ChIP-seq data, the window of highest abundance within each enriched region
probably contains the binding site. It is reasonable to assume that this window will also have
the strongest DB. To improve power, the weight assigned to the most abundant window is
increased relative to that of other windows in the same cluster. This means that the p-value
of this window will have a greater influence on the final combined p-value.

Weights are computed in a manner to minimize conservativeness relative to the optimal
unweighted approaches in each possible scenario. If the strongest DB event is at the most
abundant window, the weighted approach will yield a combined p-value that is no larger
than twice the p-value of the most abundant window. (Here, the optimal approach would
be to use the p-value of the most abundance window directly as a proxy for the p-value of
the cluster.) If the strongest DB event is not at the most abundant window, the weighted
approach will yield a combined p-value that is no larger than twice the combined p-value
without wweighting (which is optimal as all windows have equal probabilities of containing
the strongest DB). All windows have non-zero weights, which ensures that any DB events in
the other windows will still be considered when the p-values are combined.

The application of this weighting scheme is demonstrated in the example below. First, the
getBestTest function with by.pval=FALSE is used to identify the most abundant window
in each cluster. Window-specific weights are then computed using the upweightSummits

function, and supplied to combineTests to use in computing combined p-values.

tab.ave <- getBestTest(merged$id, results$table, by.pval=FALSE)

weights <- upweightSummit(merged$id, tab.ave$best)

head(weights)

## [1] 2 1 1 1 1 6

tabcom.w <- combineTests(merged$id, results$table, weight=weights)

head(tabcom.w)

## nWindows logFC.up logFC.down PValue FDR direction

## 1 2 0 0 0.71851958 0.78047005 up

## 2 1 1 0 0.02169863 0.05667533 up

## 3 6 6 0 0.04092764 0.08806911 up

## 4 3 3 0 0.03491875 0.07874081 up

## 5 3 3 0 0.04998386 0.10083423 up

## 6 2 2 0 0.01047616 0.03477896 up
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The weighting approach can also be applied to the clusters from the broad gene body ex-
ample. This is done by replacing the call to getBestTest with one to getBestOverlaps, as
before. Similarly, upweightSummit can be replaced with summitOverlaps. These wrappers
are designed to minimize book-keeping problems when one window overlaps multiple regions.

broad.best <- getBestOverlaps(olap, results$table, by.pval=FALSE)

head(broad.best[!is.na(broad.best$PValue),])

## best logFC logCPM F PValue FDR

## 7 8691 3.2094654 -0.5127818 17.55991283 8.459486e-05 0.001477841

## 18 10378 1.3722344 0.7189963 6.70525137 1.181860e-02 0.037719863

## 22 4460 0.9872845 -0.8611100 1.86192392 1.770428e-01 0.250947267

## 23 405 1.1650460 0.4066434 4.55073129 3.663129e-02 0.079378445

## 25 12509 -0.1802183 -0.2793734 0.09139579 7.633619e-01 0.800441856

## 28 10964 2.1645373 -0.6385065 8.58112907 4.661007e-03 0.020193017

broad.weights <- summitOverlaps(olap, region.best=broad.best$best)

tabbroad.w <- combineOverlaps(olap, results$table, o.weight=broad.weights)

6.4.3 Filtering after testing but before correction

Most of the filters in Chapter 3 are applied before the statistical analysis. However, some of
the approaches may be too aggressive, e.g., filtering to retain only local maxima or based on
pre-defined regions. In such cases, it may be preferable to initially apply one of the other,
milder filters. This ensures that sufficient windows are retained for stable normalization and/or
EB shrinkage. The aggressive filters can then be applied after the window-level statistics have
been calculated, but before clustering into regions and calculation of cluster-level statistics.
This is still beneficial as it removes irrelevant windows that would increase the severity of the
BH correction. It may also reduce chaining effects during clustering.

6.5 FDR control in difficult situations

6.5.1 Clustering only on DB windows for diffuse marks

The clustering procedures described above rely on independent filtering to remove irrelevant
windows. This ensures that the regions of interest are reasonably narrow and can be easily
interpreted, which is typically the case for most protein targets, e.g., TFs, narrow histone
marks. However, enriched regions may be very large for more diffuse marks. Such regions
may be difficult to interpret when only the DB subinterval is of interest. To overcome this, a
post-hoc analysis can be performed whereby only significant windows are used for clustering.

postclust <- clusterWindows(rowRanges(filtered.data), results$table,

target=0.05, tol=100, max.width=1000)

postclust$FDR

## [1] 0.0498132

postclust$region

## GRanges object with 1606 ranges and 0 metadata columns:
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## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr1 [15805551, 15805610] *
## [2] chr1 [33565951, 33566010] *
## [3] chr1 [35985451, 35985510] *
## [4] chr1 [36445351, 36445360] *
## [5] chr1 [36684301, 36684360] *
## ... ... ... ...

## [1602] chrX [ 75514251, 75514260] *
## [1603] chrX [ 76599001, 76599110] *
## [1604] chrX [100494251, 100494310] *
## [1605] chrX [102157051, 102157060] *
## [1606] chrX [143482951, 143483160] *
## -------

## seqinfo: 66 sequences from an unspecified genome

This will define and cluster significant windows in a manner that controls the cluster-level
FDR at 5%. The clustering step itself is performed using mergeWindows with the specified
parameters. Each cluster consists entirely of DB windows and can be directly interpreted as
a DB region or a DB subinterval of a larger enriched region. This reduces the pressure on
abundance filtering to obtain well-separated regions prior to clustering, e.g., for diffuse marks
or in data sets with weak IP signal. That said, users should be aware that calculation of the
cluster-level FDR is not entirely rigorous. As such, independent clustering and FDR control
via Simes’ method should be considered as the default for routine analyses.

6.5.2 Using the empirical FDR for noisy data

Some analyses involve comparisons of ChIP samples to negative controls. In such cases, any
region exhibiting enrichment in the negative control over the ChIP samples must be a false
positive. The number of significant regions that change in the “wrong” direction can be used
as an estimate of the number of false positives at any given p-value threshold. Division by
the number of discoveries changing in the “right” direction yields an estimate of the FDR,
i.e., the empirical FDR [13]. This strategy is implemented in the empiricalFDR function,
which controls the empirical FDR across clusters based on their combined p-values. Its use is
demonstrated below, though the output is not meaningful in this situation as genuine changes
in binding can be present in both directions.

empres <- empiricalFDR(merged$id, results$table)

The empirical FDR is useful for analyses of noisy data with high levels of non-specific binding.
This is because the estimate of the number of false positives adapts to the observed number
of regions exhibiting enrichment in the negative controls. In contrast, the standard BH
method in combineTests relies on proper type I error control during hypothesis testing. As
non-specific binding events tend to be condition-specific, they are indistinguishable from DB
events and assigned low p-values, resulting in loss of FDR control. Thus, for noisy data, use
of the empirical FDR may be more appropriate to control the proportion of “experimental”
false positives. However, calculation of the empirical FDR is not as statistically rigorous as
that of the BH method, so users are advised to only apply it when necessary.
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6.6 Further points on data management

Technically, results$table was not required in any of the calls performed in this chapter.
Recall that the per-window significance statistics were stored in the row metadata of fil

tered.data. Thus, rowData(filtered.data) could be used instead of results$table. The
former may be more convenient as it avoids the need to keep track of a separate object.

On a similar note, it is possible to store the results for each region in the per-element
metadata of the corresponding GRanges object. This synchronises the storage and handling
of the statistics and coordinates for each region. Thus, data management throughout the
rest of the analysis can be simplified. This is demonstrated below for tabcom and tabbroad.

mcols(broads) <- tabbroad

mcols(merged$region) <- tabcom
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Post-processing steps

This is where we bring it all together. We’ll need the merged list from the previous
chapter – oh, and the org.Mm.eg.db object that we loaded in Chapter 3. There’s a bit
about visualization at the end where we need the data and param objects from Chapter 2,
along with the original bam.files that we started with in the introduction.

7.1 Adding gene-based annotation

Annotation can be added to a given set of regions using the detailRanges function. This will
identify overlaps between the regions and annotated genomic features such as exons, introns
and promoters. Here, the promoter region of each gene is defined as some interval 3 kbp up-
and 1 kbp downstream of the TSS for that gene. Any exonic features within dist on the left
or right side of each supplied region will also be reported.

library(org.Mm.eg.db)

anno <- detailRanges(merged$region, txdb=TxDb.Mmusculus.UCSC.mm10.knownGene,

orgdb=org.Mm.eg.db, promoter=c(3000, 1000), dist=5000)

head(anno$overlap)

## [1] "" "Pcmtd1|0-1|+"

## [3] "" ""

## [5] "Rrs1|0|+,Adhfe1|0|+" "Vcpip1|0|-,1700034P13Rik|0-1|+"

head(anno$left)

## [1] "" "" "" ""

## [5] "" "Vcpip1|1|-[19]"

head(anno$right)

## [1] "" ""

## [3] "" "Rrs1|1|+[3898]"

## [5] "Rrs1|1|+[48],Adhfe1|1-2|+[2686]" "1700034P13Rik|2|+[3989]"

Character vectors of compact string representations are provided to summarize the features
overlapped by each supplied region. Each pattern contains GENE|EXONS|STRAND to describe
the strand and overlapped exons of that gene. Promoters are labelled as exon 0 whereas
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introns are labelled as I. For left and right, an additional [DISTANCE] field is included.
This indicates the gap between the annotated feature and the supplied region. All of this
annotation can be stored in the metadata of the GRanges object for later use.

merged$region$overlap <- anno$overlap

merged$region$left <- anno$left

merged$region$right <- anno$right

While the string representation saves space in the output, it is not easy to work with. If
the annotation needs to manipulated directly, users can obtain it from the detailRanges

command by not specifying the regions of interest. This can then be used for interactive
manipulation, e.g., to identify all genes where the promoter contains DB sites.

anno.ranges <- detailRanges(txdb=TxDb.Mmusculus.UCSC.mm10.knownGene,

orgdb=org.Mm.eg.db)

anno.ranges

## GRanges object with 317093 ranges and 3 metadata columns:

## seqnames ranges strand | symbol exon

## <Rle> <IRanges> <Rle> | <character> <integer>

## 100009600 chr9 [21062393, 21062717] - | Zglp1 7

## 100009600 chr9 [21062894, 21062987] - | Zglp1 6

## 100009600 chr9 [21063314, 21063396] - | Zglp1 5

## 100009600 chr9 [21066024, 21066377] - | Zglp1 4

## 100009600 chr9 [21066926, 21070925] - | Zglp1 0

## ... ... ... ... . ... ...

## 99889 chr3 [ 85785218, 85887518] - | Arfip1 -1

## 99890 chr3 [110246104, 110250999] - | Prmt6 -1

## 99899 chr3 [151730923, 151749959] - | Ifi44 -1

## 99929 chr3 [ 65528447, 65555518] + | Tiparp -1

## 99982 chr4 [136550533, 136602723] - | Kdm1a -1

## internal

## <integer>

## 100009600 1

## 100009600 1

## 100009600 1

## 100009600 1

## 100009600 1

## ... ...

## 99889 24268

## 99890 24269

## 99899 24270

## 99929 24271

## 99982 24272

## -------

## seqinfo: 66 sequences (1 circular) from mm10 genome
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7.2 Checking bimodality for TF studies

For TF experiments, a simple measure of strand bimodality can be reported as a diagnostic.
Given a set of regions, the checkBimodality function will return the maximum bimodality
score across all base positions in each region. The bimodality score at each base position is
defined as the minimum of the ratio of the number of forward- to reverse-stranded reads to
the left of that position, and the ratio of the reverse- to forward-stranded reads to the right.
A high score is only possible if both ratios are large, i.e., strand bimodality is present.

spacing <- metadata(data)$spacing

expanded <- resize(merged$region, fix="center",

width=width(merged$region)+spacing)

sbm.score <- checkBimodality(bam.files, expanded, width=frag.len)

head(sbm.score)

## [1] 1.272727 1.437500 1.406977 2.315789 1.454545 1.222222

In the above code, all regions are expanded by spacing, i.e., 50 bp. This ensures that the
optimal bimodality score can be computed for the centre of the binding site, even if that
position is not captured by a window. The width argument specifies the span with which to
count reads for the score calculation. This should be set to the average fragment length. If
multiple bam.files are provided, they will be pooled during counting.

For typical TF binding sites, bimodality scores can be considered to be “high” if they are larger
than 4. This allows users to distinguish between genuine binding sites and high-abundance
artifacts such as repeats or read stacks. However, caution is still required as some high
scores may be driven by the stochastic distribution of reads. Obviously, the concept of strand
bimodality is less relevant for diffuse targets like histone marks.

7.3 Saving the results to file

It is a simple matter to save the results for later perusal. This is done here in the ‘*.tsv’
format where all detail is preserved. Compression is used to reduce the file size.

ofile <- gzfile("clusters.tsv.gz", open="w")

write.table(as.data.frame(merged$region), file=ofile,

row.names=FALSE, quote=FALSE, sep="\t")

close(ofile)

Of course, other formats can be used depending on the purpose of the file. For example,
significantly DB regions can be exported to BED files through the rtracklayer package for
visual inspection with genomic browsers. A transformed FDR is used here for the score field.

is.sig <- merged$region$FDR <= 0.05

library(rtracklayer)

test <- merged$region[is.sig]

test$score <- -10*log10(merged$region$FDR[is.sig])

names(test) <- paste0("region", 1:sum(is.sig))

export(test, "clusters.bed")

head(read.table("clusters.bed"))
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## V1 V2 V3 V4 V5 V6

## 1 chr1 9748400 9748460 region1 13.70192 .

## 2 chr1 15805500 15805660 region2 17.29728 .

## 3 chr1 23762950 23762960 region3 15.09542 .

## 4 chr1 32172600 32172710 region4 13.62131 .

## 5 chr1 33565950 33566010 region5 27.78238 .

## 6 chr1 35985450 35985560 region6 30.00744 .

Alternatively, the GRanges object can be directly saved to file and reloaded later for direct
manipulation in the R environment, e.g., to find overlaps with other regions of interest.

saveRDS(merged$region, "ranges.rds")

7.4 Simple visualization of genomic coverage

Visualization of the read depth around interesting features is often desired. This is facilitated
by the extractReads function, which pulls out the reads from the BAM file. The returned
GRanges object can then be used to plot the sequencing coverage or any other statistic of
interest. Note that the extractReads function also accepts a readParam object. This ensures
that the same reads used in the analysis will be pulled out during visualization.

cur.region <- GRanges("chr18", IRanges(77806807, 77807165))

extractReads(bam.files[1], cur.region, param=param)

## GRanges object with 45 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr18 [77806886, 77806922] +

## [2] chr18 [77806887, 77806923] +

## [3] chr18 [77806887, 77806923] +

## [4] chr18 [77806887, 77806923] +

## [5] chr18 [77806890, 77806926] +

## ... ... ... ...

## [41] chr18 [77807048, 77807084] -

## [42] chr18 [77807068, 77807104] -

## [43] chr18 [77807082, 77807119] -

## [44] chr18 [77807084, 77807120] -

## [45] chr18 [77807087, 77807123] -

## -------

## seqinfo: 1 sequence from an unspecified genome

Here, coverage is visualized as the number of reads covering each base pair in the interval of
interest. Specifically, the reads-per-million is shown to allow comparisons between libraries of
different size. The plots themselves are constructed using methods from the Gviz package.
The blue and red tracks represent the coverage on the forward and reverse strands, respec-
tively. Strong strand bimodality is consistent with a genuine TF binding site. For paired-end
data, coverage can be similarly plotted for fragments, i.e., proper read pairs.

library(Gviz)

collected <- vector("list", length(bam.files))
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for (i in seq_along(bam.files)) {

reads <- extractReads(bam.files[i], cur.region, param=param)

adj.total <- data$totals[i]/1e6

pcov <- as(coverage(reads[strand(reads)=="+"])/adj.total, "GRanges")

ncov <- as(coverage(reads[strand(reads)=="-"])/adj.total, "GRanges")

ptrack <- DataTrack(pcov, type="histogram", lwd=0, fill=rgb(0,0,1,.4),

ylim=c(0,1.1), name=bam.files[i], col.axis="black",

col.title="black")

ntrack <- DataTrack(ncov, type="histogram", lwd=0, fill=rgb(1,0,0,.4),

ylim=c(0,1.1))

collected[[i]] <- OverlayTrack(trackList=list(ptrack,ntrack))

}

gax <- GenomeAxisTrack(col="black")

plotTracks(c(gax, collected), from=start(cur.region), to=end(cur.region))
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Epilogue

Congratulations on getting to the end. Here’s a poem for your efforts.
There once was a man named Will
Who never ate less than his fill.
He ate meat and bread
Until he was fed
But died when he saw the bill.

8.1 Datasets

8.1.1 Obtaining the FastQ files

The NFYA dataset used throughout the guide was first mentioned in Section 1.4. This
is available from the NCBI Gene Expression Omnibus (GEO) using the accession number
GSE25532 [5]. FastQ files were obtained from the Sequence Read Archive (SRA) with
accessions of SRR074398 for ‘es_1.bam’, SRR074399 for ‘es_2.bam’, SRR074417 for ‘tn_1.
bam’, SRR074418 for ‘tn_2.bam’ and SRR074401 for ‘input.bam’.

The paired-end dataset used in Section 2.3 is available from NCBI GEO using the accession
GSE43212 [28]. The relevant FastQ file was obtained from the SRA with the accession
SRR642390 for ‘example-pet.bam’.

All libraries used in Section 2.4.1 are available from NCBI GEO using the accession GSE31233
[29]. FastQ files were obtained from the SRA with the accessions SRR330784 and SRR330785
for ‘h3ac.bam’; SRR330800 and SRR330801 for ‘h3k4me2.bam’; and SRR330814, SRR330815
and SRR330816 for ‘h3k27me3.bam’. Multiple FastQ files represent technical replicates that
were merged into a single BAM file.

Finally, the H3K4me3 dataset in Section 4.3.1 is available from NCBI GEO using the accession
GSE38046 [30]. FastQ files were obtained from the SRA with the accessions SRR499732 and
SRR499733 for ‘h3k4me3_pro.bam’, and SRR499716 and SRR499717 for ‘h3k4me3_mat.bam’.
Again, technical replicates were merged together. For H3ac, the FastQ file at SRR330786
was also downloaded and used as ‘h3ac_2.bam’.
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8.1.2 Alignment and processing to produce BAM files

Technically, each of the libraries described above are downloaded in the SRA format. These
can be unpacked to yield FastQ files using the fastq-dump program from the SRA Toolkit
(http://www.ncbi.nlm.nih.gov/Traces/sra/?view=software). For the lone paired-end library,
users will need to specify fastq-dump -split-files to ensure that two separate files are
produced, i.e., containing sequences from either end of each fragment.

Reads in the FastQ files were then aligned to the mm10 build of the mouse genome using
subread v1.4.6 [7]. The subread software can be obtained from Bioconductor as the Rsubread
package, or as a standalone C program from http://subread.sourceforge.net. The consensus
threshold for alignment was set at 2 to accommodate short read lengths (< 45 bp in all
datasets). Only unique alignments were reported, and any tied alignments were split by
Hamming distance. Default values were used for all other parameters. Paired-end data was
aligned by supplying both FastQ files to subread within the same run.

Once aligned, SAM files were converted to BAM files using SAMtools v0.1.19 [6]. BAM files
were position-sorted with the samtools sort command, and duplicate reads were marked
using the MarkDuplicates command from the Picard suite v1.117 (http://broadinstitute.
github.io/picard). Any technical replicates were merged together using samtools merge to
form a single library. Indexing was performed using samtools index.

If all relevant SRA files have been obtained, a set of explicit commands can be used to
produce each BAM file. These commands are stored in a Bash file named ‘sra2bam.sh’ at
https://github.com/LTLA/csawUsersGuide.

8.2 Session information

sessionInfo()

## R version 3.4.0 Patched (2017-04-28 r72639)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: CentOS release 6.4 (Final)

##

## Matrix products: default

## BLAS: /wehisan/home/allstaff/a/alun/Software/R/R-3-4-branch_devel/lib/libRblas.so

## LAPACK: /wehisan/home/allstaff/a/alun/Software/R/R-3-4-branch_devel/lib/libRlapack.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] grid parallel stats4 stats graphics grDevices utils

## [8] datasets methods base

##

## other attached packages:
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## [1] Gviz_1.21.2

## [2] rtracklayer_1.37.3

## [3] org.Mm.eg.db_3.4.1

## [4] TxDb.Mmusculus.UCSC.mm10.knownGene_3.4.0

## [5] GenomicFeatures_1.29.11

## [6] AnnotationDbi_1.39.3

## [7] edgeR_3.19.7

## [8] limma_3.33.13

## [9] csaw_1.11.3

## [10] BiocParallel_1.11.9

## [11] SummarizedExperiment_1.7.10

## [12] DelayedArray_0.3.21

## [13] matrixStats_0.52.2

## [14] Biobase_2.37.2

## [15] GenomicRanges_1.29.15

## [16] GenomeInfoDb_1.13.5

## [17] IRanges_2.11.19

## [18] S4Vectors_0.15.12

## [19] BiocGenerics_0.23.3

##

## loaded via a namespace (and not attached):

## [1] ProtGenerics_1.9.1 bitops_1.0-6

## [3] bit64_0.9-7 httr_1.3.1

## [5] RColorBrewer_1.1-2 progress_1.1.2

## [7] rprojroot_1.2 tools_3.4.0

## [9] backports_1.1.1 R6_2.2.2

## [11] rpart_4.1-11 KernSmooth_2.23-15

## [13] Hmisc_4.0-3 DBI_0.7

## [15] lazyeval_0.2.0 colorspace_1.3-2

## [17] nnet_7.3-12 gridExtra_2.3

## [19] prettyunits_1.0.2 curl_3.0

## [21] bit_1.1-12 compiler_3.4.0

## [23] htmlTable_1.9 scales_0.5.0

## [25] checkmate_1.8.4 stringr_1.2.0

## [27] digest_0.6.12 Rsamtools_1.29.1

## [29] foreign_0.8-69 rmarkdown_1.6

## [31] XVector_0.17.1 base64enc_0.1-3

## [33] dichromat_2.0-0 pkgconfig_2.0.1

## [35] htmltools_0.3.6 ensembldb_2.1.13

## [37] BSgenome_1.45.3 highr_0.6

## [39] htmlwidgets_0.9 rlang_0.1.2

## [41] RSQLite_2.0 BiocInstaller_1.27.5

## [43] shiny_1.0.5 acepack_1.4.1

## [45] VariantAnnotation_1.23.8 RCurl_1.95-4.8

## [47] magrittr_1.5 GenomeInfoDbData_0.99.1

## [49] Formula_1.2-2 Matrix_1.2-11

## [51] Rcpp_0.12.13 munsell_0.4.3

## [53] stringi_1.1.5 yaml_2.1.14

## [55] zlibbioc_1.23.0 AnnotationHub_2.9.19

## [57] plyr_1.8.4 blob_1.1.0

## [59] lattice_0.20-35 Biostrings_2.45.4

65

http://bioconductor.org/packages/csaw


csaw User’s Guide

## [61] splines_3.4.0 locfit_1.5-9.1

## [63] knitr_1.17 biomaRt_2.33.4

## [65] XML_3.98-1.9 evaluate_0.10.1

## [67] biovizBase_1.25.1 latticeExtra_0.6-28

## [69] data.table_1.10.4-1 httpuv_1.3.5

## [71] gtable_0.2.0 assertthat_0.2.0

## [73] ggplot2_2.2.1 mime_0.5

## [75] xtable_1.8-2 AnnotationFilter_1.1.9

## [77] survival_2.41-3 tibble_1.3.4

## [79] GenomicAlignments_1.13.6 memoise_1.1.0

## [81] cluster_2.0.6 statmod_1.4.30

## [83] interactiveDisplayBase_1.15.0 Rhtslib_1.9.2

## [85] BiocStyle_2.5.40
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