
End-to-end analysis of cell-based screens: from raw

intensity readings to the annotated hit list

Michael Boutros, Ĺıgia Brás, Florian Hahne and Wolfgang Huber

January 4, 2019

Contents

1 Introduction 2

2 Reading the intensity data 3
2.1 Importing intensity data files with other formats 5

3 The cellHTS class and reports 6

4 Screen configuration: annotating the plate results 10
4.1 Format of the plate configuration file 12

4.1.1 Multiple plate configurations 13
4.2 Format of the screen log file 15

5 Normalization, scoring and summarization of replicates 15

6 Probe annotation 20
6.1 Adding additional annotation from public databases 21

6.1.1 Installation . 22
6.1.2 Using biomaRt to annotate the target genes online . . 22

7 Report 25
7.1 Controlling settings . 29
7.2 Exporting data to a tab-delimited file 29

8 Category analysis 30

9 Comparison with the results previously reported 36

1

10 Appendix: How to convert cellHTS to cellHTS2 configura-
tion files 36

11 Appendix: Normalization methods implemented in cellHTS2
package 41
11.1 Controls-based normalization 41

11.1.1 Percent of control . 41
11.1.2 Normalized percent inhibition 42

11.2 Non-controls-based normalization 42
11.2.1 Z score method . 42
11.2.2 Plate median normalization 43
11.2.3 B score method . 43

12 Appendix: Data transformation 44

13 Session info 46

1 Introduction

The package cellHTS2 is a revised and improved version of the cellHTS
package 1.

This report describes the structure of the cellHTS class, while explain-
ing all the steps necessary to run a complete analysis of a cell-based high-
throughput screen (HTS), from raw intensity readings to an annotated hit
list.

This text has been produced as a reproducible document [6]. It contains
the actual computer instructions for the methods it describes, and these
in turn produce all results, including the figures and tables that are shown
here. The computer instructions are given in the language R, thus, in order
to reproduce the computations shown here, you will need an installation
of R (version 2.3 or greater) together with a recent version of the package
cellHTS2 and of some other add-on packages. Within R, the following com-
mands can be used to install cellHTS2 along with all dependent packages.

To reproduce the computations shown here, you do not need to type
them or copy-paste them from the PDF file; rather, you can take the file
cellhts2Complete.Rnw in the scripts directory of the package, open it in a
text editor, run it using the R command Sweave, and modify it to your
needs.

1To convert a S3 class cellHTS object that was made using the cellHTS package into an
S4 class cellHTS object suitable for cellHTS2, please see the function convertOldCellHTS.

2

First, we load the package.

> library("cellHTS2")

2 Reading the intensity data

We consider a cell-based screen that was conducted in microtiter plate for-
mat, where a library of double-stranded RNAs was used to target the cor-
responding genes in cultured Drosophila Kc167 cells [2]. Each of the wells
in the plates contains either a gene-specific probe, a control, or it can be
empty. The experiments were done in duplicate, and the viability of the
cells after treatment was recorded by a plate reader measuring luciferase
activity. The promoter has been chosen such that the luciferase activity is
indicative of ATP levels. Although this set of example data corresponds to
a single-channel screening assay, the cellHTS2 package can also deal with
cases where there are readings from more channels, corresponding to differ-
ent reporters.

Usually, the measurements from each replicate and each channel come
in individual result files. The set of available result files and the informa-
tion about them (which plate, which replicate, which channel) is contained
in a spreadsheet, which we call the plate list file. This file should contain
at least the following columns: Filename, Plate and Replicate. The last
two columns should be integer numbers, with values ranging from 1 to the
maximum number of plates or replicates, respectively. An optional Batch
column can be used to provide batch information about the experiment, i.e.,
changes in reagents, or days for a multi-day experiment. See Section ref-
sec:multPlateConfs for more details. The first few lines of an example plate
list file are shown in Table 1, while Table 2 shows the first few lines from
one of the plate result files listed in the plate list file.

The first step of the analysis is to read the plate list file, to read all
the intensity files, and to assemble the data into a single R object that is
suitable for subsequent analyses. The main component of that object are
arrays with the intensity readings of all plates, channels, and replicates. We
demonstrate the R instructions for this step. First we define the path where
the input files can be found.

> experimentName <- "KcViab"

> dataPath <- system.file(experimentName, package="cellHTS2")

In this example, the input files are in the KcViab directory of the cellHTS2
package. To read your own data, modify dataPath to point to the directory

3

Filename Plate Replicate
FT01-G01.txt 1 1
FT01-G02.txt 1 2
FT02-G01.txt 2 1
FT02-G02.txt 2 2
FT03-G01.txt 3 1

...

Table 1: Selected lines from the example plate list file Platelist.txt.

FT01-G01 A01 887763
FT01-G01 A02 958308
FT01-G01 A03 1012685
FT01-G01 A04 872603
FT01-G01 A05 1179875

...

Table 2: Selected lines from the example signal intensity file FT01-G01.txt.

where they reside. We show the names of 12 files from our example directory:

> dataPath

[1] "/tmp/Rtmpp8ZW9d/Rinst1dc7145975d9/cellHTS2/KcViab"

> rev(dir(dataPath))[1:12]

[1] "old-Screenlog.txt" "old-Plateconf.txt"

[3] "Screenlog.txt" "Platelist.txt"

[5] "Plateconf.txt" "GeneIDs_Dm_HFA_1.1.txt"

[7] "FT57-G02.txt" "FT57-G01.txt"

[9] "FT56-G02.txt" "FT56-G01.txt"

[11] "FT55-G02.txt" "FT55-G01.txt"

and read the data into the object x

> x <- readPlateList("Platelist.txt",

+ name=experimentName,

+ path=dataPath)

> x

4

cellHTS (storageMode: lockedEnvironment)

assayData: 21888 features, 2 samples

element names: Channel 1

phenoData

sampleNames: 1 2

varLabels: replicate assay

varMetadata: labelDescription channel

featureData

featureNames: 1 2 ... 21888 (21888 total)

fvarLabels: plate well controlStatus

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

state: configured = FALSE

normalized = FALSE

scored = FALSE

annotated = FALSE

Number of plates: 57

Plate dimension: nrow = 16, ncol = 24

Number of batches: 1

The plate format used in the screen (96-well or 384-well plate design) is
automatically determined from the raw intensity files when calling the read-
PlateList function.

2.1 Importing intensity data files with other formats

The function readPlateList has the argument importFun that can be used
to provide a different import function to read plate result files with a format
different from that shown in Table 2. For example, to import plate data files
from an EnVision plate reader, set importFun=getEnVisionRawData or im-
portFun=getEnvisionCrosstalkCorrectedData when calling readPlateList.
Please see the help page of function getEnVisionRawData for an exam-
ple. Another import function (“importData.R”) is given together with the
example data set for a enhancer-supressor screen in the directory called
TwoWayAssay of this package.

While for the above data sets, the measurements from each replicate
and channel come in separate result files, this is not the case when measure-
ment files are provided in the HTanalyst format. In this case, each output
file contains meta-experimental data together with intensity readings (in a

5

matrix-like layout) of a set of plates made for the same replicate or screen.
Thus, there is no need to have a plate list file, and instead of using read-
PlateList we should call the function readHTAnalystData. Please see the
help page for this function (? readHTAnalystData), where we illustrate
how it can be applied to import HTAnalyst data files.

3 The cellHTS class and reports

The basic data structure of the package is the class cellHTS, which is a
container for cell-based high-throughput RNA interference assays (data and
experimental meta-data) performed in multi-plate format. This class ex-
tends the class NChannelSet of the Biobase package [7].

The data can be thought of as being organised in a two- or three-
dimensional array as follows:

1. The first dimension corresponds to reagents (e.g. siRNAs, chemical
compounds) that were used in the assays. For example, if the screen
used 100 plates of 384 wells (24 columns, 16 rows), then the first dimen-
sion has size 38,400, and the cellHTS object keeps track of plate ID,
row, and column associated with each element. For historic reasons,
and because we are using infrastructure that was developed for mi-
croarray experiments, the following terms are used synonymously for
the elements of the first dimension: reagents, features, probes, genes.

2. The second dimension corresponds to assays, including replicates and
different experimental conditions (cell type, treatment, genetic back-
ground). A potentially confusing terminology is that the data struc-
ture that annotates the second dimension is called phenoData (see be-
low). This is because we are using infrastructure, namely the NChan-
nelSet class from the Biobase package, that uses this unfortunate term
for this purpose. Sometimes, the elements of this second dimension are
also called samples.

3. The (optional) third dimension corresponds to different channels (e.g.
different luminescence reporters)

The main structures contained in a cellHTS object are:

assayData an object of class AssayData, usually an environment contain-
ing a set of matrices of identical size. Each matrix represents a single
channel. In each matrix, the rows correspond to features or reporters

6

(e. g. siRNAs, dsRNAs) and the colums to samples (different condi-
tions and/or replicates).

phenoData a dataframe (more precisely, an object of class Annotated-
DataFrame) containing information about the screens, such as the
replicate number and the type of biological assay. It must have the
following columns in its data component:

replicate a vector of integers giving the replicate number

assay a character vector giving the name of the biological assay or
condition

Both of these columns have the same length as the number of sam-
ples in the assayData slot. The choice of name phenoData for this
structure is unfortunate, it has nothing to do with phenotypes.

featureData a dataframe (more precisely, an object of class Annotated-
DataFrame) that contains information about the reagents used in the
experiment. There are three mandatory columns, in addition there can
be an arbitrary number of additional columns, for example a target
gene identifier. The mandatory columns are:

plate integers specifying the plate number (e. g. 1, 2, . . .)

well alphanumeric character strings giving the well ID within the
plate (e.g. A01, B01, ..., P24).

controlStatus a factor specifying the annotation for each well with
possible levels: empty, other, neg, sample, pos. Other levels be-
sides pos and neg may be employed for the positive and negative
controls.

plateData a list of dataframes, where each list item contains plate-specific
information. The structure of the individual dataframes is fixed: rows
are supposed to be plates and columns are supposed to be samples (i.e.,
the number of columns has to be the same as the number of columns
in the assayData matrices. By default, the only available list item is
Batch containing the information about experimental batches in the
experiment. Unless explicitely specified in the plate list file, these will
all be set to 1.

experimentData an object of class MIAME containing descriptions of the
experiment.

7

The cellHTS class also includes additional slots that are used to store the
input files used to assemble the cellHTS object. These are:

plateList a dataframe containing names and metadata about input mea-
surement data files, plus a column named status, of type character,
whose elements are the string ”OK” if the data import appeared to
have gone well, and the respective error or warning message other-
wise.

intensityFiles a list whose components are copies of the imported input
data files. Its length corresponds to the number of rows of plateList.

plateConf a data frame containing what was read from the configuration
file for the experiment (except the first two header rows).

screenLog a data frame containing what was read from the screen log file
for the experiment (in case there was one).

screenDesc a character containing what was read from the description file
of the experiment.

Other slots are rowcol.effects, overall.effects and annotation.
For a detailed description of this class, please type class ? cellHTS.

In Section 2, we created the object x, which is an instance of the cellHTS
class. The measurements intensities are stored in the slot assayData of x.
The slot called state helps to keep track of the preprocessing state of our
cellHTS object. This slot can be accessed through the state, as shown below:

> state(x)

configured normalized scored annotated

FALSE FALSE FALSE FALSE

It contains a logical vector of length 4 representing the processing status of
the object. It should have the names ”configured”, ”normalized”, ”scored”
and ”annotated”. We can thus see that x has not been configured, annotated,
normalized or scored yet.

These 4 main stages are explained along this vignette and can be briefly
described as follows:

Configuration involves annotating the experiment with information about
the screen (e. g. title, when and how it was performed, which organism,

8

which library, type of assay, etc.), annotating the measured values
with information on controls and flagging invalid measurements. This
step is covered in Section 4 and is prerequisite for preprocessing the
experimental screening data (i. e. for normalization and scoring).

Annotation involves annotating the features (reagents) with information
about, for example, their target genes. This step, detailed in Section 6,
is not essential for preprocessing, but this information can be used
for the HTML quality reports generated by cellHTS2 and in further
analyses (see the complete report, as explained in Section 1).

Normalization involves removing systematic variations, making measure-
ments comparable across plates and within plates, enhancing the bio-
logical signal and eventually transforming the data to a scale suitable
for subsequent analyses.

Replicates scoring and summarization involves standardizing the val-
ues for each replicate and then summarizing replicate values in order
to obtain a single-value per probe (for example, a robust z-score).

The steps of data normalization, replicate scoring and summarization
constitute the preprocessing work-flow of the screening data. They alter the
contents of assayData slot and even the number of channels of the cellHTS
object. The complete analysis project is contained in a set of cellHTS objects
that reflect different preprocessing stages and that can be shared with others
and stored for subsequent computational analyses.

The cellHTS2 package offers export functions for generating human-
readable reports, which consist of linked HTML pages with tables and plots.
The final scored hit list is written as a tab-delimited format suitable for
reading by spreadsheet programs.

Returning to our example data set, we create a report using the function
writeReport. Since until now we only have unnormalized experimental data,
the cellHTS object should be given to the function as the raw argument:

> out <- writeReport(raw=x)

This will write the report into the directory given by the argument outdir.
The option force=TRUE tells the function to delete and overwrite a possibly
already existing directory of the same name. This option needs to be used
with caution and is only accepted if outdir is explicitely specified. If the
argument outdir is not specified, the default is a subdirectory of the current
working directory with name given by name(x)

9

Wells: 384
Plates: 57

Plate Well Content
* * sample
* A0[1-2] other
* B01 neg
* B02 pos

Table 3: Selected lines from the example plate configuration file Plate-

conf.txt.

In order to keep a reference to the R commands used to create the
HTML output, one can provide the path to an ASCII script file using the
mainScriptFile argument. This comes back to the notion of reproducible
research mentioned before, and we strongly suggest to make use of this
feature. In fact, the function will issue a warning if no script file is supplied.
This said, we will not make use of the mainScriptFile arguments, since we
don’t really have scripting files at hand; all commands are contained in this
document.

It can take a while to run this function, since it creates a large number of
graphics files. After this function has finished, the index page of the report
will be in the file indicated by the variable out,

> out

[1] "/tmp/Rtmpa7w33J/index.html"

and you can view it by directing a web browser to that file.

> if (interactive()) browseURL(out)

4 Screen configuration: annotating the plate re-
sults

The next step of the analysis involves reading and processing three input
files specific of the screening experiment:

� Screen description file contains a general description of the screen, its
goal, the conditions under which it was performed, references, and
any other information that is pertinent to the biological interpretation

10

Plate Sample Well Flag Comment
6 1 A01 NA Contamination
6 2 A01 NA Contamination
6 1 A02 NA Contamination

...

Table 4: Selected lines from the example screen log file Screenlog.txt.

of the experiments. In cellHTS2 package we provide a function that
creates a template description file whose entries can be edited and
completed by the user. Type ? templateDescriptionFile. This
file contains the entries compliant with the MIAME class and also
additional fields specific for the cellHTS class.

� Plate configuration file is used to annotate the measured data with
information on controls. The content of this file for the example data
set analysed here is shown in Table 3 and the expected format for this
file is explained in Section 4.1.

� Screen log file (optional) is used to flag individual measurements as
invalid. The first 5 lines of this file are shown in Table 4, and the
layout for the screen log file is detailed in Section 4.2.

To apply the information contained in these three files in our cellHTS
object, we call:

> x <- configure(x,

+ descripFile="Description.txt",

+ confFile="Plateconf.txt",

+ logFile="Screenlog.txt",

+ path=dataPath)

Note that the function configure2 takes x, the result from Section 2, as an
argument, and we then overwrite x with the result of this function. If no
screen log file is available for the experiment, the argument logFile of the
function configure should be omitted.

2More precisely, configure is a method for the S4 class cellHTS.

11

4.1 Format of the plate configuration file

The software expects this to be a rectangular table in a tabulator delimited
text file, with mandatory columns Plate, Well, Content, plus two additional
header lines that give the total number of wells and plates (see Table 3 for
an example). The content of this file (except the two header lines) are stored
in slot plateConf of x.

As the name suggests, the Content column provides the content of each
well in the plate (here referred to as the well annotation). Mainly, this
annotation falls into four categories: empty wells, wells targeting genes of
interest, control wells, and wells containing other things that do not fit in
the previous categories. The first two types of wells should be indicated in
the Content column of the plate configuration file by empty and sample,
respectively, while the last type of wells should be indicated by other. The
designation for the control wells in the Content column is more flexible.
By default, the software expects them to be indicated by pos (for positive
controls), or neg (for negative controls). However, other names are allowed,
given that they are specified by the user whenever necessary (for example,
when calling the writeReport function). This versatility for the control wells’
annotation is justified by the fact that, sometimes, multiple positive and/or
negative controls can be employed in a given screen, making it useful to
give different names to the distinct controls in the Content column. More-
over, this versatility might be required in multi-channel screens for which
we frequently have reporter-specific controls.

The Well column contains the name of each well of the plate in alphanu-
meric format (in this case, A01 to P24), while column Plate gives the plate
number (1, 2, ...). These two columns are also allowed to contain regular
expressions. In the plate configuration file, each well and plate should be
covered by a rule, and in case of multiple definitions only the last one is
considered. For example, in the file shown in Table 3, the rule specified by
the first line after the column header indicates that all of the wells in each
of the 57 assay plate contain “sample”. However, a following rule indicate
that the content of wells A01, A02 and B01 and B02 differ from “sample”,
containing other material (in this case, “other” and controls).

Note that the well annotations mentioned above are used by the software
in the normalization, quality control, and gene selection calculations. Data
from wells that are annotated as empty are ignored, i. e. they are set to NA.

Here we look at the frequency of each well annotation in the example
data:

12

> table(wellAnno(x))

sample other neg pos

21660 114 57 57

We can also use the function configurationAsScreenPlot to see the plate
configuration of all of the plates as a screen plot:

> configurationAsScreenPlot(x)

The result is shown in Figure 1. This can be useful to verify the cor-
rectness of the plate configuration when a complex set of rules with regular
expressions are used.

A special case of well annotation is when different types of positive con-
trols are used for the screening, that is enhancer and suppressor compounds.
The vignette Analysis of screens with enhancer and suppressor controls ac-
companying this package explains how such controls can be handled during
the screen analysis using cellHTS2 package.

4.1.1 Multiple plate configurations

Although it is good practice to use the same plate configuration for the whole
experiment, sometimes this does not work out, and there are different parts
of the experiment with different plate configurations. The use of regular
expressions in columns Plate and Well of the plate configuration file allow
therefore to specify different configurations within and between assay plates.
The two header rows of this file ascertain that all of the plates and wells are
covered in the plate configuration file.

Note that in contrast to the cellHTS package, in cellHTS2 package the
concept of batch is separated from the concept of having multiple plate
configurations. So, for example, different replicate of the same plate can be
set as to belong to different batches (even though they are required to have
the same plate configuration!) - since readouts were performed on different
days, or due to the use of different lots of reagents, etc.

Batch information (expressed in terms of integer values giving the batch
number: 1, 2, ...) can go into a particular slot called plateData. This is
expected to be a dataframe) of integer values giving the batch number (1,
2, ...) for each plate and sample. Its first dimension corresponds to the
number of individual plates, and its second dimension correspond to the
number of columns of each matrix stored in assayData slot (the samples).
Batch information can be filled in by the user in case s/he wants to take into

13

Figure 1: Screen plot of the plate configuration.

14

account this information in the analysis (for example, see normalizePlates
function, which allows to adjust the data variance on a per-batch basis). It
can either be provided as an optional column in the plate list file, or using
the batch accessor method.

4.2 Format of the screen log file

The screen log file is a tabulator delimited file with mandatory columns
Plate, Well, Flag. If there are multiple samples (replicates or conditions),
a column called Sample should also be present; a column named Channel
must also be provided when there are multiple channels. In addition, it can
contain arbitrary optional columns. Each row corresponds to one flagged
measurement, identified by the plate number (and possible sample number
and channel number) and the well identifier (alphanumeric identifier). The
type of flag is specified in the column Flag. Most commonly, this will have
the value “NA”, indicating that the measurement should be discarded and
regarded as missing.

For those users that have been using cellHTS package and need to
migrate their projects to cellHTS2 package, we explain how this can be
smoothly performed in Appendix 10.

5 Normalization, scoring and summarization of repli-
cates

The data normalization, replicates scoring and summarization functions
available in cellHTS2 package work on the data stored in the assayData

slot of the cellHTS object. They create a copy of their input cellHTS ob-
ject, with the data replaced by the transformed values. For a list of the
available functions, type ? cellHTS2.

The preprocessing work-flow of a typical RNAi screen using cellHTS2
package is the following:

(a) Per-plate normalization to remove plate and/or edge effects. This can
be done using the function normalizePlates.

(b) Scoring of measurements (for example, compute, for each replicate, z-
scores). This can be done using the function scoreReplicates.

(c) Summarization of replicates (for example, take the median value). This
can be done using the summarizeReplicates.

15

Note that this work-flow is suitable for single-channel data. For dual-
channel data, further steps are required, as explained in the vignette Analysis
of multi-channel cell-based screens, accompanying this package.

The function normalizePlates can be called to perform per-plate data
transformation, normalization and variance adjustment. The normalization
is performed in a plate-by-plate fashion and has three components:

Data transformation logarithmic transformation (optional, this can be
advisable if the data are on multiplicative scale)

Per-plate normalization location adjustment for possible plate effects
and/or possible spatial effects, using a choice of methods that you
need to adapt to your data

Variance adjustment plate-specific scale (variance) adjustment (optional)

For more details about this function and available normalization meth-
ods, please type ? normalizePlates. To provide the means to perform
the above steps, normalizePlates has the arguments scale, log, method

and varianceAdjust.
The argument scale allows to define the scale of the data (“additive” or

“multiplicative”), which will then control the subsequent data transformation
and normalization steps. Namely, when data are in multiplicative scale, the
function allows to perform log2 data transformation. For that we need to set
the function’s argument log to TRUE. Log transformation will then change
the scale of the data to be “additive”.

Per-plate median normalization is one of the methods available in nor-
malizePlates and can be chosen by setting the argument method="median".
In this case, plate effects are corrected by dividing (if the current scale of the
data is multiplicative) each measurement by the median value across wells
annotated as sample, for each plate and replicate. If data are in additive
scale, the per-plate median values are subtracted from each plate measure-
ment instead. All of the available normalization methods are described in
Appendix 11.

The variance of normalized intensities can be adjusted according to ar-
gument varianceAdjust, as follows:

� varianceAdjust="byPlate": per plate normalized intensities are di-
vided by the per-plate median absolute deviations (MAD) in ”sample”
wells. This is done separately for each replicate and channel;

16

� varianceAdjust="byBatch": using the content of slot batch, plates
are split according to assay batches and the individual normalized
intensities in each group of plates (batch) are divided by the per-”batch
of plates” MAD values (calculated based on ”sample” wells). This is
done separately for each replicate and channel;

� varianceAdjust="byExperiment": each normalized measurement is
divided by the overall MAD of normalized values in wells containing
”sample”. This is done separately for each replicate and channel.

If varianceAdjust="none", no variance adjustment is performed (de-
fault).

As explained above, the parameter method of normalizePlates allows to
choose between different types of per-plate normalization methods. Return-
ing to our example data set, we choose to apply plate median scaling :

x′ki =
xki
Mi

∀k, i (1)

Mi = median
m∈ samples

xmi (2)

where xki is the raw intensity for the k-th well in the i-th replicate file,
and x′ki is the corresponding normalized intensity. The median is calculated
across the wells annotated as sample in the i-th result file. This is achieved
by calling:

> xn <- normalizePlates(x,

+ scale="multiplicative",

+ log=FALSE,

+ method="median",

+ varianceAdjust="none")

after which we obtain a cellHTS object with the normalized intensities stored
in the slot assayData. In the previous call to normalizePlates function, we
have chosen not to adjust the data variance (default behaviour of normal-
izePlates). For example, we can use function compare2cellHTS provided
with the package to check whether these two cellHTS objects, x and xn

belong to the same experiment:

> compare2cellHTS(x, xn)

[1] TRUE

17

After normalizing the data, we standardize the values for each replicate
experiment using Equation (3). In this equation, µ̂ and σ̂ are estimators
of location and scale of the distribution of x′ki taken across all plates and
wells of a given replicate experiment. This function uses robust estimators,
namely, median and median absolute deviation (MAD). Moreover, it only
considers the wells containing “sample” for estimating µ̂ and σ̂. The symbol
± indicates that we allow for either plus or minus sign in Equation (3);
the minus sign can be useful in the application to an inhibitor assay, where
an effect results in a decrease of the signal and we may want to see this
represented by a large score. This is done by calling the scoreReplicates
function, where arguments sign and method define the sign and the scoring
method to apply (robust z-scores, in this case), respectively:

> xsc <- scoreReplicates(xn, sign="-", method="zscore")

After data standardization, we summarize the replicates, calculating a sin-
gle score for each gene. This is performed using the summarizeReplicates
function, where we use its argument summary to select the summary to ap-
ply. One option is rms, which corresponds to take the root mean square of
the replicates values, and is shown in Equation (4). The chosen summary is
taken over all the nrepk replicates of probe k.

zki = ±
x′ki − µ̂
σ̂

(3)

zk =

√√√√ 1

nrepk

nrepk∑
r=1

z2kr. (4)

Depending on the intended stringency of the analysis, other plausi-
ble choices of summary function between replicates are the minimum, the
maximum, the mean or the median. In the first case, the analysis would
be particularly conservative: all replicate values have to be high in order
for zk to be high. For the cases where both sides of the distribution of
z-score values are of interest, alternative summary options for the repli-
cates are to select the value closest to zero (conservative approach) by
setting summary="closestToZero" or the value furthest from zero (sum-

mary="furthestFromZero"). In order to compare our results with those
obtained in the paper of Boutros et al. [2], we choose to consider the mean
as a summary:

> xsc <- summarizeReplicates(xsc, summary="mean")

18

sample other neg pos

0
5

10

Figure 2: Boxplots of z-scores for the different types of probes.

after which we obtain a cellHTS object with the resulting single z-score
value per probe stored in assayData slot.

Boxplots of the z-scores for the different types of probes are shown in
Figure 2.

> scores <- Data(xsc)

> ylim <- quantile(scores, c(0.001, 0.999), na.rm=TRUE)

> boxplot(scores ~ wellAnno(x), col="lightblue", outline=FALSE,

+ ylim=ylim)

In the cellHTS2 package, we provide a further transformation of the z-
score values to obtain the so-called calls. This involves applying a sigmoidal
transformation to the z-score values, with parameters z0 and λ (> 0), given
by:

yk =
1

1 + e−λ (zk−z0)
(5)

This transformation maps the z-score values to the interval [0, 1] and is
intended to expand the scale of z-scores with intermediate values and shrink
the ones showing extreme values, therefore making the difference between

19

Figure 3: A sigmoidal transformation that can be used for obtaining call
values.

intermediate phenotypes larger. The parameter z0 defines the centre of the
sigmoidal transformation, while λ controls the smoothness of the transfor-
mation.

This transformation can be done by calling the function scores2calls, as
shown in Figure 3.

> y <- scores2calls(xsc, z0=1.5, lambda=2)

> plot(Data(xsc), Data(y), col="blue", pch=".",

+ xlab="z-scores", ylab="calls",

+ main=expression(1/(1+e^{-lambda *(z-z[0])})))

However, for the purpose of the present analysis, we will consider the z-score
values instead of the call values.

6 Probe annotation

Up to now, the assayed genes have been identified solely by the identifiers
of the plate and the well that contains the probe for them. The annotation
file contains additional annotation, such as the probe sequence, references
to the probe sequence in public databases, the gene name, gene ontology
annotation, and so forth. Mandatory columns of the annotation file are
Plate, Well, and GeneID, and it has one row for each well. The content of

20

Plate Well HFAID GeneID
1 A03 HFA00274 CG11371
1 A04 HFA00646 CG31671
1 A05 HFA00307 CG11376
1 A06 HFA00324 CG11723

...

Table 5: Selected lines from the example gene ID file
GeneIDs_Dm_HFA_1.1.txt.

the GeneID column will be species- or project-specific. The first 5 lines of
the example file are shown in Table 5, where we have associated each probe
with CG-identifiers for the genes of Drosophila melanogaster.

> xsc <- annotate(xsc, geneIDFile="GeneIDs_Dm_HFA_1.1.txt",

+ path=dataPath)

An optional column named GeneSymbol can be included in the annotation
file, and its content will be displayed by the tooltips added to the plate plots
and screen-wide plot in the HTML quality report (see Section 7).

6.1 Adding additional annotation from public databases

For the analysis of the RNAi screening results, we usually want to consider
gene annotation information such as Gene Ontology, chromosomal location,
gene function summaries, homology. The package biomaRt can be used to
obtain such annotation from public databases [4]. However, there are also
numerous alternative methods to annotate a list of gene identifiers with
public annotation – pick your favourite one.

This section demonstrates how to do it with the package biomaRt. It
is optional, you can move on to Section 7 if you do not have the biomaRt
package or do not want to use it. If you do skip this section, then for the
purpose of this vignette, please load a cached version of the gene annotation:

> data("bdgpbiomart")

> fData(xsc) <- bdgpbiomart

> fvarMetadata(xsc)[names(bdgpbiomart), "labelDescription"] <-

+ sapply(names(bdgpbiomart),

+ function(i) sub("_", " ", i)

+)

21

6.1.1 Installation

The installation of the biomaRt package can be a little bit tricky, since
it relies on the two packages RCurl and XML, which in turn rely on the
presence of the system libraries libcurl and libxml2 on your computer. If you
are installing the precompiled R packages (for example, this is what most
people do on Windows), then you need to make sure that the system libraries
on your computer are version-compatible with those on the computer where
the R packages were compiled, and that they are found. If you are installing
the R packages from source, then you need to make sure that the library
header files are available and that the headers as well as the actual library is
found by the compiler and linker. Please refer to the Writing R Extensions
manual and to the FAQ lists on www.r-project.org.

6.1.2 Using biomaRt to annotate the target genes online

In the remainder of this section, we will demonstrate how to obtain the
dataframe bdgpbiomart by querying the online webservice BioMart and
through it the Ensembl genome annotation database [1].

> rnwPath <- system.file("doc/Rnw", package="cellHTS2")

> setwd(rnwPath)

> system(sprintf("cp biomart.tex %s", workPath))

> setwd(workPath)

> require("cellHTS2")

> library("biomaRt")

By default, the biomaRt package will query the webservice at
http://www.ebi.ac.uk/biomart/martservice. Let us check which BioMart
databases it covers:

> listMarts()

biomart

1 ensembl

2 snp

3 vega

4 msd

5 htgt

6 QTL_MART

7 ENSEMBL_MART_ENSEMBL

22

8 ENSEMBL_MART_SNP

9 GRAMENE_MARKER_29

10 GRAMENE_MAP_29

11 REACTOME

12 wormbase_current

13 dicty

14 rgd__mart

15 ipi_rat__mart

16 SSLP__mart

17 g4public

18 pride

19 uniprot_mart

20 ensembl_expressionmart_48

21 biomartDB

22 Eurexpress Biomart

23 pepseekerGOLD_mart06

24 Pancreatic_Expression

version

1 ENSEMBL 53 GENES (SANGER UK)

2 ENSEMBL 53 VARIATION (SANGER UK)

3 VEGA 34 (SANGER UK)

4 MSD PROTOTYPE (EBI UK)

5 HIGH THROUGHPUT GENE TARGETING AND TRAPPING (SANGER UK)

6 GRAMENE 29 QTL DB (CSHL US)

7 GRAMENE 29 GENES (CSHL US)

8 GRAMENE 29 SNPs (CSHL US)

9 GRAMENE 29 MARKERS (CSHL US)

10 GRAMENE 29 MAPPINGS (CSHL US)

11 REACTOME (CSHL US)

12 WORMBASE (CSHL US)

13 DICTYBASE (NORTHWESTERN US)

14 RGD GENES (MCW US)

15 RGD IPI MART (MCW US)

16 RGD MICROSATELLITE MARKERS (MCW US)

17 HGNC (EBI UK)

18 PRIDE (EBI UK)

19 UNIPROT (EBI UK)

20 EURATMART (EBI UK)

21 PARAMECIUM GENOME (CNRS FRANCE)

22 EUREXPRESS (MRC EDINBURGH UK)

23

23 PEPSEEKER (UNIVERSITY OF MANCHESTER UK)

24 PANCREATIC EXPRESSION DATABASE (INSTITUTE OF CANCER UK)

In this example, we use the Ensembl database [1], from which we select the
D. melanogaster dataset.

> mart <- useMart("ensembl",

+ dataset="dmelanogaster_gene_ensembl")

We can query the available gene attributes and filters for the selected dataset
using the following functions.

> attrs <- listAttributes(mart)

> filts <- listFilters(mart)

In the BioMart system [10], a filter is a property that can be used to select
a gene or a set of genes (like the “where” clause in an SQL query), and an
attribute is a property that can be queried (like the “select” clause in an SQL
query). We use the getBM function of the package biomaRt to obtain the
gene annotation from Ensembl.

> myGetBM <- function(att)

+ getBM(attributes=c("flybasecgid_gene", att),

+ filter="flybasecgid_gene",

+ values=unique(geneAnno(xsc)), mart=mart)

For performance reasons, we split up our query in three subqueries, which
corresponds to different areas in the BioMart schema, and then assemble the
results together in R. Alternatively, it would also be possible to submit a sin-
gle query for all of the attributes, but then the result table will be enormous
due to the 1:many mapping especially from gene ID to GO categories [8].

> bm1 <- myGetBM(c("chromosome_name", "start_position",

+ "end_position", "description"))

> bm2 <- myGetBM(c("flybasename_gene", "flybase_gene_id"))

> bm3 = myGetBM(c("go_biological_process_id",

+ "go_biological_process_description"))

There are only a few CG-identifiers for which we were not able to obtain
chromosomal locations:

> length(unique(setdiff(geneAnno(xsc), bm1$flybasecgid_gene)))

[1] 389

24

Below, we add the results to the dataframe featureData of xsc. Since
the tables bm1, bm2, and bm3 contain zero, one or several rows for each
gene ID, but in featureData we want exactly one row per gene ID, the
function oneRowPerId does the somewhat tedious task of reformatting the
tables: multiple entries are collapsed into a single comma-separated string,
and empty rows are inserted where necessary.

> id <- geneAnno(xsc)

> bmAll <- cbind(

+ oneRowPerId(bm1, id),

+ oneRowPerId(bm2, id),

+ oneRowPerId(bm3, id))

> bdgpbiomart <- cbind(fData(xsc), bmAll)

> fData(xsc) <- bdgpbiomart

> fvarMetadata(xsc)[names(bmAll), "labelDescription"] <-

+ sapply(names(bmAll),

+ function(i) gsub("_", " ", i))

7 Report

We have now completed the analysis tasks: the dataset has been read, con-
figured, normalized, scored, and annotated:

> xsc

cellHTS (storageMode: lockedEnvironment)

assayData: 21888 features, 1 samples

element names: Channel 1

phenoData

sampleNames: 1

varLabels: replicate assay

varMetadata: labelDescription channel

featureData

featureNames: 1 2 ... 21888 (21888 total)

fvarLabels: plate well ... go_biological_process_description

(13 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

state: configured = TRUE

normalized = TRUE

25

scored = TRUE

annotated = TRUE

Number of plates: 57

Plate dimension: nrow = 16, ncol = 24

Number of batches: 1

Well annotation: sample other neg pos

pubMedIds: 14764878

We can now save the scored data set to a file.

> save(xsc, file=paste(experimentName, ".rda", sep=""))

The data set can be loaded again for subsequent analysis, or passed on
to others. To produce a comprehensive report, we can call the function
writeReport again, this time specifying the three cellHTS objects as separate
function arguments: “raw”, “normalized” and “scored”. We also alter some
of the default output settings using the setSettings functions (more details
are given in section 7.1)

> setSettings(list(plateList=list(reproducibility=list(include=TRUE, map=TRUE),

+ intensities=list(include=TRUE, map=TRUE)),

+ screenSummary=list(scores=list(range=c(-4, 8), map=TRUE))))

> out <- writeReport(raw=x, normalized=xn, scored=xsc,

+ force=TRUE)

and use a web browser to view the resulting report.

> if (interactive()) browseURL(out)

The report contains a quality report for each plate, and also for the whole
screening assays. The per-plate HTML reports display the scatterplot be-
tween duplicated plate measurements, the histogram of the normalized signal
intensities for each replicate, and plate plots representing, in a false color
scale, the normalized values of each replicate, and the standard deviation
between replicate measurements at each plate position. It also reportes dif-
ferent measures of agreement between replicate measurements, such as the
repeatability standard deviation between replicate plates and the Spearman
correlation coefficient between duplicates. The per-plate reports also show
the dynamic range, calculated as the ratio between the geometric means of
the positive and negative controls. These measures can also be obtained
independently from writeReport function, by using the functions getMea-
sureRepAgreement and getDynamicRange provided in cellHTS2 package. If

26

different positive controls were specified at the configuration step and when
calling writeReport, the dynamic range is calculated separately for the dis-
tinct positive controls, since different positive controls might have different
potencies.

The experiment-wide HTML report presents, for each replicate, the box-
plots with raw and normalized intensities for the different plates, and two
plots for the controls: one showing the signal from positive and negative
controls at each plate, and another plot displaying the distribution of the
signal from positive and negative controls, obtained from kernel density es-
timates. The latter plot further gives the Z ′-factor determined for each
experiment (replicate) using the negative controls and each different type of
positive controls [13], as a measure to quantify the distance between their
distributions. This measure can also be obtained by calling the function
getZfactor.

The experiment-wide report also shows a screen-wide plot with the z-
scores in every well position of each plate. If the argument map of writeReport
function is set to TRUE, this plot and the plate plots of the per-plate reports
contain tooltips (information pop-up boxes) dispaying the annotation in-
formation at each position within the plates. If the scored cellHTS object
provided for writeReport is not annotated with gene identifiers, the anno-
tation information shown by the tooltips is simply the well identifiers. For
an annotated cellHTS object, if an optional column called GeneSymbol was
included in the annotation file (see Section 6), and therefore is present in
featureData slot of the annotated object, then its content is used for the
tooltips. Otherwise, the content of column “GeneID” of the featureData

slot (which can be accessed via geneAnno) is considered.
The screen-wide image plot can also be produced separately using the

function imageScreen given in the cellHTS2 package. This might be useful
if we want to select the best display for our data, namely, the aspect ratio
for the plot and/or the range of z-score values to be mapped into the color
scale. These can be passed to the function’s arguments ar and zrange,
respectively. For example,

> imageScreen(xsc, ar=1, zrange=c(-3,4))

It should be noted that the per-plate and per-experiment quality re-
ports are constructed based on the normalized cellHTS object, in case it is
provided to writeReport function. Otherwise, it uses the data of the raw
cellHTS object. The quality report produced by writeReport function has
also a link to a file called topTable.txt that contains the list of scored probes

27

ordered by decreasing z-score values, when the final scored cellHTS object
is provided. This file has one row for each well and plate, and for the present
example data set, it has the following columns:

� plate plate identifier for each feature;

� position gives the position of the well in the plate (runs from 1 to
the total number of wells in the plate);

� well gives the alphanumeric well identifier for each feature;

� score corresponds to the summarized score calculated for each probe
(data stored in the scored and summarized object xsc);

� wellAnno corresponds to the well annotation (as given by the plate
configuration file);

� finalWellAnno gives the final well annotation for the scored values.
It combines the information given in the plate configuration file with
the values in assayData slot of the scored cellHTS object, in order to
have into account the wells that have been flagged either by the screen
log file, or manually by the user during the analysis. These flagged
wells appear with the annotation flagged.

� raw_r1_ch1 and raw_r2_ch1 contain the raw intensities for replicate 1
and replicate 2, respectively (data stored in the unnormalized cellHTS
object x). ’ch’ refers to channel;

� median_ch1 corresponds to the median of raw measurements across
replicates;

� diff_ch1 gives the difference between replicated raw measurements
(only given if the number of replicates is equal to two);

� average_ch1 corresponds to the average between replicate raw inten-
sities (only given if the number of replicates is higher than two);

� raw/PlateMedian_r1_ch1 and raw/PlateMedian_r2_ch1 give the ra-
tio between each raw measurement and the median intensity in each
plate for replicate 1 and replicate 2, respectively. The plate median
is determined for the raw intensities, using exclusively the wells anno-
tated as “sample”.

28

� normalized_r1_ch1 and normalized_r2_ch1 give the normalized in-
tensities for replicate 1 and replicate 2, respectively. This corresponds
to the data stored in the normalized cellHTS object xn.

Additionally, if any of the cellHTS objects provided in the argument
cellHTSlist to writeReport has been annotated (as in the present case),
it also contains the data given in the content of featureData slot of the
annotated object. The above file with the list of scored probes can also
be obtained without the need to run writeReport by using the function
getTopTable provided in the package.

7.1 Controlling settings

The writeReport function is highly customizable in terms of the resulting
HTML output. For most of the graphics that get generated the color scheme,
the size, the font size and many other features can be controlled individu-
ally. This control is available either through session-wide settings using the
setSettings function, or for each call of the the writeReport function through
the optional settings argument. Most of the plots can even be completely
supressed by switching the respective include setting to FALSE. Please see
?settings for more details.

7.2 Exporting data to a tab-delimited file

The cellHTS2 package contains a function called writeTab to save the data
stored in assayData slot of a cellHTS object to a tab-delimited file. The
rows of the file are sorted by plate and well, and there is one row for each
plate and well. When the cellHTS object is annotated, the probe informa-
tion (i.e. the probe identifiers stored in column“GeneID”of the featureData
slot) is also added.

> writeTab(xsc, file="Scores.txt")

Since you might be interestered in saving other values to a tab delimited file,
below we demonstrate how you can create a matrix with the ratio between
each raw measurement and the plate median, together with the gene and
well annotation, and export it to a tab-delimited file using the function
write.tabdel 3 also provided in the cellHTS2 package.

3This function is a wrapper of the function write.table, whereby you just need to specify
the name of the data object and the file

29

> # determine the ratio between each well and the plate median

> y <- array(as.numeric(NA), dim=dim(Data(x)))

> nrWell <- prod(pdim(x))

> nrPlate <- max(plate(x))

> for(p in 1:nrPlate)

+ {

+ j <- (1:nrWell)+nrWell*(p-1)

+ samples <- wellAnno(x)[j]=="sample"

+ y[j, ,] <- apply(Data(x)[j, , , drop=FALSE], 2:3,

+ function(w) w/median(w[samples],

+ na.rm=TRUE))

+ }

> y <- signif(y, 3)

> out <- y[,,1]

> out <- cbind(fData(xsc), out)

> names(out) = c(names(fData(xsc)),

+ sprintf("Well/Median_r%d_ch%d", rep(1:dim(y)[2], dim(y)[3]),

+ rep(1:dim(y)[3], each=dim(y)[2])))

> write.tabdel(out, file="WellMedianRatio.txt")

At this point we are finished with the basic analysis of the screen. As
one example for how one could continue to further mine the screen results
for biologically relevant patterns, we demonstrate an application of category
analysis.

8 Category analysis

We would like to see whether there are Gene Ontology categories [8] overrep-
resented among the probes with a high score. For this we use the category
analysis from Robert Gentleman’s Category package [5]. Similar analyses
could be done for other categorizations, for example chromosome location,
pathway membership, or categorical phenotypes from other studies.

> library("Category")

Now we can create the category matrix. Conceptually, this a matrix with one
column for each probe and one row for each category. The matrix element
[i,j] is 1 if probe j belongs to the j-th category, and 0 if not.

> obsolete <- c("GO:0005489", "GO:0015997", "GO:0045034", "GO:0005660",

+ "GO:0006118", "GO:0006512", "GO:0045045", "GO:0006125",

+ "GO:0043072", "GO:0006100", "GO:0048740")

30

Some distractions are the GO terms GO:0005489, GO:0015997, GO:0045034,

GO:0005660, GO:0006118, GO:0006512, GO:0045045, GO:0006125, GO:0043072,

GO:0006100, GO:0048740, which are annotated to some of the genes, but
are obsolete.

> scores <- as.vector(Data(xsc))

> names(scores) <- geneAnno(xsc)

> sel <- !is.na(scores) &

+ (!is.na(fData(xsc)$go_biological_process_id))

> goids <- strsplit(fData(xsc)$go_biological_process_id[sel],

+ ", ")

> goids <- lapply(goids, function(x) x[!(x %in% obsolete)])

> genes <- rep(geneAnno(xsc)[sel], listLen(goids))

> categs <- cateGOry(genes, unlist(goids, use.names=FALSE))

We will select only those categories that contain at least 3 and no more than
1000 genes.

> nrMem <- rowSums(categs) # number of genes per category

> remGO <- which(nrMem < 3 | nrMem > 1000)

> categs <- categs[-remGO,,drop=FALSE]

> ## see if there are genes that don't belong to any category

> ## after applying the filter

> nrMem <- rowSums(t(categs))

> rem <- which(nrMem==0)

> if(length(rem)!=0) categs <- categs[,-rem, drop=FALSE]

As the statistic for the category analysis we use the z-score. First, we need
to select the subset of genes that actually have GO annotation:

> stats <- scores[sel & (names(scores) %in% colnames(categs))]

There are some replicated probes in stats. We will handle this by taking
the maximum value between replicate probes (non-conservative approach):

> ## handle duplicated genes in stats:

> isDup <- duplicated(names(stats))

> table(isDup)

isDup

FALSE TRUE

6545 917

31

> dupNames <- names(stats)[isDup]

> sp <- stats[names(stats) %in% dupNames]

> sp <- split(sp, names(sp))

> table(sapply(sp, length))

2 3 4 5 6 8 9 12

505 120 31 12 1 1 1 1

> aux <- stats[!isDup]

> aux[names(sp)] <- sapply(sp, max)

> stats <- aux

> rm(aux)

Before calling the category summary functions, we need to order our statistic
vector according to the names of the columns of the category matrix.

> m <- match(colnames(categs), names(stats))

> stats <- stats[m]

> stopifnot(colnames(categs)==names(stats))

Finally, we are ready to call the category summary functions:

> acMean <- applyByCategory(stats, categs)

> acTtest <- applyByCategory(stats, categs,

+ FUN=function(v)

+ t.test(v, stats)$p.value)

> acNum <- applyByCategory(stats, categs, FUN=length)

> isEnriched <- (acTtest<=1e-3) & (acMean>0.5)

A volcano plot of the − log10 of the p-value acTtest versus the per category
mean z-score acMean is shown in Figure 4. For a given category, the p-value
is calculated from the t-test against the null hypothesis that there is no
difference between the mean z-score of all probes and the mean z-score of
the probes in that category. To select the enriched categories (isEnriched),
we considered a significance level of 0.1% for the t-test, and a per category
mean z-score greater than 0.5. This led to the 23 categories marked in red
in Figure 4 are listed in Table 6.

We have recently added an experimental feature to the cellHTS2 package
in order to integrate such category analyses into the HTML report frame-
work. It leverages functionality from the GSEABase package, which was
specifically designed to deal with gene sets. The feature is exemplyfied using
the KEGG pathway information available though the KEGG.db package.

32

n zmean p GOID Ontology description
338 1.1 5.2e-15 GO:0006412 BP translation
361 1.1 4.1e-14 GO:0043043 BP peptide biosynthetic process
368 1 5.7e-14 GO:0006518 BP peptide metabolic process
373 1 2e-13 GO:0043604 BP amide biosynthetic process
398 0.94 2.3e-12 GO:0043603 BP cellular amide metabolic process
721 0.57 1.9e-08 GO:1901566 BP organonitrogen compound biosynthetic

process
834 0.5 1.1e-05 GO:0010468 BP regulation of gene expression
185 0.72 8.8e-05 GO:0006397 BP mRNA processing
143 0.74 0.00015 GO:0000375 BP RNA splicing, via transesterification reac-

tions
143 0.74 0.00015 GO:0000377 BP RNA splicing, via transesterification re-

actions with bulged adenosine as nucle-
ophile

143 0.74 0.00015 GO:0000398 BP mRNA splicing, via spliceosome
148 0.71 0.00016 GO:0008380 BP RNA splicing
437 0.54 0.00023 GO:0003006 BP developmental process involved in repro-

duction
262 0.57 0.00024 GO:0006396 BP RNA processing
485 0.53 0.00025 GO:0060429 BP epithelium development
227 0.63 0.00027 GO:0016071 BP mRNA metabolic process

6 0.99 0.00036 GO:0008335 BP female germline ring canal stabilization
178 0.74 0.00038 GO:0006911 BP phagocytosis, engulfment
178 0.74 0.00038 GO:0010324 BP membrane invagination
178 0.74 0.00038 GO:0099024 BP plasma membrane invagination
193 0.7 0.00041 GO:0006909 BP phagocytosis
222 0.63 0.00059 GO:0061024 BP membrane organization

6 0.6 0.00063 GO:0007561 BP imaginal disc eversion

Table 6: Top 23 Gene Ontology categories with respect to z-score.

33

Figure 4: Volcano plot of the t-test p-values and the mean z-values of the cat-
egory analysis for Gene Ontology categories. The top categories are shown
in red.

First we have to create an object of class GeneSetCollection which repre-
sents the mapping of genes to KEGG pathways. The geneIDs in the gene set
collection are supposed to map to the geneIDs of the assay scores. From the
KEGG.db package we get a list of pathway mapping to FlyBase identifiers.

> library(KEGG.db)

> library(GSEABase)

> kegg <- as.list(KEGGPATHID2EXTID)

> kegg <- kegg[grep("dme", names(kegg))]

> gsc <-

+ GeneSetCollection(mapply(function(keggId, geneId)

+ GeneSet(unique(geneId),

+ geneIdType=EntrezIdentifier(),

+ collectionType=KEGGCollection(keggId),

+ setName=keggId),

+ names(kegg), kegg))

In a subsequent step we want to filter out all the assay scores without proper
annotation (e.g., control wells) and also restrict our collection of gene sets
to those containing at least 5 genes. The gene annotations of our assay are
the old CG identifiers, but we have retrieved a mapping to proper FlyBase
identifiers in the previous biomaRt step.

34

> scores <- as.vector(Data(xsc))

> names(scores) <- fData(xsc)$flybase_gene_id

> sel <- !is.na(scores) & !is.na(names(scores))

> scores <- scores[sel]

> ## Only consider set with more than 5 genes

> gsc <- gsc[sapply(gsc, length) > 5]

> gsNames <- mget(gsub("dme", "", names(gsc)), KEGGPATHID2NAME)

> ann <- data.frame(Name=I(unlist(gsNames)))

> rownames(ann) <- names(gsc)

Finally, we need to bundle up the assay scores and the gene set collection
and define one or several summary statistics to show in the HTML report.
Each of these statistics is supposed to be created by a separate function,
which takes one mandatory and one optional argument. The mandatory
argument is simply a vector of assay scores for the respective gene set. The
optional second argument is a numeric vector of all available scores. This
setup allows to compute simple statistics like means or medians, but also
more complicated test statistics, for instance a t-test. The container for
this information is an object of class gseaModule and there is a convenient
constructor which does most of the job.

In the following example, we define four test statistics (mean, p-value
of a t-test, its t-statistic and the number of genes in the gene set) and pass
them to the constructor as a list. We also add a data.frame with further gene
set annotation (in this case more human readable names for the pathways)
and the vector of assays scores. Note that if no explicit vector is given, the
scores of the cellHTS object are used. In our case their identifiers don’t
match the gene sets FlyBase identifiers, and we also wanted to do a couple
of extra filtering steps.

> gmod <- gseaModule(gsc, list("Mean"=function(x,...) mean(x),

+ "P-value"=function(x,y) t.test(x, y)$p.value,

+ "T-statistic"=function(x,y) t.test(x, y)$statistic,

+ "NrGenes"=function(x,...) length(x)),

+ annotation=ann, scores=scores)

We can now re-write the cellHTS report using the familiar RfunctionwriteRe-
port function with the addition gseaModule argument.

> ## Now load the cellHTS objects and rewrite the report

> out <- writeReport(raw=x, normalized=xn, scored=xsc,

+ force=TRUE,

35

+ outdir=tempdir(), gseaModule=gmod)

> if (interactive()) browseURL(out)

9 Comparison with the results previously reported

In this section we compare the current results obtained using cellHTS pack-
age, with the ones previously reported in Boutros et al. [2]. The file “Anal-
ysis2003.txt” in the same directory as the input data files, i. e. in KcViab

directory of the cellHTS package. First, We will load this file:

> data2003 <- read.table(file.path(dataPath, "Analysis2003.txt"),

+ header=TRUE, as.is=TRUE, sep="\t")

The file contains the columns Plate, Position, Score, Well, HFAID,

GeneID. The scored values in the Scores column will be compared with the
ones obtained in our analysis. For that, I will start by adding to data2003,
a column with the corresponding z-score values calculated using the cellHTS
package.

> i <- data2003$Position + 384*(data2003$Plate-1)

> data2003$ourScore <- as.vector(Data(xsc))[i]

Figure 5 shows the scatterplot between Boutros et al.’s scores and our scores
in each of the 384-well plates. The results between the two analyses are very
similar, except for two minor details: use of robust estimators of location
and spread (median and MAD instead of mean and standard deviation), and
estimation of MAD over the whole experiment instead of plate-by-plate. In
fact, Figure 5 evidenciates how the scored values exactly agree up to an
offset (mean versus median) and scale (standard deviation versus MAD).

10 Appendix: How to convert cellHTS to cell-
HTS2 configuration files

We advise the users of cellHTS package to start using the improved package
cellHTS2 described herein, since the latter provides better functionality for
working with multi-channel screens and multiple screens.

To facilitate this transition and help users to migrate their cellHTS -
specific projects to cellHTS2, we provide in this package a function that
converts the old S3 cellHTS object associated with cellHTS package into
one or several S4 cellHTS defined with the cellHTS2 package. This function
is called convertOldCellHTS.

36

Figure 5: Scored values obtained in the paper of Boutros et al. against
the scored values calculated herein. Each panel corresponds to one 384-well
plate. Axis labels are not pretty - they overlap with neighboring panels due
to space constraints.

37

However, you might want to migrate an existing project from start, i. e. ,
redo all the steps starting by reading the intensity files and configuring the
screening data. In this case, you need to update the screen log file (if avail-
able), the screen description file and the screen configuration file 4.

Regarding the screen description file, as mentioned in Section 4, we pro-
vide a function that creates a template screen description file that can be
edited and modified by the user. Below we examplify how such file can be
created:

> out <- templateDescriptionFile("template-Description.txt",

+ force=TRUE)

> out

[1] "./template-Description.txt"

> readLines(out)

[1] "[Lab description]"

[2] "Experimenter name: <put here the experimenter name>"

[3] "Laboratory: <put here the name of the laboratory where the experiment was conducted>"

[4] "Contact information: <put here contact information for lab and/or experimenter>"

[5] ""

[6] "[Screen description]"

[7] "Screen: <put here the screen name>"

[8] "Title: <put there the single-sentence giving the experiment title>"

[9] "Version: <put here the screen version>"

[10] "Date: <put here the date when the experiment was performed>"

[11] "Screentype: <put here the type of screen>"

[12] "Organism:"

[13] "Celltype:"

[14] "Library:"

[15] "Assay: <put here the name of the assay>"

[16] "Assaytype: <put here the type of assay>"

[17] "Assaydescription: <put here the description of the assay>"

[18] ""

[19] "[Publication description]"

[20] "Publicationtitle:"

4The expected format of the other input files, namely the raw intensity data files (Sec-
tion 2) and the annotation file (Section 6) remains unchanged between the two packages.

38

[21] "Reference:"

[22] "PMIDs: <put here the PubMed identifiers of papers relevant to the dataset>"

[23] "URL: <put here the URL for the experiment>"

[24] "License:"

[25] "Abstract: <put here the abstract describing the experiment>"

[26] ""

[27] "[Files]"

[28] "plateList: <put the name of the plate result list file>"

[29] "annotation: <put the name of the screen library annotation file>"

[30] "plateConf: <put the name of the screen plate configuration file>"

[31] "screenLog: <put the name of screen log file, if available>"

The format of the screen log file compatible with cellHTS2 package
is shown in Table 4. Compared to the previous format required for cell-
HTS package (Table 8), we note that column Filename was replaced by two
columns named Plate and Sample.

In cellHTS package, the concept of batch is intrinsically related with
the plate configuration, since a change in plate configuration along the ex-
periment had to be handled by setting each distinct plate configuration as
corresponding to a different batch. Therefore, in cellHTS package, the plate
configuration file had three mandatory columns named Batch, Well, Con-
tent, where the Batch column allowed for different plate configurations. The
first 28 lines of such file for the example RNAi screen considered in this re-
port is shown in Table 7. Thus, in the old format required for the plate
configuration file, we had to have a number of rows equal to the product
between the total number of batches and the total number of wells per plate.

In contrast to cellHTS package, in cellHTS2 package the concept of batch
and multiple plate configurations were made independent (see Section 4.1.1).
For cellHTS2 package, Table 3 shows the required file format, which was
discussed in more detail in Section 4.1.

Due to the separation between batch and multiple plate configuration,
the column Batch was removed, and replaced by the column Plate. The
other two mandatory columns Well and Content were kept. Additionally,
we now require that this file contains two extra header lines giving the total
number of wells and plates (Table 3). There is also an improvement in the
file format related with the fact that Plate and Well columns now allow the
use of regular expressions (see Section 4.1 for more specific information),
which allows to cover the plate configuration used in the screen with just
a few lines. Besides, it allows to specify different configurations within and

39

Batch Well Content
1 A01 other
1 A02 other
1 A03 sample
1 A04 sample
1 A05 sample
1 A06 sample
1 A07 sample
1 A08 sample
1 A09 sample
1 A10 sample
1 A11 sample
1 A12 sample
1 A13 sample
1 A14 sample
1 A15 sample
1 A16 sample
1 A17 sample
1 A18 sample
1 A19 sample
1 A20 sample
1 A21 sample
1 A22 sample
1 A23 sample
1 A24 sample
1 B01 neg
1 B02 pos
1 B03 sample
1 B04 sample

...

Table 7: Selected lines from the example cellHTS package-specific plate
configuration file old-Plateconf.txt.

40

Filename Well Flag Comment
FT06-G01.txt A01 NA Contamination
FT06-G02.txt A01 NA Contamination
FT06-G01.txt A02 NA Contamination

...

Table 8: Selected lines from the example cellHTS package-specific screen log
file old-Screenlog.txt.

between assay plates.

11 Appendix: Normalization methods implemented
in cellHTS2 package

There are two main normalization methods available with cellHTS2 pack-
age: methods based on the use of reference controls, and distribution-based
methods. These methods can be applied using the function normalizePlates.

11.1 Controls-based normalization

11.1.1 Percent of control

Percent of control (POC) is a preprocessing method that tries to correct
for plate-to-plate variability by normalizing each kth compound raw mea-
surements in the ith result file, xki, relative to the average of within-plate
controls. In an antagonist (or inhibition) type assay, it is defined as:

xPOC
ki =

xki
µposi

× 100 (6)

where µposi is the average of the measurements on the positive controls in
the ith result file (i. e. , for a given plate and replicate).

In cellHTS2 package, this method can be applied by setting the argument
method="POC" when calling normalizePlates function.

We also provide in the package a normalization method for normal-
izePlates (method="negatives") that consists of scaling the plate measure-
ments by the per-plate median of the intensities on the negative controls 5.

5If the scale of the data is defined as being additive (i. e. , argument scale="additive",
or arguments scale="multiplicate" and log=TRUE), measurements are subtracted by the
median of per-plate negative controls instead.

41

11.1.2 Normalized percent inhibition

If normalizePlates is called with method="NPI", the method known as nor-
malized percent inhibition (NPI) is applied in a per-plate basis to correct
for plate effects. For an antagonist assay, this method divides the difference
between each measurement in a given result file i (xki) and the average of
the positive controls on that plate (µposi) by the difference between the av-
erages of the measurements on the positive (µposi) and the negative controls
(µnegi):

xNPI
ki =

µposi − xki
µposi − µnegi

(7)

11.2 Non-controls-based normalization

There are several normalization method implemented in cellHTS2 package
that make use of the overall distribution of values, instead of relying exclu-
sively on controls. These are described in the following sections.

11.2.1 Z score method

Z score is a simple and widely known normalizing method that is performed
in a per-plate basis as follows:

xZki =
xki − µi
σi

, (8)

where µi and σi are the mean and standard deviation, respectively, of all
measurements within the ith result file (replicated plate). In the Z score
method, measurements are re-scaled relative to within-plate variation by
subtracting the average of the plate values and dividing this difference by
the standard deviation estimated from all measurements of the plate.

In cellHTS2, we consider a robust version of this method, where the
mean and standard deviation are replaced by the median and the MAD,
respectively, calculated at the sample wells. This robust Z score method is
performed by calling normalizePlates as follows:

> xZ <- normalizePlates(x, scale="additive", log=FALSE,

+ method="median",

+ varianceAdjust="byPlate")

42

11.2.2 Plate median normalization

Plate median normalization involves calculating the relative signal of each
well compared to the median of the sample wells in the plate, as shown in
Equation (1) and Equation (2). The median is calculated among the m wells
containing sample (i. e. , for wells that contain genes of interest) in result file
i. Plate median normalization can be chosen by setting method="median" in
normalizePlates. When applied to data on additive scale, the plate median
normalization involves subtracting the plate measuments by the per-plate
median instead.

We also have two variants of the plate median scaling which consist of
using as the per-plate scaling factor Mi the per-plate average intensity on
sample wells (method="mean") or the midpoint of the shorth of the per-plate
distribution of values on sample wells (method="shorth").

The next methods are intended to explicitly correct for spatial effects
within plates, i. e. , the presence of intensity gradients within the plates. Such
signal gradients can be caused by differences in temperature, incubation
time or concentration, etc., in different wells across a plate. Typically, these
gradients produce repeatitive patterns, which make it possible to distinguish
them from real actives that should be more or less randomly dispersed for
quasi-randomized collections of compounds.

11.2.3 B score method

In the B score method, row and column biases within each plate are explicitly
corrected for by fitting a two-way median polish to the raw data in a per-
plate fashion [3]:

erci = xrci − x̂rci = xrci −
(
µ̂i + R̂ri + Ĉci

)
(9)

xBrci =
erci

MADi
(10)

Here, xrci is the measurement value in the rth row and cth column of the
plate corresponding to the ith result file, x̂rci is the corresponding fitted value
defined as the sum between the estimated average of the replicate plate (µ̂i),
the estimated systematic offset for row r (R̂ri) and the systematic offset for
column c (Ĉci) in that replicated plate. In a second step, each of the obtained
residual values erci’s of the ith result file are divided by their median absolute
deviation (MADi) giving the final B score value – Equation (10).

43

We implemented a method similar to the B score method described in
Malo et al. [11] and Brideau et al. [3] using the Tukey’s median polish pro-
cedure [12] (function medpolish of the package stats) which fits an additive
model to the data according to Equation (10). The Tukey’s median polish
algorithm works by alternately removing the row and column medians and
continues until the proportional reduction in the sum of absolute residuals
is less than ε or until the maximum number of iterations has been reached.
The B score method can be applied by defining argument method="Bscore"
in normalizePlates. Alternatively, the method can be applied by calling a
separate function called Bscore provided in the cellHTS2 package.

In cellHTS2 package, we provide two additional spatial normalization
methods that fit a polynomial surface to the intensities within each assay
plate using local regression and that can be performed via normalizePlates or
spatialNormalization functions, although we advise to apply these methods
using the former function. The fit can be performed either using the loess
procedure or the locfit.robust function of package locfit. In normalizePlates,
if method="locfit", spatial effects are removed by fitting a bivariate local
regression to each plate and replicate, while if method="loess", a loess curve
is fitted instead.

12 Appendix: Data transformation

An obvious question is whether to do the statistical analyses on the orig-
inal intensity scale or on a transformed scale such as the logarithmic one.
Many statistical analysis methods, as well as visualizations work better if
(to sufficient approximation)

� replicate values are normally distributed,

� the data are evenly distributed along their dynamic range,

� the variance is homogeneous along the dynamic range [9].

Figure 6 compares these properties for untransformed and log-transformed
normalized data, showing that the difference is small. Intuitively, this can
be explained by the fact that for small x,

log(1 + x) ≈ x

and that indeed the range of the untransformed data is mostly not far from
1. Hence, for the data examined here, the choice between original scale and
logarithmic scale is one of taste, rather than necessity.

44

Figure 6: Comparison between untransformed (left) and logarithmically
(base 2) transformed (right), normalized data. Upper: histogram of inten-
sity values of replicate 1. Middle: scatterplots of standard deviation versus
mean of the two replicates. Bottom: Normal quantile-quantile plots.

45

13 Session info

References

[1] E Birney, D Andrews, M Caccamo, Y Chen, L Clarke, G Coates,
T Cox, F Cunningham, V Curwen, T Cutts, T Down, R Durbin, X M
Fernandez-Suarez, P Flicek, S Graf, M Hammond, J Herrero, K Howe,
V Iyer, K Jekosch, A Kahari, A Kasprzyk, D Keefe, F Kokocinski,
E Kulesha, D London, I Longden, C Melsopp, P Meidl, B Overduin,
A Parker, G Proctor, A Prlic, M Rae, D Rios, S Redmond, M Schuster,
I Sealy, S Searle, J Severin, G Slater, D Smedley, J Smith, A Stabenau,
J Stalker, S Trevanion, A Ureta-Vidal, J Vogel, S White, C Woodwark,
and T J P Hubbard. Ensembl 2006. Nucleic Acids Res, 34(Database
issue):556–561, 2006. 22, 24

[2] Michael Boutros, Amy A Kiger, Susan Armknecht, Kim Kerr, Marc
Hild, Britta Koch, Stefan A Haas, Heidelberg Fly Array Consortium,
Renato Paro, and Norbert Perrimon. Genome-wide RNAi analysis of
growth and viability in Drosophila cells. Science, 303(5659):832–835,
2004. 3, 18, 36

[3] C Brideau, B Gunter, B Pikounis, and A Liaw. Improved statisti-
cal methods for hit selection in high-throughput screening. J. Biomol.
Screen, 8:634–647, 2003. 43, 44

[4] Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart
De Moor, Alvis Brazma, and Wolfgang Huber. BioMart and Biocon-
ductor: a powerful link between biological databases and microarray
data analysis. Bioinformatics, 21(16):3439–3440, Aug 2005. 21

[5] R. Gentleman. Category: Category Analysis, 2006. R package version
1.3.3. 30

[6] Robert Gentleman. Reproducible research: A bioinformatics case study.
Statistical Applications in Genetics and Molecular Biology, 3, 2004. 2

[7] Robert C Gentleman, Vincent J. Carey, Douglas M. Bates, et al. Bio-
conductor: Open software development for computational biology and
bioinformatics. Genome Biology, 5:R80, 2004. 6

46

[8] M A Harris, J Clark, A Ireland, J Lomax, M Ashburner, R Foulger,
K Eilbeck, S Lewis, B Marshall, C Mungall, J Richter, G M Rubin,
J A Blake, C Bult, M Dolan, H Drabkin, J T Eppig, D P Hill, L Ni,
M Ringwald, R Balakrishnan, J M Cherry, K R Christie, M C Costanzo,
S S Dwight, S Engel, D G Fisk, J E Hirschman, E L Hong, R S Nash,
A Sethuraman, C L Theesfeld, D Botstein, K Dolinski, B Feierbach,
T Berardini, S Mundodi, S Y Rhee, R Apweiler, D Barrell, E Camon,
E Dimmer, V Lee, R Chisholm, P Gaudet, W Kibbe, R Kishore, E M
Schwarz, P Sternberg, M Gwinn, L Hannick, J Wortman, M Berri-
man, V Wood, N de la Cruz, P Tonellato, P Jaiswal, T Seigfried, and
R White. The Gene Ontology (GO) database and informatics resource.
Nucleic Acids Res, 32(Database issue):258–261, 2004. 24, 30

[9] Wolfgang Huber, Anja von Heydebreck, Holger Sültmann, Annemarie
Poustka, and Martin Vingron. Variance stabilization applied to mi-
croarray data calibration and to the quantification of differential ex-
pression. Bioinformatics, 18 Suppl. 1:S96–S104, 2002. 44

[10] Arek Kasprzyk, Damian Keefe, Damian Smedley, Darin London,
William Spooner, Craig Melsopp, Martin Hammond, Philippe Rocca-
Serra, Tony Cox, and Ewan Birney. EnsMart: a generic system for fast
and flexible access to biological data. Genome Res, 14(1):160–169, Jan
2004. 24

[11] Nathalie Malo, James Hanley, Sonia Cerquozzi, Jerry Pelletier, and
Robert Nadon. Statistical practice in high-throughput screening data
analysis. Nature Biotechnology, 24(2):167–175, 2006. 44

[12] J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, Cambridge,
MA, 1977. 44

[13] JH Zhang, TD Chung, and KR Oldenburg. A Simple Statistical Param-
eter for Use in Evaluation and Validation of High Throughput Screening
Assays. J Biomol Screen, 4(2):67–73, 1999. 27

47

> toLatex(sessionInfo())

� R version 3.5.2 (2018-12-20), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

� Running under: Ubuntu 16.04.5 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, grid, methods,
parallel, stats, stats4, utils

� Other packages: AnnotationDbi 1.44.0, Biobase 2.42.0,
BiocGenerics 0.28.0, Category 2.48.0, GO.db 3.7.0,
GSEABase 1.44.0, IRanges 2.16.0, KEGG.db 3.2.3, Matrix 1.2-15,
RColorBrewer 1.1-2, S4Vectors 0.20.1, XML 3.98-1.16,
annotate 1.60.0, cellHTS2 2.46.1, genefilter 1.64.0, graph 1.60.0,
hexbin 1.27.2, hwriter 1.3.2, locfit 1.5-9.1, splots 1.48.0, vsn 3.50.0

� Loaded via a namespace (and not attached): BiocManager 1.30.4,
DBI 1.0.0, DEoptimR 1.0-8, MASS 7.3-51.1, R6 2.3.0, RBGL 1.58.1,
RCurl 1.95-4.11, RSQLite 2.1.1, Rcpp 1.0.0, affy 1.60.0, affyio 1.52.0,
assertthat 0.2.0, bindr 0.1.1, bindrcpp 0.2.2, bit 1.1-14, bit64 0.9-7,
bitops 1.0-6, blob 1.1.1, cluster 2.0.7-1, colorspace 1.3-2,
compiler 3.5.2, crayon 1.3.4, digest 0.6.18, dplyr 0.7.8, ggplot2 3.1.0,
glue 1.3.0, gtable 0.2.0, labeling 0.3, lattice 0.20-38, lazyeval 0.2.1,
limma 3.38.3, magrittr 1.5, memoise 1.1.0, munsell 0.5.0,
mvtnorm 1.0-8, pcaPP 1.9-73, pillar 1.3.1, pkgconfig 2.0.2, plyr 1.8.4,
prada 1.58.1, preprocessCore 1.44.0, purrr 0.2.5, rlang 0.3.0.1,
robustbase 0.93-3, rrcov 1.4-7, scales 1.0.0, splines 3.5.2,
survival 2.43-3, tibble 2.0.0, tidyselect 0.2.5, tools 3.5.2, xtable 1.8-3,
zlibbioc 1.28.0

Table 9: The output of sessionInfo on the build system after running this
vignette.

48

	Introduction
	Reading the intensity data
	Importing intensity data files with other formats

	The cellHTS class and reports
	Screen configuration: annotating the plate results
	Format of the plate configuration file
	Multiple plate configurations

	Format of the screen log file

	Normalization, scoring and summarization of replicates
	Probe annotation
	Adding additional annotation from public databases
	Installation
	Using biomaRt to annotate the target genes online

	Report
	Controlling settings
	Exporting data to a tab-delimited file

	Category analysis
	Comparison with the results previously reported
	Appendix: How to convert cellHTS to cellHTS2 configuration files
	Appendix: Normalization methods implemented in cellHTS2 package
	Controls-based normalization
	Percent of control
	Normalized percent inhibition

	Non-controls-based normalization
	Z score method
	Plate median normalization
	B score method

	Appendix: Data transformation
	Session info

