
Overview of CNPBayes package

Jacob Carey, Steven Cristiano, and Robert Scharpf

October 30, 2018

Contents

1 Introduction . 2

2 Workflow . 2

2.1 Summarizing data at CNPs . 2

2.2 The gibbs function . 3

2.3 Evaluating convergence and goodness of fit 3

2.4 Mapping mixture components to copy number states 6

2.5 Big data . 7

References . 9

Overview of CNPBayes package

1 Introduction

CNPBayes models multi-modal densities via a hierarchical Bayesian Gaussian mixture model.
The major application of this model is the estimation of copy number at copy number
polymorphic loci (CNPs). Four versions of the mixture model are implemented: a standard
model, referred to as a SingleBatch (SB) model , that has one mean and standard deviation for
each component; a SingleBatchPooled (SBP) model that has a pooled estimate of the standard
deviation across all mixture components; a MultiBatch (MB) model with batch-specific means
and standard deviations; and a MultiBatchPooled (MBP) model with batch-specific standard
deviations that are pooled across mixture components within each batch. For all versions,
approximation of the posterior is by Markov Chain Monte Carlo (MCMC) written in C++
using the Rcpp package (Eddelbuettel and François 2011).

For an EM-implementation of Gaussian mixture models for CNPs, see the Bioconductor
package CNVtools (Barnes et al. 2008). A Bayesian extension of this model by some of the
same authors was developed to automate the analysis of the Welcome Trust Case Control
Consortium (WTCCC) genotype data (Cardin et al. 2011) and implemented in the R package
CNVCALL (http://niallcardin.com/CNVCALL).

This vignette provides a concise workflow for fitting mixture models in large array-based
genome-wide association studies. Other vignettes in this package provide details on the
implementation and functions for evaluating convergence.

library(CNPBayes)

library(SummarizedExperiment)

library(ggplot2)

library(tidyverse)

2 Workflow

2.1 Summarizing data at CNPs

Our starting point is a SummarizedExperiment containing log R ratios from a SNP array and
a GRangesList containing deletions and duplications identified from a hidden Markov model.

path <- system.file("extdata", package="CNPBayes")

se <- readRDS(file.path(path, "simulated_se.rds"))

grl <- readRDS(file.path(path, "grl_deletions.rds"))

Using this data, we identify the genomic coordinates of the CNP locus and use the median
to summarize the log R ratios for each sample. We advise against using the first principal
component as a summary statistic in large studies as this may capture batch effects. See
Identifying Copy Number Polymorphisms for instructions on finding CNPs with a SnpArrayEx

periment and GRangesList.

##cnv.region <- consensusCNP(grl, max.width=5e6)

cnv.region <- readRDS(file.path(path, "cnv_region.rds"))

i <- subjectHits(findOverlaps(cnv.region, rowRanges(se)))

med.summary <- matrixStats::colMedians(assays(se)[["cn"]][i,], na.rm=TRUE)

2

http://niallcardin.com/CNVCALL
Implementation.Rmd
Convergence.Rmd

Overview of CNPBayes package

At loci where copy number variants are common, the distribution of the median log R ratios
computed above can be approximated by a finite mixture of normal distributions.

2.2 The gibbs function

This package provides several implementations of a Bayesian hierarchical normal mixture
model, where the implementations differ by whether the component means and variances are
batch-specific (multi-batch ‘MB’ model) or a single batch (‘SB’ model). In addition, we allow
the variance estimates to be pooled across all components within the multi-batch (‘MBP’) and
single-batch (‘SBP’) models. For large studies involving SNP microarrays, the combinePlates

function can be useful to identify groups of plates processed in the same batch. As there
are only 35 samples in this toy example, we assume that these samples were all processed
in the same batch and we will only consider the SB and SBP models. The following code
chunk initializes an MCMC parameters object that contain parameters governing the number
of burnin iterations, the number of iterations following burnin, how often two save simulated
values from the chain (thin), and the number of independently initialized models (nStarts).

mp <- McmcParams(nStarts=5, burnin=500, iter=1000, thin=1)

The workhorse function in this package is gibbs. This function allows the user to specify one
or all of the four possible mixture model types (SB, MB, SBP, MBP) and for each type fit
models with mixture components specified by the argument k_range. Below, we run 4 chains
for 1000 iterations (100 iterations burnin) for only the k=3 SB model. (In practice, we would
fit multiple models and specify a range for k. For example, k_range=c(1, 5)). As described
in the convergence vignette, an attempt is made by gibbs to adapt the thinning and burnin
parameters if there are indications that the chains have not converged. The models evaluated
by gibbs are returned in a list where all chains have been combined and the models are sorted
by decreasing value of the marginal likelihood. In order to properly assess convergence, this
function requires that one run at least 2 independent chains. Below, we specify a max_burnin

to a small number (400) to speed up computation. A much longer burnin may be required
for convergence.

model.list <- gibbs(model="SB", dat=med.summary, k_range=c(2, 3), mp=mp,

max_burnin=400, top=2)

Fitting SB models

k: 2, burnin: 500, thin: 1

Gelman-Rubin: 1

eff size (median): 2434.1

eff size (mean): 4729

marginal likelihood: 60.12

k: 3, burnin: 500, thin: 1

Gelman-Rubin: 1.2

eff size (median): 99.9

eff size (mean): 1363.2

2.3 Evaluating convergence and goodness of fit

In the following codechunk, we visually inspect the chains for convergence.

3

Convergence.Rmd

Overview of CNPBayes package

model <- model.list[[1]]

model

An object of class MultiBatchModel

n. obs : 35

n. batches : 1

k : 2

nobs/batch : 35

log lik (s) : 84.3

log prior (s) : -5.9

log marginal lik (s): 60.1

chains <- ggChains(model)

Using iter, param as id variables

Using iter, param as id variables

Using iter, param as id variables

Using iter, param as id variables

Using iter, param as id variables

chains[[1]]

k=1 k=2

sigm
a

theta

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0.01

0.02

0.03

−0.4

−0.3

−0.2

−0.1

0.0

iter

va
lu

e batch

1

chains[[2]]

4

Overview of CNPBayes package

mu p tau

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0.6

0.8

1.0

1.2

0.25

0.50

0.75

−2

−1

0

1

iter

va
lu

e

comp

k=1

k=2

The posterior predictive distribution is also useful for assessing the adequacy of a model. Here,
the approximation could be improved by increasing burnin, the number of iterations following
burnin, and / or by increasing the thinning parameter.

only one batch

full.data <- tibble(y=med.summary,

batch=paste("Batch 1"))

predictive <- posteriorPredictive(model) %>%

mutate(batch=paste("Batch", batch),

component=factor(component))

predictive$n <- 4000

predictive$component <- factor(predictive$component)

ggplot(predictive, aes(x=y, n_facet=n,

y=..count../n_facet,

fill=component)) +

geom_histogram(data=full.data, aes(y, ..density..),

bins=400,

inherit.aes=FALSE,

color="gray70",

fill="gray70",

alpha=0.1) +

geom_density(adjust=1, alpha=0.4, size=0.75, color="gray30") +

show marginal density

theme(panel.background=element_rect(fill="white"),

axis.line=element_line(color="black"),

legend.position="bottom",

legend.direction="horizontal") +

scale_y_sqrt() +

xlab("average copy number") +

ylab("density") +

guides(color=FALSE)

5

Overview of CNPBayes package

20

40

60

−0.4 −0.3 −0.2 −0.1 0.0

average copy number

de
ns

ity

component 1 2

2.4 Mapping mixture components to copy number states

While the MB and MBP implementations explicitly model batch effects, occasionally the log R
ratios are skewed (non-Gaussian) for technical reasons other than batch effects. Unfortunately,
there is no guarantee of a one-to-one mapping between mixture components and copy number.
The function CopyNumberModel attemps to map copy number states to the mixture components
by assessing the extent of overlap of the mixtures – the rationale being that two mixture
components with substantial overlap are fitting the skewness of the data as opposed to
multiple copy number states. Given additional information, one may also manually provide
this mapping through the mapping<- function.

cn.model <- CopyNumberModel(model)

ggMixture(cn.model)

 n=35

B
atch 1

−0.4 −0.3 −0.2 −0.1 0.0

10

20

30

40

average copy number

de
ns

ity

copynumber 1 2

6

Overview of CNPBayes package

For additional details regarding model construction and mapping mixture components to copy
number states, see Bayesian mixture models for copy number estimation. Having mapped
copy number states to the mixture components, we can obtain the posterior probabilities for
the copy number states:

probs <- probCopyNumber(cn.model)

head(probs)

[,1] [,2]

[1,] 1 0

[2,] 1 0

[3,] 1 0

[4,] 1 0

[5,] 1 0

[6,] 1 0

2.5 Big data

If thousands of samples are available, we generally do not need to fit the model to all samples
in order to adequately estimate the mixture distribution. Below, we indicate a workflow for
downsampling. Here, we assume that chemistry plate is a useful surrogate of batch.

mb <- MultiBatchModelExample

full.data <- tibble(medians=y(mb),

plate=batch(mb),

batch_orig=as.character(batch(mb)))

partial.data <- downSample(full.data,

size=1000,

min.batchsize=50)

confusingly, the downsampled data uses a different indexing for batch

plate.mapping <- partial.data %>%

select(c(plate, batch_index)) %>%

group_by(plate) %>%

summarize(batch_index=unique(batch_index))

We fit the model to the mean summarized bins in the usual way. To speed up computation,
we specify the true k=3 model in this toy example.

model <- gibbs(model="MB", k_range=c(3, 3),

dat=partial.data$medians,

batches=partial.data$batch_index,

mp=mp)[[1]]

Fitting MB models

k: 3, burnin: 500, thin: 1

Gelman-Rubin: 1.01

eff size (median): 3600.2

eff size (mean): 4028.6

marginal likelihood: -174.75

To map posterior probabilities back to the original observations, we use the function upSample2.

7

Overview of CNPBayes package

full.data2 <- left_join(full.data, plate.mapping, by="plate")

model.up <- upSample2(full.data2, model)

model.up

An object of class MultiBatchModel

n. obs : 1500

n. batches : 3

k : 3

nobs/batch : 500 500 500

log lik (s) : -184.1

log prior (s) : -5.7

log marginal lik (s): -174.7

nrow(probz(model.up))

[1] 1500

head(round(probz(model.up)), 2)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 0 1

The object model.up can be converted to a copy number model using the same approach as
described previously (i.e., CopyNumberModel(model.up)). As there is a one-to-one mapping
between mixture components and copy number, the posterior probabilities for the mixture
components (prob.up) is the same as the posterior probabilties of the copy number states
(probCopyNumber).

cn.model <- CopyNumberModel(model.up)

mapping(cn.model)

[1] "1" "2" "3"

round(head(probz(cn.model)), 2)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 0 1

[3,] 0 0 1

[4,] 0 1 0

[5,] 1 0 0

[6,] 0 1 0

round(head(probCopyNumber(cn.model)), 2)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 0 1

[3,] 0 0 1

[4,] 0 1 0

[5,] 1 0 0

[6,] 0 1 0

See the convergence vignette for assessing convergence and visually inspecting the MCMC
chains for each parameter in the mixture model.

8

Convergence.Rmd

Overview of CNPBayes package

References

Barnes, Chris, Vincent Plagnol, Tomas Fitzgerald, Richard Redon, Jonathan Marchini, David
Clayton, and Matthew E Hurles. 2008. “A Robust Statistical Method for Case-Control
Association Testing with Copy Number Variation.” Nat Genet 40 (10). Wellcome Trust
Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.:1245–52.
https://doi.org/10.1038/ng.206.

Cardin, Niall, Chris Holmes, Peter Donnelly, and Jonathan Marchini. 2011. “Bayesian
Hierarchical Mixture Modeling to Assign Copy Number from a Targeted Cnv Array.” Genet.
Epidemiol. https://doi.org/10.1002/gepi.20604.

Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integration.”
Journal of Statistical Software 40 (8):1–18. http://www.jstatsoft.org/v40/i08/.

9

https://doi.org/10.1038/ng.206
https://doi.org/10.1002/gepi.20604
http://www.jstatsoft.org/v40/i08/

	1 Introduction
	2 Workflow
	2.1 Summarizing data at CNPs
	2.2 The gibbs function
	2.3 Evaluating convergence and goodness of fit
	2.4 Mapping mixture components to copy number states
	2.5 Big data

	References

