Package 'mdp'

April 16, 2019

Title Molecular Degree of Perturbation calculates scores for transcriptome data samples based on their perturbation from controls

Version 1.2.1

Description The Molecular Degree of Perturbation webtool quantifies the heterogeneity of samples. It takes a data.frame of omic data that contains at least two classes (control and test) and assigns a score to all samples based on how perturbed they are compared to the controls. It is based on the Molecular Distance to Health (Pankla et al. 2009), and expands on this algorithm by adding the options to calculate the z-score using the modified z-score (using median absolute deviation), change the z-score zeroing threshold, and look at genes that are most perturbed in the test versus control classes.

URL https://mdp.sysbio.tools/

biocViews BiomedicalInformatics, QualityControl, Transcriptomics, SystemsBiology, Microarray, QualityControl

Depends R (>= 3.5)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports ggplot2, gridExtra, grid, stats, utils

Suggests testthat, knitr, rmarkdown, fgsea

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/mdp

git_branch RELEASE_3_8

git_last_commit 11f846f

 $\textbf{git_last_commit_date} \hspace{0.2cm} 2019\text{-}01\text{-}14$

Date/Publication 2019-04-15

Author Melissa Lever [aut],

Pedro Russo [aut],

Helder Nakaya [aut, cre]

Maintainer Helder Nakaya < hnakaya@usp.br>

2 compute_gene_score

R topics documented:

	compute_gene_score	2
	compute_perturbed_genes	3
	compute_sample_scores	3
	compute_zscore	4
	example_data	4
	example_pheno	5
	mdp	5
	pathway_summary	7
	sample_data	7
	sample_plot	8
Index		9

compute_gene_score

Compute gene score Computes gene scores for each gene within each class and perturbation freq

2

Description

Compute gene score Computes gene scores for each gene within each class and perturbation freq

Usage

```
compute_gene_score(zscore, pdata, control_lab,
 score_type = c("gene_score", "gene_freq"))
```

Arguments

zscore data frame zscore phenotypic data with Class and Sample columns pdata

 $control_lab$ character specifying control class

set to 'gene_score' or 'gene_freq' to compute gene scores or frequencies score_type

Value

data frame of gene scores or gene frequencies

compute_perturbed_genes

Compute perturbed genes Find the top fraction of genes that are more perturbed in test versus controls

Description

Compute perturbed genes Find the top fraction of genes that are more perturbed in test versus controls

Usage

```
compute_perturbed_genes(gmdp_results, control_lab, fraction_genes)
```

Arguments

gmdp_results results table of gene scores

control_lab label specificying control class

fraction_genes fraction of top perturbed genes that will make the set of perturbed genes

Value

vector of perturbed genes

```
compute_sample_scores Compute sample scores for each pathway
```

Description

Compute sample scores for each pathway

Usage

```
compute_sample_scores(zscore, perturbed_genes, control_samples,
  test_samples, pathways, pdata)
```

Arguments

zscore zscore data frame perturbed_genes

list of pertured genes

 ${\tt control_samples}$

vector of control sample names

test_samples vector of test sample names

pathways list of pathways

pdata phenotypic data with Sample and Class columns

Value

data frame of sample scores

4 example_data

compute_zscore	Computes the thresholded Z score Plots the Z score using control samples to compute the average and standard deviation

Description

Computes the thresholded Z score Plots the Z score using control samples to compute the average and standard deviation

Usage

```
compute_zscore(data, control_samples, measure = c("mean", "median"),
  std = 2)
```

Arguments

data $\qquad \qquad \text{Gene expression data with gene symbols in rows, sample names in columns } \\ \text{control_samples}$

Character vector specifying the control sample names

measure Either 'mean' or 'median'. 'mean' uses mean and standard deviation. 'median'

uses the median and the median absolute deviation to estimate the standard de-

vation (modified z-score).

std Set as default to 2. This controls the standard deviation threshold for the Z-score

calculation. #' Normalised expression values less than 'std' will be set to 0.

Value

zscore data frame

Examples

```
control_samples <- example_pheno$Sample[example_pheno$Class == 'baseline']
compute_zscore(example_data, control_samples,'median',2)</pre>
```

example_data

Expression data example

Description

```
rownames HGNC gene names colnames sample expression data ...
```

Usage

```
example_data
```

Format

A data frame with 13838 rows and 40 variables:

example_pheno 5

Details

Author expression data for GEO dataset GSE17156 of transcriptome blood samples from patients that were inoculated with the RSV virus that has been altered by collapsing for HGNC gene symbols.

Source

```
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17156
```

example_pheno

Phenotypic data example

Description

Subset of the annotation data for GEO dataset GSE17156, using only patients that have been inoculated with the RSV virus

Usage

```
example_pheno
```

Format

A data frame with 40 rows and 2 variables:

Sample GSM identified

Class Symtpomatic state ...

Source

```
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17156
```

mdp

Molecular Degree of Perturbation

Description

Based on the Molecular Distance to Health, this function calculates scores to each sample based on their perturbation from healthy

Usage

```
mdp(data, pdata, control_lab, directory = "", pathways, print = TRUE,
  measure = c("mean", "median"), std = 2, fraction_genes = 0.25,
  save_tables = TRUE, file_name = "")
```

6 mdp

Arguments

data	data frame of gene expression data with the gene symbols in the row names
pdata	data $$ frame of phenodata with a column headed Class and the other headed Sample.
control_lab	character vector specifying the control class
directory	(optional) character string of output directory
pathways	(optional) list whose names are pathways and elements are genes in the pathway. see details section for more information
print	set as default to TRUE for pdfs of the sample scores to be saved
measure	'medan' as default, can change to 'median'. mean will select for z-score and median will select for modified z-score. (see details)
std	numeric set as default to 2, this governs the thresholding of expression data. z-scored expression values with absolute value less than 'std' will be set to 0.
fraction_genes	numeric fraction of genes that will contribute to the top perturbed genes. Set as default to 0.25
save_tables	Set as default to TRUE. Tables of zscore and gene and sample scores will be saved.
file_name	(optional) character string that will be added to the saved file names

Value

A list: zscore, gene_scores, gene_freq, sample_scores, perturbed_genes

- Z-score z-score is calculated using the control samples to compute the average and the standard deviation. The absolute value of this matrix is taken and values less than the std are set to zero. This z-score data frame is used to compute the gene and sample scores.
- Gene scores mean z-score value for each gene in each class
- Gene frequency frequency with which a gene has a non zero z-score value in each class
- Sample scores list containing sample scores for different genesets. Sample scores are the sum of the z-scored gene values for each sample, averaged for the number of genes in that geneset.
- Perturbed genes vector of the top fraction of genes that have higher gene scores in the test classes compared to the control.
- Pathways if genesets are provided, they are ranked according to the signal-to-noise #' ratio of test sample scores versus control sample scores calculated using that geneset.

Loading pathways

a list of pathways can be loaded from a .gmt file using the fgsea function using fgsea::gmtPathways('gmt.file.loc

Selecting mean or median

if median is selected, the z-score will be calculated using the median, and the standard deviation will be estimated using the median absolute deviation, utilising the med function.

pathway_summary 7

Examples

```
# basic run
mdp(example_data,example_pheno,'baseline')
# run with pathways
pathway_file <- system.file('extdata', 'ReactomePathways.gmt',
package = 'mdp')
mypathway <- fgsea::gmtPathways(pathway_file) # load a gmt file
mdp(data=example_data,pdata=example_pheno,control_lab='baseline',
pathways=mypathway)</pre>
```

pathway_summary

print pathways generates a summary plot for pathways and sample score plot of best gene set

Description

print pathways generates a summary plot for pathways and sample score plot of best gene set

Usage

```
pathway_summary(sample_results, path, file_name, control_samples,
  control_lab)
```

Arguments

sample_results list of sample scores for each geneset

path directory to save images file_name name of saved imaged

control_samples

list of control sample names

 ${\tt control_lab} \qquad {\tt label \ that \ specifies \ control \ class}$

Value

data frame of signal to noise ratio of control vc test sample scores for each pathway

sample_data

Sample score results

Description

Resultant sample scores when the mdp is applied to example_data and example_pheno

Usage

```
sample_data
```

8 sample_plot

Format

A data frame with 40 rows and 3 variables:

Sample GSM identified **Score** Sample score

Class Symtpomatic state ...

sample_plot	Plot sample scores Plots the sample scores data.frame for a given
	geneset. Data frame must have Score, Sample and Class columns

Description

Plot sample scores Plots the sample scores data.frame for a given geneset. Data frame must have Score, Sample and Class columns

Usage

```
sample_plot(sample_data, filename = "", directory = "", title = "",
    print = TRUE, display = TRUE, control_lab)
```

Arguments

sample_data	data frame of sample score information for a geneset. Must have columns 'Sample', 'Score' and 'Class'
filename	(optional) character string that will be added to the saved pdf filename
directory	(optional) character string of directory to save file
title	(optional) character string of title name for graph
print	(default TRUE) Save as a pdf file
display	(default TRUE) Display plot
control_lab	(optional) character string Specifying control_lab will set the control class as light blue as a default

Value

generates a plot of the sample scores

Examples

```
sample_plot(sample_data = sample_data, control_lab = 'baseline')
```

Index

```
*Topic datasets
example_data, 4
example_pheno, 5
sample_data, 7

compute_gene_score, 2
compute_perturbed_genes, 3
compute_sample_scores, 3
compute_zscore, 4

example_data, 4
example_pheno, 5

mdp, 5

pathway_summary, 7

sample_data, 7
sample_plot, 8
```