
Package ‘matter’
April 16, 2019

Type Package

Title A framework for rapid prototyping with binary data on disk

Version 1.8.3

Date 2016-10-11

Author Kylie A. Bemis <k.bemis@northeastern.edu>

Maintainer Kylie A. Bemis <k.bemis@northeastern.edu>

Description Memory-efficient reading, writing, and manipulation of
structured binary data on disk as vectors, matrices, arrays,
lists, and data frames.

License Artistic-2.0

Depends R (>= 3.5), methods, stats, biglm

Imports BiocGenerics, digest, irlba, utils

Suggests BiocStyle, testthat

Collate matterGenerics.R utils.R drle.R atoms.R matter.R matter_vec.R
matter_mat.R matter_arr.R matter_list.R matter_str.R
matter_fc.R matter_tbl.R matter_vt.R matter_df.R sparse_mat.R
virtual_mat.R rep_vt.R coerce.R stats.R apply.R scale.R biglm.R
prcomp.R

biocViews Software, Infrastructure

URL https://github.com/kuwisdelu/matter

git_url https://git.bioconductor.org/packages/matter

git_branch RELEASE_3_8

git_last_commit 4687b83

git_last_commit_date 2018-12-18

Date/Publication 2019-04-15

R topics documented:
apply . 2
biglm . 3
bsearch . 4
checksum . 6
combiner . 7

1

https://github.com/kuwisdelu/matter

2 apply

delayed-ops . 7
drle-class . 8
keys . 9
matter-class . 10
matter-utils . 12
matter_arr-class . 12
matter_df-class . 14
matter_fc-class . 15
matter_list-class . 17
matter_mat-class . 19
matter_str-class . 21
matter_vec-class . 23
prcomp . 25
profmem . 26
rep_vt-class . 27
scale . 28
sparse_mat-class . 29
struct . 32
summary-stats . 33
tolerance . 35
uuid . 35
virtual_mat-class . 36

Index 39

apply Apply Functions Over “matter” Matrices

Description

An implementation of apply for matter_mat, sparse_mat and virtual_mat matrices.

Usage

S4 method for signature 'matter_mat'
apply(X, MARGIN, FUN, ...)

S4 method for signature 'sparse_mat'
apply(X, MARGIN, FUN, ...)

S4 method for signature 'virtual_mat'
apply(X, MARGIN, FUN, ...)

Arguments

X A matter_mat object.

MARGIN Must be 1 or 2 for matter_mat matrices, where ‘1’ indicates rows and ‘2’ indi-
cates columns. The dimension names can also be used if X has dimnames set.

FUN The function to be applied.

... Additional arguments to be passed to FUN.

biglm 3

Details

Because FUN must be executed by the interpreter in the appropriate R environment, the full row
or column will be loaded into memory. The chunksize of X is ignored. For summary statistics,
functions like colMeans and rowMeans offer greater control over memory pressure.

Value

See apply for details.

Warning

Applying a function over the rows of a column-major matrix (e.g., matter_matc) or over the
columns of a row-major matrix (e.g., matter_matr) may be very slow.

Author(s)

Kylie A. Bemis

See Also

apply

Examples

x <- matter(1:100, nrow=10, ncol=10)

apply(x, 2, summary)

biglm Using “biglm” with “matter”

Description

This method allows matter_mat matrices to be used with the biglm and bigglm function from the
“biglm” package.

Usage

S4 method for signature 'formula,matter_df'
biglm(formula, data, weights = NULL, sandwich = FALSE)

S4 method for signature 'formula,matter_df'
bigglm(formula, data, ..., chunksize = NULL)

S4 method for signature 'formula,matter_mat'
bigglm(formula, data, ..., chunksize = NULL, fc = NULL)

4 bsearch

Arguments

formula A model formula.

data A matter matrix with column names.

weights A one-sided, single-term formula specifying weights.

sandwich If TRUE, compute the Huber/White sandwich covariance matrix (uses p^4 mem-
ory rather than p^2).

chunksize An integer giving the maximum number of rows to process at a time. If left
NULL, this will be calculated by dividing the chunksize of data by the number
of variables in the formula.

fc Either column indices or names of variables which are factors.

... Additional options passed to bigglm.

Value

An object of class bigglm.

Author(s)

Kylie A. Bemis

See Also

bigglm

Examples

set.seed(1)

x <- matter_mat(rnorm(1000), nrow=100, ncol=10)

colnames(x) <- c(paste0("x", 1:9), "y")

fm <- paste0("y ~ ", paste0(paste0("x", 1:9), collapse=" + "))
fm <- as.formula(fm)

fit <- bigglm(fm, data=x, chunksize=50)
coef(fit)

bsearch Binary Search with Approximate Matching

Description

Given a set of keys and a sorted (non-decreasing) vector of values, use a binary search to find
the indexes in values that match the values of key. This implementation allows for returning the
index of the nearest match if there are no exact matches. It also allows specifying a tolerance for
comparison of doubles.

bsearch 5

Usage

bsearch(key, values, tol = 0, tol.ref = "none",
nomatch = NA_integer_, nearest = FALSE)

Arguments

key A vector of keys to match.

values A sorted (non-decreasing) vector of values to be matched.

tol The tolerance for matching doubles. Must be >= 0.

tol.ref One of ’none’, ’key’, or ’values’. If ’none’, then comparison of doubles is done
by taking the absolute difference. If either ’key’ or ’values’, then relative differ-
ences are used, and this specifies which to use as the reference (target) value.

nomatch The value to be returned in the case when no match is found, coerced to an
integer. (Ignored if nearest = TRUE.)

nearest Should the index of the closest match be returned if no exact matches are found?

Details

The algorithm is implemented in C and currently only works for ’integer’, ’numeric’, and ’charac-
ter’ vectors. If there are multiple matches, the first match that is found will be returned, but there
are no guarantees about which match is found.

The "nearest" match for strings when there are no exact matches is decided by the match with
the most initial matching characters. Tolerance is ignored for strings and integers. Behavior is
undefined and results may be unexpected if values includes NAs.

Value

A vector of the same length as key, giving the indexes of the matches in values.

Author(s)

Kylie A. Bemis

See Also

match, pmatch, findInterval

Examples

x <- c(1.11, 2.22, 3.33, 5.0, 5.1)

bsearch(2.22, x) # 2
bsearch(3.0, x) # NA
bsearch(3.0, x, nearest=TRUE) # 3
bsearch(3.0, x, tol=0.1, tol.ref="values") # 3

y <- c("hello", "world!")
bsearch("world!", y) # 2
bsearch("worl", y) # NA
bsearch("worl", y, nearest=TRUE) # 2

6 checksum

checksum Calculate Checksums and Cryptographic Hashes

Description

This is a generic function for applying cryptographic hash functions and calculating checksums for
arbitrary R objects.

Usage

checksum(x, ...)

S4 method for signature 'matter'
checksum(x, algo = c("sha1", "md5"), ...)

Arguments

x An object to be hashed.

algo The hash function to use.

... Additional arguments to be passed to the hash function.

Details

The method for matter objects calculates checksums of each of the files in the object’s paths.

Value

A character vector giving the hash or hashes of the object.

Author(s)

Kylie A. Bemis

See Also

digest

Examples

x <- matter(1:10)
y <- matter(1:10)

checksum(x)
checksum(y) # should be the same

combiner 7

combiner Get or Set combiner for an Object

Description

This is a generic function for getting or setting the ’combiner’ for an object with values to combine.

Usage

combiner(object)

combiner(object) <- value

Arguments

object An object with a combiner.
value The value to set the combiner.

Author(s)

Kylie A. Bemis

See Also

sparse_mat

Examples

x <- sparse_mat(diag(10))
combiner(x)
combiner(x) <- "sum"
x[]

delayed-ops Delayed Operations on “matter” Objects

Description

Some arithmetic operations are available as delayed operations on matter objects. With these
operations, no data is changed on disk, and the operation is only executed when elements of the
object are actually accessed.

Details

Currently the following operations are supported:

‘Arith’: ‘+’, ‘-’, ‘*’, ‘/’, ‘^’

‘Compare’: ‘==’, ‘>’, ‘<’, ‘!=’, ‘<=’, ‘>=’

‘Math’: ‘exp’, ‘log’, ‘log2’, ‘log10’

Delayed operations are applied at the C++ layer immediately after the elements are read from disk.
This means that operations that are implemented in C and/or C++ for efficiency (such as summary
statistics) will also reflect the execution of the delayed operations.

8 drle-class

Value

A new matter object with the registered delayed operation. Data on disk is not modified; only
object metadata is changed.

Author(s)

Kylie A. Bemis

See Also

Arith, Compare, Math

Examples

x <- matter(1:100)
y <- 2 * x + 1

x[1:10]
y[1:10]

mean(x)
mean(y)

drle-class Delta Run Length Encoding

Description

The drle class stores delta-run-length-encoded vectors. These differ from other run-length-encoded
vectors provided by other packages in that they allow for runs of values that each differ by a common
difference (delta).

Usage

Instance creation
drle(x, cr_threshold = 0)

is.drle(x)
Additional methods documented below

Arguments

x An integer or numeric vector to convert to delta run length encoding for drle();
an object to test if it is of class drle for is.drle().

cr_threshold The compression ratio threshold to use when converting a vector to delta run
length encoding. The default (0) always converts the object to drle. Values
of cr_threshold < 1 correspond to compressing even when the output will
be larger than the input (by a certain ratio). For values > 1, compression will
only take place when the output is (approximately) at least cr_threshold times
smaller.

keys 9

Value

An object of class drle.

Slots

values: The values that begin each run.

lengths: The length of each run.

deltas: The difference between the values of each run.

Creating Objects

drle instances can be created through drle().

Methods

Standard generic methods:

x[i]: Get the elements of the uncompressed vector.

length(x): Get the length of the uncompressed vector.

c(x, ...): Combine vectors.

Author(s)

Kylie A. Bemis

See Also

[base]{rle}

Examples

Create a drle vector
x <- c(1,1,1,1,1,6,7,8,9,10,21,32,33,34,15)
y <- drle(x)

Check that their elements are equal
x == y[]

keys Get or Set Keys for an Object

Description

This is a generic function for getting or setting ’keys’ for an object with key-value pairs such as a
map data structure.

Usage

keys(object)

keys(object) <- value

10 matter-class

Arguments

object An object with keys.

value The value to set the keys.

Author(s)

Kylie A. Bemis

See Also

sparse_mat

Examples

x <- sparse_mat(diag(10))
keys(x)
keys(x) <- 1:10
x[]

matter-class Vectors, Matrices, and Arrays Stored on Disk

Description

The matter class and its subclasses are designed for easy on-demand read/write access to binary
on-disk data structures, and working with them as vectors, matrices, arrays, lists, and data frames.

Usage

Instance creation
matter(...)

Check if an object is a matter object
is.matter(x)

Coerce an object to a matter object
as.matter(x, ...)

Additional methods documented below

Arguments

... Arguments passed to subclasses.

x An object to check if it is a matter object or coerce to a matter object.

Value

An object of class matter.

matter-class 11

Slots

data: This slot stores the information about locations of the data on disk and within the files.

datamode: The storage mode of the accessed data when read into R. This should a ’character’
vector of length one with value ’integer’ or ’numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for
read-only access, or ’rb+’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Creating Objects

matter is a virtual class and cannot be instantiated directly, but instances of its subclasses can be
created through matter().

Methods

Class-specific methods:

atomdata(x): Access the ’data’ slot.

adata(x): An alias for atomdata(x).

datamode(x), datamode(x) <- value: Get or set ’datamode’.

paths(x), paths(x) <- value: Get or set ’paths’.

filemode(x), filemode(x) <- value: Get or set ’filemode’.

readonly(x), readonly(x) <- value: A shortcut for getting or setting ’filemode’.

chunksize(x), chunksize(x) <- value: Get or set ’filemode’.

Standard generic methods:

length(x), length(x) <- value: Get or set ’length’.

dim(x), dim(x) <- value: Get or set ’dim’.

names(x), names(x) <- value: Get or set ’names’.

dimnames(x), dimnames(x) <- value: Get or set ’dimnames’.

Author(s)

Kylie A. Bemis

12 matter_arr-class

See Also

matter_vec, matter_mat, matter_arr, matter_list, matter_fc, matter_str, matter_df

Examples

Create a matter_vec vector
x <- matter(1:100, length=100)
x[]

Create a matter_mat matrix
x <- matter(1:100, nrow=10, ncol=10)
x[]

matter-utils Internal Utilities for “matter” Package

Description

Low-level utility functions, classes, and data defined in the matter package. They are not intended
to be used directly.

matter_arr-class Arrays Stored on Disk

Description

The matter_arr class implements on-disk arrays.

Usage

Instance creation
matter_arr(data, datamode = "double", paths = NULL,

filemode = ifelse(all(file.exists(paths)), "rb", "rb+"),
offset = 0, extent = prod(dim), dim = 0, dimnames = NULL, ...)

Additional methods documented below

Arguments

data An optional data vector which will be initially written to the data on disk if
provided.

datamode A ’character’ vector giving the storage mode of the data on disk. Allowable val-
ues are the C types (’char’, ’uchar’, short’, ’ushort’, ’int’, ’uint’, ’long’, ’ulong’,
’float’) and their R equivalents (’raw’, ’logical’, ’integer’, ’numeric’).

paths A ’character’ vector of the paths to the files where the data are stored. If ’NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’rb’
for read-only access, or ’rb+’ for read/write access.

matter_arr-class 13

offset A vector giving the offsets in number of bytes from the beginning of each file in
’paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

dim A vector giving the dimensions of the array.

dimnames The names of the matrix dimensions.

... Additional arguments to be passed to constructor.

Value

An object of class matter_arr.

Slots

data: This slot stores the information about locations of the data on disk and within the files.

datamode: The storage mode of the accessed data when read into R. This should a ’character’
vector of length one with value ’integer’ or ’numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for
read-only access, or ’rb+’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_arr instances can be created through matter_arr() or matter().

Methods

Standard generic methods:

x[...], x[...] <- value: Get or set the elements of the array.

Author(s)

Kylie A. Bemis

14 matter_df-class

See Also

matter

Examples

x <- matter_arr(1:125, dim=c(5,5,5))
x[]

matter_df-class Data Frames Stored on Disk

Description

The matter_df class implements on-disk data frames.

Usage

Instance creation
matter_df(..., row.names = NULL)

Additional methods documented below

Arguments

... These arguments become the data columns or data frame variables. They should
be named.

row.names A character vector giving the row names.

Value

An object of class matter_df.

Slots

data: This slot stores the information about locations of the data on disk and within the files.
datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of

length one with value ’integer’ or ’numeric’.
paths: A ’character’ vector of the paths to the files where the data are stored.
filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for

read-only access, or ’rb+’ for read/write access.
chunksize: The maximum number of elements which should be loaded into memory at once. Used

by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.
dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal

indices in each dimension for matrices and arrays.
names: The names of the data elements for vectors.
dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be

a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

matter_fc-class 15

Extends

matter

Creating Objects

matter_df instances can be created through matter_df() or matter().

Methods

Standard generic methods:

x$name, x$name <- value: Get or set the data columns.

x[[i]], x[[i]] <- value: Get or set the data columns.

x[i, j, ..., drop], x[i, j] <- value: Get or set the elements of the data frame.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matter_df(a=as.matter(1:10), b=as.matter(1:10))
x[]
x[[1]]
x[["a"]]
x[,"a"]
x[1:5,c("a","b")]
x$a
x$a[1:10]

matter_fc-class Factors Stored on Disk

Description

The matter_fc class implements on-disk factors.

Usage

Instance creation
matter_fc(data, datamode = "int", paths = NULL,

filemode = ifelse(all(file.exists(paths)), "rb", "rb+"),
offset = 0, extent = length, length = 0L, names = NULL,
levels = base::levels(as.factor(data)), ...)

Additional methods documented below

16 matter_fc-class

Arguments

data An optional data vector which will be initially written to the data on disk if
provided.

datamode Must be an integral type for factors.

paths A ’character’ vector of the paths to the files where the data are stored. If ’NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’rb’
for read-only access, or ’rb+’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
’paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

length An optional number giving the total length of the data across all files, equal to
the sum of ’extent’. This is ignored and calculated automatically if ’extent’ is
specified.

names The names of the data elements.

levels The levels of the factor.

... Additional arguments to be passed to constructor.

Value

An object of class matter_fc.

Slots

data: This slot stores the information about locations of the data on disk and within the files.

datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
length one with value ’integer’ or ’numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for
read-only access, or ’rb+’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

levels: The levels of the factor.

Extends

matter, matter_vec

matter_list-class 17

Creating Objects

matter_fc instances can be created through matter_fc() or matter().

Methods

Standard generic methods:

x[i], x[i] <- value: Get or set the elements of the factor.

levels(x), levels(x) <- value: Get or set the levels of the factor.

Author(s)

Kylie A. Bemis

See Also

matter, matter_vec

Examples

x <- matter_fc(c("a", "a", "b"), levels=c("a", "b", "c"))
x[]

matter_list-class Lists of Vectors Stored on Disk

Description

The matter_list class implements on-disk lists.

Usage

Instance creation
matter_list(data, datamode = "double", paths = NULL,

filemode = ifelse(all(file.exists(paths)), "rb", "rb+"),
offset = c(0, cumsum(sizeof(datamode) * extent)[-length(extent)]),
extent = lengths, lengths = 0, names = NULL, dimnames = NULL, ...)

Additional methods documented below

Arguments

data An optional data list which will be initially written to the data on disk if pro-
vided.

datamode A ’character’ vector giving the storage mode of the data on disk. Allowable val-
ues are the C types (’char’, ’uchar’, short’, ’ushort’, ’int’, ’uint’, ’long’, ’ulong’,
’float’) and their R equivalents (’raw’, ’logical’, ’integer’, ’numeric’).

paths A ’character’ vector of the paths to the files where the data are stored. If ’NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’rb’
for read-only access, or ’rb+’ for read/write access.

18 matter_list-class

offset A vector giving the offsets in number of bytes from the beginning of each file in
’paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

lengths A vector giving the length of each element of the list.

names The names of the data elements.

dimnames The names of the data elements’ data elements.

... Additional arguments to be passed to constructor.

Value

An object of class matter_list.

Slots

data: This slot stores the information about locations of the data on disk and within the files.

datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
length one with value ’integer’ or ’numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for
read-only access, or ’rb+’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_list instances can be created through matter_list() or matter().

Methods

Standard generic methods:

x[[i]], x[[i]] <- value: Get or set the elements of the list.

x[i, j], x[i, j] <- value: Get or set the j elements of the ith element of the list.

lengths(x): Get the lengths of all elements in the list.

matter_mat-class 19

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matter_list(list(c(TRUE,FALSE), 1:5, c(1.11, 2.22, 3.33)), lengths=c(2,5,3))
x[]
x[[1]]
x[3,2]
x[2,5]

matter_mat-class Matrices Stored on Disk

Description

The matter_mat class implements on-disk matrices.

Usage

Instance creation
matter_mat(data, datamode = "double", paths = NULL,

filemode = ifelse(all(file.exists(paths)), "rb", "rb+"),
offset = c(0, cumsum(sizeof(datamode) * extent)[-length(extent)]),
extent = if (rowMaj) rep(ncol, nrow) else rep(nrow, ncol),
nrow = 0, ncol = 0, rowMaj = FALSE, dimnames = NULL, ...)

Additional methods documented below

Arguments

data An optional data matrix which will be initially written to the data on disk if
provided.

datamode A ’character’ vector giving the storage mode of the data on disk. Allowable val-
ues are the C types (’char’, ’uchar’, short’, ’ushort’, ’int’, ’uint’, ’long’, ’ulong’,
’float’) and their R equivalents (’raw’, ’logical’, ’integer’, ’numeric’).

paths A ’character’ vector of the paths to the files where the data are stored. If ’NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’rb’
for read-only access, or ’rb+’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
’paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

nrow An optional number giving the total number of rows.

20 matter_mat-class

ncol An optional number giving the total number of columns.
rowMaj Whether the data should be stored in row-major order (as opposed to column-

major order) on disk. Defaults to ’FALSE’, for efficient access to columns. Set
to ’TRUE’ for more efficient access to rows instead.

dimnames The names of the matrix dimensions.
... Additional arguments to be passed to constructor.

Value

An object of class matter_mat.

Slots

data: This slot stores the information about locations of the data on disk and within the files.
datamode: The storage mode of the accessed data when read into R. This should a ’character’

vector of length one with value ’integer’ or ’numeric’.
paths: A ’character’ vector of the paths to the files where the data are stored.
filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for

read-only access, or ’rb+’ for read/write access.
chunksize: The maximum number of elements which should be loaded into memory at once. Used

by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.
dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal

indices in each dimension for matrices and arrays.
names: The names of the data elements for vectors.
dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be

a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_mat instances can be created through matter_mat() or matter().

Methods

Standard generic methods:

x[i, j, ..., drop], x[i, j] <- value: Get or set the elements of the matrix. Use drop = NULL
to return a subset of the same class as the object.

x %*% y: Matrix multiplication. At least one matrix must be an in-memory R matrix (or vector).
crossprod(x, y): Alias for t(x) %*% y.
tcrossprod(x, y): Alias for x %*% t(y).
cbind(x, ...), rbind(x, ...): Combine matrices by row or column.
t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not

touch the on-disk data.

matter_str-class 21

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matter_mat(1:100, nrow=10, ncol=10)
x[]

matter_str-class Strings Stored on Disk

Description

The matter_str class implements on-disk strings.

Usage

Instance creation
matter_str(data, datamode = "uchar", paths = NULL,

filemode = ifelse(all(file.exists(paths)), "rb", "rb+"),
offset = c(0, cumsum(sizeof("uchar") * extent)[-length(extent)]),
extent = nchar, nchar = 0, names = NULL,
encoding = "unknown", ...)

Additional methods documented below

Arguments

data An optional character vector which will be initially written to the data on disk if
provided.

datamode Must be "uchar" (or "raw") for strings.

paths A ’character’ vector of the paths to the files where the data are stored. If ’NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’rb’
for read-only access, or ’rb+’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
’paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

nchar A vector giving the length of each element of the character vector.

names The names of the data elements.

encoding The character encoding to use (if known).

... Additional arguments to be passed to constructor.

22 matter_str-class

Value

An object of class matter_str.

Slots

data: This slot stores the information about locations of the data on disk and within the files.
datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of

length one with value ’integer’ or ’numeric’.
paths: A ’character’ vector of the paths to the files where the data are stored.
filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for

read-only access, or ’rb+’ for read/write access.
chunksize: The maximum number of elements which should be loaded into memory at once. Used

by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.
dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal

indices in each dimension for matrices and arrays.
names: The names of the data elements for vectors.
dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be

a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.
encoding: The character encoding of the strings.

Extends

matter

Creating Objects

matter_str instances can be created through matter_str() or matter().

Methods

Standard generic methods:

x[[i]], x[[i]] <- value: Get or set the string elements of the vector.
x[i, j], x[i, j] <- value: Get or set j characters the ith string element of the vector.
lengths(x): Get the number of characters (in bytes) of all string elements in the vector.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matter_str(c("hello", "world!"))
x[]

matter_vec-class 23

matter_vec-class Vectors Stored on Disk

Description

The matter_vec class implements on-disk vectors.

Usage

Instance creation
matter_vec(data, datamode = "double", paths = NULL,

filemode = ifelse(all(file.exists(paths)), "rb", "rb+"),
offset = 0, extent = length, length = 0L, names = NULL, ...)

Additional methods documented below

Arguments

data An optional data vector which will be initially written to the data on disk if
provided.

datamode A ’character’ vector giving the storage mode of the data on disk. Allowable val-
ues are the C types (’char’, ’uchar’, short’, ’ushort’, ’int’, ’uint’, ’long’, ’ulong’,
’float’) and their R equivalents (’raw’, ’logical’, ’integer’, ’numeric’).

paths A ’character’ vector of the paths to the files where the data are stored. If ’NULL’,
then a temporary file is created using tempfile.

filemode The read/write mode of the files where the data are stored. This should be ’rb’
for read-only access, or ’rb+’ for read/write access.

offset A vector giving the offsets in number of bytes from the beginning of each file in
’paths’, specifying the start of the data to be accessed for each file.

extent A vector giving the length of the data for each file in ’paths’, specifying the
number of elements of size ’datamode’ to be accessed from each file.

length An optional number giving the total length of the data across all files, equal to
the sum of ’extent’. This is ignored and calculated automatically if ’extent’ is
specified.

names The names of the data elements.

... Additional arguments to be passed to constructor.

Value

An object of class matter_vec.

Slots

data: This slot stores the information about locations of the data on disk and within the files.

datamode: The storage mode of the accessed data when read into R. This is a ’character’ vector of
length one with value ’integer’ or ’numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

24 matter_vec-class

filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for
read-only access, or ’rb+’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

Extends

matter

Creating Objects

matter_vec instances can be created through matter_vec() or matter().

Methods

Standard generic methods:

x[i], x[i] <- value: Get or set the elements of the vector.

c(x, ...): Combine vectors.

t(x): Transpose a vector (to a row matrix). This is a quick operation which only changes metadata
and does not touch the on-disk data.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matter_vec(1:100)
x[]

prcomp 25

prcomp Principal Components Analysis for “matter” Matrices

Description

This method allows computation of a truncated principal components analysis of a matter_mat
matrix using the implicitly restarted Lanczos method irlba.

Usage

S4 method for signature 'matter_mat'
prcomp(x, n = 3, retx = TRUE, center = TRUE, scale. = FALSE, ...)

Arguments

x A matter matrix.
n The number of principal componenets to return, must be less than min(dim(x)).
retx A logical value indicating whether the rotated variables should be returned.
center A logical value indicating whether the variables should be shifted to be zero-

centered, or a centering vector of length equal to the number of columns of x.
The centering is performed implicitly and does not change the data-on-disk in
x.

scale. A logical value indicating whether the variables should be scaled to have unit
variance, or a scaling vector of length equal to the number of columns of x. The
scaling is performed implicitly and does not change the data-on-disk in x.

... Additional options passed to irlba.

Value

An object of class ‘prcomp’. See ?prcomp for details.

Note

The ’tol’ truncation argument found in the default prcomp method is not supported. In place of the
truncation tolerance in the original function, the argument n explicitly gives the number of principal
components to return. A warning is generated if the argument ’tol’ is used.

Author(s)

Kylie A. Bemis

See Also

bigglm

Examples

set.seed(1)

x <- matter_mat(rnorm(1000), nrow=100, ncol=10)

prcomp(x)

26 profmem

profmem Profile Memory Use

Description

These are utility functions for profiling memory used by objects and by R during the execution of
an expression.

Usage

profmem(expr)

mem(x, reset = FALSE)

Arguments

expr An expression to be evaluated.

x An object, to identify how much memory it is using.

reset Should the maximum memory used by R be reset?

Details

These are wrappers around the built-in gc function. Note that they only count memory managed by
R.

Value

For profmem, a vector giving [1] the amount of memory used at the start of execution, [2] the
amount of memory used at the end of execution, [3] the maximum amount of memory used during
execution, [4] the memory overhead as defined by the maximum memory used minus the starting
memory use, and [5] the execution time in seconds.

For mem, either a single numeric value giving the memory used by an object, or a vector providing
a more readable version of the information returned by gc (see its help page for details).

Author(s)

Kylie A. Bemis

See Also

gc,

Examples

x <- 1:100

mem(x)

profmem(mean(x + 1))

rep_vt-class 27

rep_vt-class Virtual Replication of Vectors

Description

The rep_vt class simulates the behavior of the base function rep without actually allocating mem-
ory for the duplication. Only the original vector and the expected length of the result are stored. All
attributes of the original vector (including names) are dropped.

Usage

Instance creation
rep_vt(x, times, length.out = length(x) * times)

Additional methods documented below

Arguments

x A vector (of any mode).

times The number of times to repeat the whole vector.

length.out The desired length of the result.

Value

An object of class rep_vt.

Slots

data: The original vector.

length: The expected length of the repeated virtual vector.

Creating Objects

rep_vt instances can be created through rep_vt().

Methods

Standard generic methods:

x[i]: Get the elements of the uncompressed vector.

x[[i]]: Get a single element of the uncompressed vector.

length(x): Get the length of the uncompressed vector.

Author(s)

Kylie A. Bemis

See Also

[base]{rep}

28 scale

Examples

Create a rep_vt vector
init <- 1:3
x <- rep(init, length.out=100)
y <- rep_vt(init, length.out=100)

Check that their elements are equal
x == y[]

scale Scaling and Centering of “matter” Matrices

Description

An implementation of scale for matter_mat matrices.

Usage

S4 method for signature 'matter_mat'
scale(x, center = TRUE, scale = TRUE)

Arguments

x A matter_mat object.
center Either a logical value or a numeric vector of length equal to the number of

columns of ’x’.
scale Either a logical value or a numeric vector of length equal to the number of

columns of ’x’.

Details

See scale for details.

Value

A matter_mat object with the appropriate ‘scaled:center’ and ‘scaled:scale’ attributes set. No
data on disk is changed, but the scaling will be applied any time the data is read. This includes
but is not limited to loading data elements via subsetting, summary statistics methods, and matrix
multiplication.

Author(s)

Kylie A. Bemis

See Also

scale

Examples

x <- matter(1:100, nrow=10, ncol=10)

scale(x)

sparse_mat-class 29

sparse_mat-class Sparse Matrices

Description

The sparse_mat class implements sparse matrices, potentially stored on-disk. Both compressed-
sparse-column (CSC) and compressed-sparse-row (CSR) formats are supported. Non-zero elements
are internally represented as key-value pairs.

Usage

Instance creation
sparse_mat(data, datamode = "double", nrow = 0, ncol = 0,

rowMaj = FALSE, dimnames = NULL, keys = NULL,
tolerance = c(abs=0), combiner = "identity", ...)

Check if an object is a sparse matrix
is.sparse(x)

Coerce an object to a sparse matrix
as.sparse(x, ...)

Additional methods documented below

Arguments

data Either a length-2 ’list’ with elements ’keys’ and ’values’ which provide the
halves of the key-value pairs of the non-zero elements, or a data matrix that
will be used to initialized the sparse matrix. If a list is given, all ’keys’ elements
must be sorted in increasing order.

datamode A ’character’ vector giving the storage mode of the data on disk. Allowable
values are R numeric and logical types (’logical’, ’integer’, ’numeric’) and their
C equivalents.

nrow An optional number giving the total number of rows.
ncol An optional number giving the total number of columns.
keys Either NULL or a vector with length equal to the number of rows (for CSC

matrices) or the number of columns (for CSR matrices). If NULL, then the
’key’ portion of the key-value pairs that make up the non-zero elements are
assumed to be row or column indices. If a vector, then they define the how
the non-zero elements are matched to rows or columns. The ’key’ portion of
each non-zero element is matched against this canonical set of keys using binary
search. Allowed types for keys are ’integer’, ’numeric’, and ’character’.

rowMaj Whether the data should be stored using compressed-sparse-row (CSR) repre-
sentation (as opposed to compressed-sparse-column (CSC) representation). De-
faults to ’FALSE’, for efficient access to columns. Set to ’TRUE’ for more
efficient access to rows instead.

dimnames The names of the sparse matrix dimensions.
tolerance For ’numeric’ keys, the tolerance used for floating-point equality when deter-

mining key matches. The vector should be named. Use ’absolute’ to use abso-
lute differences, and ’relative’ to use relative differences.

30 sparse_mat-class

combiner In the case of collisions when matching keys, how the row- or column-vectors
should be combined. Acceptable values are "identity", "min", "max", "sum",
and "mean". A user-specified function may also be provided. Using "identity"
means collisions result in an error. Using "sum" or "mean" results in binning all
matches.

x An object to check if it is a sparse matrix or coerce to a sparse matrix.
... Additional arguments to be passed to constructor.

Value

An object of class sparse_mat.

Slots

data: This slot stores the information about locations of the data on disk and within the files.
datamode: The storage mode of the accessed data when read into R. This should a ’character’

vector of length one with value ’integer’ or ’numeric’.
paths: A ’character’ vector of the paths to the files where the data are stored.
filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for

read-only access, or ’rb+’ for read/write access.
chunksize: The maximum number of elements which should be loaded into memory at once. Used

by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.
dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal

indices in each dimension for matrices and arrays.
names: The names of the data elements for vectors.
dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be

a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.
keys Either NULL or a vector with length equal to the number of rows (for CSC matrices) or the

number of columns (for CSR matrices). If NULL, then the ’key’ portion of the key-value pairs
that make up the non-zero elements are assumed to be row or column indices. If a vector, then
they define the how the non-zero elements are matched to rows or columns. The ’key’ portion
of each non-zero element is matched against this canonical set of keys using binary search.
Allowed types for keys are ’integer’, ’numeric’, and ’character’.

tolerance: For ’numeric’ keys, the tolerance used for floating-point equality when determining
key matches. An attribute ’type’ gives whether ’absolute’ or ’relative’ differences should be
used for the comparison.

combiner: This is a function determining how the row- or column-vectors should be combined (or
not) when key matching collisions occur.

Warning

If ’data’ is given as a length-2 list of key-value pairs, no checking is performed on the validity of
the key-value pairs, as this may be a costly operation if the list is stored on disk. Each element of
the ’keys’ element must be sorted in increasing order, or behavior may be unexpected.

Assigning a new data element to the sparse matrix will always sort the key-value pairs of the row
or column into which it was assigned.

sparse_mat-class 31

Extends

matter

Creating Objects

sparse_mat instances can be created through sparse_mat().

Methods

Standard generic methods:

x[i, j, ..., drop], x[i, j] <- value: Get or set the elements of the sparse matrix. Use
drop = NULL to return a subset of the same class as the object.

cbind(x, ...), rbind(x, ...): Combine sparse matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the data representation.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

keys <- list(
c(1,4,8,10),
c(2,3,5),
c(1,2,7,9))

values <- list(
rnorm(4),
rnorm(3),
rnorm(4))

init1 <- list(keys=keys, values=values)

x <- sparse_mat(init1, nrow=10)
x[]

init2 <- matrix(rbinom(100, 1, 0.2), nrow=10, ncol=10)

y <- sparse_mat(init2, keys=letters[1:10])
y[]

32 struct

struct C-Style Structs Stored on Disk

Description

This is a convenience function for creating and reading C-style structs in a single file stored on disk.

Usage

struct(..., filename = NULL, filemode = "rb+", offset = 0)

Arguments

... Named integers giving the members of the struct. They should be of the form
name=c(type=length).

filename A single string giving the name of the file.

filemode The mode to use to open the file.

offset A scalar integer giving the offset from the beginning of the file.

Details

This is simply a convenient wrapper around the wrapper around matter_list that allows easy
specification of C-style structs in a file.

Value

A object of class matter_list.

Author(s)

Kylie A. Bemis

See Also

matter_list

Examples

x <- struct(first=c(int=1), second=c(double=1))

x$first <- 2L
x$second <- 3.33

x$first
x$second

summary-stats 33

summary-stats Summary Statistics for “matter” Objects

Description

These functions efficiently calculate summary statistics for matter objects. For matrices, they
operate efficiently on both rows and columns.

Usage

S4 method for signature 'matter'
range(x, na.rm)
S4 method for signature 'matter'
min(x, na.rm)
S4 method for signature 'matter'
max(x, na.rm)
S4 method for signature 'matter'
prod(x, na.rm)
S4 method for signature 'matter'
mean(x, na.rm)
S4 method for signature 'matter'
sum(x, na.rm)
S4 method for signature 'matter'
sd(x, na.rm)
S4 method for signature 'matter'
var(x, na.rm)
S4 method for signature 'matter'
any(x, na.rm)
S4 method for signature 'matter'
all(x, na.rm)
S4 method for signature 'matter_mat'
colMeans(x, na.rm)
S4 method for signature 'matter_mat'
colSums(x, na.rm)
S4 method for signature 'matter_mat'
colSds(x, na.rm)
S4 method for signature 'matter_mat'
colVars(x, na.rm)
S4 method for signature 'matter_mat'
rowMeans(x, na.rm)
S4 method for signature 'matter_mat'
rowSums(x, na.rm)
S4 method for signature 'matter_mat'
rowSds(x, na.rm)
S4 method for signature 'matter_mat'
rowVars(x, na.rm)

Arguments

x A matter object.

na.rm If TRUE, remove NA values before summarizing.

34 summary-stats

Details

These summary statistics methods operate on chunks of data (equal to the chunksize of x) which
are loaded into memory and then freed before reading the next chunk.

For row and column summaries on matrices, the iteration scheme is dependent on the layout of the
data. Column-major matrices will always be iterated over by column, and row-major matrices will
always be iterated over by row. Row statistics on column-major matrices and column statistics on
row-major matrices are calculated iteratively.

The efficiency of these methods is entirely dependent on the chunksize of x. Larger chunks will
yield faster calculations, but greater memory usage. The row and column summary methods may
be more or less efficient than the equivalent call to apply, depending on the chunk size.

Variance and standard deviation are calculated using a running sum of squares formula which can
be calculated iteratively and is accurate for large floating-point datasets (see reference).

Value

For mean, sd, and var, a single number. For the column summaries, a vector of length equal to the
number of columns of the matrix. For the row summaries, a vector of length equal to the number of
rows of the matrix.

Author(s)

Kylie A. Bemis

References

B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares and Products,” Tech-
nometrics, vol. 4, no. 3, pp. 1-3, Aug. 1962.

See Also

colSums

Examples

x <- matter(1:100, nrow=10, ncol=10)

sum(x)
mean(x)
var(x)
sd(x)

colSums(x)
colMeans(x)
colVars(x)
colSds(x)

rowSums(x)
rowMeans(x)
rowVars(x)
rowSds(x)

tolerance 35

tolerance Get or Set Tolerance for an Object

Description

This is a generic function for getting or setting ’tolerance’ for an object which tests floating point
equality.

Usage

tolerance(object)

tolerance(object) <- value

Arguments

object An object with tolerance.

value The value to set the tolerance.

Author(s)

Kylie A. Bemis

See Also

sparse_mat

Examples

x <- sparse_mat(diag(10), keys=rnorm(10))
tolerance(x)
tolerance(x) <- c(absolute=0.1)
x[]

uuid Universally Unique Identifiers

Description

Generate a UUID.

Usage

uuid(uppercase = FALSE)

hex2raw(x)

raw2hex(x, uppercase = FALSE)

36 virtual_mat-class

Arguments

x A vector of to convert between raw bytes and hexadecimal strings.
uppercase Should the result be in uppercase?

Details

uuid generates a random universally unique identifier.

hex2raw converts a hexadecimal string to a raw vector.

raw2hex converts a raw vector to a hexadecimal string.

Value

For uuid, a list of length 2:

• string: A character vector giving the UUID.
• bytes: The raw bytes of the UUID.

For hex2raw, a raw vector.

For raw2hex, a character vector of length 1.

Author(s)

Kylie A. Bemis

Examples

id <- uuid()
id
hex2raw(id$string)
raw2hex(id$bytes)

virtual_mat-class Virtual Matrices

Description

The virtual_mat class implements virtual matrices, which may hold any matrix objects. It is pro-
vided primarily to allow combining of matter matrix classes that could not be combined otherwise.

Usage

Instance creation
virtual_mat(data, datamode = "double", rowMaj = FALSE,

dimnames = NULL, index = NULL, ...)

Check if an object is a virtual matrix
is.virtual(x)

Coerce an object to a virtual matrix
as.virtual(x, ...)

Additional methods documented below

virtual_mat-class 37

Arguments

data A list of matrices to combine.

datamode A ’character’ vector giving the storage mode of the data on disk. Allowable
values are R numeric and logical types (’logical’, ’integer’, ’numeric’) and their
C equivalents.

rowMaj Whether the matrices in data are combined by row (TRUE) or by column (FALSE.

dimnames The names of the virtual matrix dimensions.

index A length-2 list of row and column indices giving a submatrix, if desired.

x An object to check if it is a virtual matrix or coerce to a virtual matrix.

... Additional arguments to be passed to constructor.

Value

An object of class virtual_mat.

Slots

data: This slot stores the information about locations of the data on disk and within the files.

datamode: The storage mode of the accessed data when read into R. This should a ’character’
vector of length one with value ’integer’ or ’numeric’.

paths: A ’character’ vector of the paths to the files where the data are stored.

filemode: The read/write mode of the files where the data are stored. This should be ’rb’ for
read-only access, or ’rb+’ for read/write access.

chunksize: The maximum number of elements which should be loaded into memory at once. Used
by methods implementing summary statistics and linear algebra. Ignored when explicitly
subsetting the dataset.

length: The length of the data.

dim: Either ’NULL’ for vectors, or an integer vector of length one of more giving the maximal
indices in each dimension for matrices and arrays.

names: The names of the data elements for vectors.

dimnames: Either ’NULL’ or the names for the dimensions. If not ’NULL’, then this should be
a list of character vectors of the length given by ’dim’ for each dimension. This is always
’NULL’ for vectors.

ops: Delayed operations to be applied on atoms.

index A length-2 list of row and column indices giving a virtual submatrix.

transpose TRUE if the virtual matrix should be transposed, and FALSE otherwise.

Extends

matter

Creating Objects

virtual_mat instances can be created through virtual_mat().

38 virtual_mat-class

Methods

Standard generic methods:

x[i, j, ..., drop]: Get or set the elements of the virtual matrix. Use drop = NULL to return a
subset of the same class as the object.

cbind(x, ...), rbind(x, ...): Combine virtual matrices by row or column.

t(x): Transpose a matrix. This is a quick operation which only changes metadata and does not
touch the data representation.

Author(s)

Kylie A. Bemis

See Also

matter

Examples

x <- matrix(runif(50), nrow=10, ncol=5)

x <- virtual_mat(list(x, x))
x[]

Index

∗Topic IO
matter-class, 10
matter_arr-class, 12
matter_df-class, 14
matter_fc-class, 15
matter_list-class, 17
matter_mat-class, 19
matter_str-class, 21
matter_vec-class, 23
struct, 32

∗Topic arith
delayed-ops, 7

∗Topic array
matter-class, 10
matter_arr-class, 12
matter_df-class, 14
matter_fc-class, 15
matter_list-class, 17
matter_mat-class, 19
matter_str-class, 21
matter_vec-class, 23
sparse_mat-class, 29
struct, 32
virtual_mat-class, 36

∗Topic classes
drle-class, 8
matter-class, 10
matter-utils, 12
matter_arr-class, 12
matter_df-class, 14
matter_fc-class, 15
matter_list-class, 17
matter_mat-class, 19
matter_str-class, 21
matter_vec-class, 23
rep_vt-class, 27
sparse_mat-class, 29
virtual_mat-class, 36

∗Topic datasets
matter-utils, 12

∗Topic methods
apply, 2
delayed-ops, 7

matter-utils, 12
scale, 28
summary-stats, 33

∗Topic models
biglm, 3

∗Topic multivariate
prcomp, 25

∗Topic regression
biglm, 3

∗Topic univar
summary-stats, 33

∗Topic utilities
bsearch, 4
checksum, 6
combiner, 7
keys, 9
matter-utils, 12
profmem, 26
struct, 32
tolerance, 35
uuid, 35

[,atoms,ANY,ANY,ANY-method
(matter-class), 10

[,atoms,ANY,missing,ANY-method
(matter-class), 10

[,atoms,missing,ANY,ANY-method
(matter-class), 10

[,drle,ANY,missing,missing-method
(drle-class), 8

[,drle,missing,missing,missing-method
(drle-class), 8

[,matter_arr,ANY,ANY,ANY-method
(matter_arr-class), 12

[,matter_arr-method (matter_arr-class),
12

[,matter_df,ANY,ANY,ANY-method
(matter_df-class), 14

[,matter_df,ANY,ANY,NULL-method
(matter_df-class), 14

[,matter_df,ANY,missing,ANY-method
(matter_df-class), 14

[,matter_df,ANY,missing,NULL-method
(matter_df-class), 14

39

40 INDEX

[,matter_df,missing,ANY,ANY-method
(matter_df-class), 14

[,matter_df,missing,ANY,NULL-method
(matter_df-class), 14

[,matter_df,missing,missing,ANY-method
(matter_df-class), 14

[,matter_df-method (matter_df-class), 14
[,matter_fc,ANY,missing,ANY-method

(matter_fc-class), 15
[,matter_fc,ANY,missing,NULL-method

(matter_fc-class), 15
[,matter_fc,missing,missing,ANY-method

(matter_fc-class), 15
[,matter_fc-method (matter_fc-class), 15
[,matter_list,ANY,ANY,ANY-method

(matter_list-class), 17
[,matter_list,ANY,ANY,NULL-method

(matter_list-class), 17
[,matter_list,ANY,missing,ANY-method

(matter_list-class), 17
[,matter_list,ANY,missing,NULL-method

(matter_list-class), 17
[,matter_list,missing,missing,ANY-method

(matter_list-class), 17
[,matter_list-method

(matter_list-class), 17
[,matter_mat,ANY,ANY,ANY-method

(matter_mat-class), 19
[,matter_mat,ANY,ANY,NULL-method

(matter_mat-class), 19
[,matter_mat,ANY,missing,ANY-method

(matter_mat-class), 19
[,matter_mat,ANY,missing,NULL-method

(matter_mat-class), 19
[,matter_mat,missing,ANY,ANY-method

(matter_mat-class), 19
[,matter_mat,missing,ANY,NULL-method

(matter_mat-class), 19
[,matter_mat,missing,missing,ANY-method

(matter_mat-class), 19
[,matter_mat-method (matter_mat-class),

19
[,matter_str,ANY,ANY,ANY-method

(matter_str-class), 21
[,matter_str,ANY,ANY,NULL-method

(matter_str-class), 21
[,matter_str,ANY,missing,ANY-method

(matter_str-class), 21
[,matter_str,ANY,missing,NULL-method

(matter_str-class), 21
[,matter_str,missing,missing,ANY-method

(matter_str-class), 21

[,matter_str-method (matter_str-class),
21

[,matter_vec,ANY,missing,ANY-method
(matter_vec-class), 23

[,matter_vec,ANY,missing,NULL-method
(matter_vec-class), 23

[,matter_vec,missing,missing,ANY-method
(matter_vec-class), 23

[,matter_vec-method (matter_vec-class),
23

[,rep_vt,ANY,missing,missing-method
(rep_vt-class), 27

[,rep_vt,missing,missing,missing-method
(rep_vt-class), 27

[,sparse_mat,ANY,ANY,ANY-method
(sparse_mat-class), 29

[,sparse_mat,ANY,ANY,NULL-method
(sparse_mat-class), 29

[,sparse_mat,ANY,missing,ANY-method
(sparse_mat-class), 29

[,sparse_mat,ANY,missing,NULL-method
(sparse_mat-class), 29

[,sparse_mat,missing,ANY,ANY-method
(sparse_mat-class), 29

[,sparse_mat,missing,ANY,NULL-method
(sparse_mat-class), 29

[,sparse_mat,missing,missing,ANY-method
(sparse_mat-class), 29

[,sparse_mat-method (sparse_mat-class),
29

[,virtual_mat,ANY,ANY,ANY-method
(virtual_mat-class), 36

[,virtual_mat,ANY,ANY,NULL-method
(virtual_mat-class), 36

[,virtual_mat,ANY,missing,ANY-method
(virtual_mat-class), 36

[,virtual_mat,ANY,missing,NULL-method
(virtual_mat-class), 36

[,virtual_mat,missing,ANY,ANY-method
(virtual_mat-class), 36

[,virtual_mat,missing,ANY,NULL-method
(virtual_mat-class), 36

[,virtual_mat,missing,missing,ANY-method
(virtual_mat-class), 36

[,virtual_mat-method
(virtual_mat-class), 36

[<-,matter_arr,ANY,ANY,ANY-method
(matter_arr-class), 12

[<-,matter_arr-method
(matter_arr-class), 12

[<-,matter_df,ANY,ANY,ANY-method
(matter_df-class), 14

INDEX 41

[<-,matter_df,ANY,missing,ANY-method
(matter_df-class), 14

[<-,matter_df,missing,ANY,ANY-method
(matter_df-class), 14

[<-,matter_df,missing,missing,ANY-method
(matter_df-class), 14

[<-,matter_df-method (matter_df-class),
14

[<-,matter_fc,ANY,missing,ANY-method
(matter_fc-class), 15

[<-,matter_fc,missing,missing,ANY-method
(matter_fc-class), 15

[<-,matter_fc-method (matter_fc-class),
15

[<-,matter_list,ANY,ANY,ANY-method
(matter_list-class), 17

[<-,matter_list,ANY,missing,ANY-method
(matter_list-class), 17

[<-,matter_list,missing,missing,ANY-method
(matter_list-class), 17

[<-,matter_list-method
(matter_list-class), 17

[<-,matter_mat,ANY,ANY,ANY-method
(matter_mat-class), 19

[<-,matter_mat,ANY,missing,ANY-method
(matter_mat-class), 19

[<-,matter_mat,missing,ANY,ANY-method
(matter_mat-class), 19

[<-,matter_mat,missing,missing,ANY-method
(matter_mat-class), 19

[<-,matter_mat-method
(matter_mat-class), 19

[<-,matter_str,ANY,ANY,ANY-method
(matter_str-class), 21

[<-,matter_str,ANY,missing,ANY-method
(matter_str-class), 21

[<-,matter_str,missing,missing,ANY-method
(matter_str-class), 21

[<-,matter_str-method
(matter_str-class), 21

[<-,matter_vec,ANY,missing,ANY-method
(matter_vec-class), 23

[<-,matter_vec,missing,missing,ANY-method
(matter_vec-class), 23

[<-,matter_vec-method
(matter_vec-class), 23

[<-,sparse_mat,ANY,ANY,ANY-method
(sparse_mat-class), 29

[<-,sparse_mat,ANY,missing,ANY-method
(sparse_mat-class), 29

[<-,sparse_mat,missing,ANY,ANY-method
(sparse_mat-class), 29

[<-,sparse_mat,missing,missing,ANY-method
(sparse_mat-class), 29

[<-,sparse_mat-method
(sparse_mat-class), 29

[[,atoms,ANY,ANY-method (matter-class),
10

[[,atoms-method (matter-class), 10
[[,matter_df,ANY,missing-method

(matter_df-class), 14
[[,matter_list,ANY,missing-method

(matter_list-class), 17
[[,matter_str,ANY,missing-method

(matter_str-class), 21
[[,rep_vt,ANY,ANY-method

(rep_vt-class), 27
[[<-,matter_df,ANY,missing-method

(matter_df-class), 14
[[<-,matter_list,ANY,missing-method

(matter_list-class), 17
[[<-,matter_str,ANY,missing-method

(matter_str-class), 21
$,matter_df-method (matter_df-class), 14
$,matter_list-method

(matter_list-class), 17
$<-,matter_df-method (matter_df-class),

14
$<-,matter_list-method

(matter_list-class), 17
%*%,matrix,matter_mat-method

(matter_mat-class), 19
%*%,matter,matter-method

(matter_mat-class), 19
%*%,matter_mat,matrix-method

(matter_mat-class), 19
%*%,matter_matc,numeric-method

(matter_mat-class), 19
%*%,matter_matr,numeric-method

(matter_mat-class), 19
%*%,numeric,matter_matc-method

(matter_mat-class), 19
%*%,numeric,matter_matr-method

(matter_mat-class), 19

adata (matter-class), 10
adata,matter-method (matter-class), 10
all,matter-method (summary-stats), 33
any,matter-method (summary-stats), 33
apply, 2, 2, 3, 34
apply,matter_mat-method (apply), 2
apply,sparse_mat-method (apply), 2
apply,virtual_mat-method (apply), 2
Arith, 8
Arith (delayed-ops), 7

42 INDEX

Arith,matter_arr,matter_arr-method
(delayed-ops), 7

Arith,matter_arr,numeric-method
(delayed-ops), 7

Arith,matter_fc,matter_fc-method
(delayed-ops), 7

Arith,matter_fc,numeric-method
(delayed-ops), 7

Arith,matter_matc,matter_matc-method
(delayed-ops), 7

Arith,matter_matc,numeric-method
(delayed-ops), 7

Arith,matter_matr,matter_matr-method
(delayed-ops), 7

Arith,matter_matr,numeric-method
(delayed-ops), 7

Arith,matter_vec,matter_vec-method
(delayed-ops), 7

Arith,matter_vec,numeric-method
(delayed-ops), 7

Arith,numeric,matter_arr-method
(delayed-ops), 7

Arith,numeric,matter_fc-method
(delayed-ops), 7

Arith,numeric,matter_matc-method
(delayed-ops), 7

Arith,numeric,matter_matr-method
(delayed-ops), 7

Arith,numeric,matter_vec-method
(delayed-ops), 7

as.array,matter_arr-method
(matter_arr-class), 12

as.array,matter_vec-method
(matter_vec-class), 23

as.data.frame,matter_df-method
(matter_df-class), 14

as.list,drle-method (drle-class), 8
as.list,matter_list-method

(matter_list-class), 17
as.list,rep_vt-method (rep_vt-class), 27
as.matrix,matter_mat-method

(matter_mat-class), 19
as.matrix,matter_vec-method

(matter_vec-class), 23
as.matrix,sparse_mat-method

(sparse_mat-class), 29
as.matrix,virtual_mat-method

(virtual_mat-class), 36
as.matter (matter-class), 10
as.sparse (sparse_mat-class), 29
as.vector,drle-method (drle-class), 8
as.vector,matter_arr-method

(matter_arr-class), 12
as.vector,matter_str-method

(matter_str-class), 21
as.vector,matter_vec-method

(matter_vec-class), 23
as.vector,rep_vt-method (rep_vt-class),

27
as.virtual (virtual_mat-class), 36
atomdata (matter-class), 10
atomdata,matter-method (matter-class),

10
atomdata<- (matter-class), 10
atomdata<-,matter-method

(matter-class), 10

bigglm, 3, 4, 25
bigglm (biglm), 3
bigglm,formula,matter_df-method

(biglm), 3
bigglm,formula,matter_mat-method

(biglm), 3
bigglm.out (matter-utils), 12
biglm, 3, 3
biglm,formula,matter_df-method (biglm),

3
bsearch, 4

c,atoms-method (matter-class), 10
c,drle-method (drle-class), 8
c,matter-method (matter-class), 10
c,matter_vec-method (matter_vec-class),

23
cbind,matter-method (matter_mat-class),

19
checksum, 6
checksum,matter-method (checksum), 6
chunksize (matter-class), 10
chunksize,matter-method (matter-class),

10
chunksize<- (matter-class), 10
chunksize<-,matter-method

(matter-class), 10
chunksize<-,matter_vt-method

(matter-class), 10
class:drle (drle-class), 8
class:matter (matter-class), 10
class:matter_arr (matter_arr-class), 12
class:matter_df (matter_df-class), 14
class:matter_fc (matter_fc-class), 15
class:matter_list (matter_list-class),

17
class:matter_mat (matter_mat-class), 19
class:matter_str (matter_str-class), 21

INDEX 43

class:matter_vec (matter_vec-class), 23
class:rep_vt (rep_vt-class), 27
class:sparse_mat (sparse_mat-class), 29
class:virtual_mat (virtual_mat-class),

36
colMeans, 3
colMeans,matter_mat-method

(summary-stats), 33
colSds (summary-stats), 33
colSds,matter_mat-method

(summary-stats), 33
colSums, 34
colSums,matter_mat-method

(summary-stats), 33
colVars (summary-stats), 33
colVars,matter_mat-method

(summary-stats), 33
combiner, 7
combiner,sparse_mat-method

(sparse_mat-class), 29
combiner<- (combiner), 7
combiner<-,sparse_mat-method

(sparse_mat-class), 29
Compare, 8
Compare (delayed-ops), 7
Compare,character,matter_fc-method

(delayed-ops), 7
Compare,factor,matter_fc-method

(delayed-ops), 7
Compare,matter_arr,matter_arr-method

(delayed-ops), 7
Compare,matter_arr,numeric-method

(delayed-ops), 7
Compare,matter_arr,raw-method

(delayed-ops), 7
Compare,matter_fc,character-method

(delayed-ops), 7
Compare,matter_fc,factor-method

(delayed-ops), 7
Compare,matter_fc,matter_fc-method

(delayed-ops), 7
Compare,matter_fc,numeric-method

(delayed-ops), 7
Compare,matter_matc,matter_matc-method

(delayed-ops), 7
Compare,matter_matc,numeric-method

(delayed-ops), 7
Compare,matter_matc,raw-method

(delayed-ops), 7
Compare,matter_matr,matter_matr-method

(delayed-ops), 7
Compare,matter_matr,numeric-method

(delayed-ops), 7
Compare,matter_matr,raw-method

(delayed-ops), 7
Compare,matter_vec,matter_vec-method

(delayed-ops), 7
Compare,matter_vec,numeric-method

(delayed-ops), 7
Compare,matter_vec,raw-method

(delayed-ops), 7
Compare,numeric,matter_arr-method

(delayed-ops), 7
Compare,numeric,matter_fc-method

(delayed-ops), 7
Compare,numeric,matter_matc-method

(delayed-ops), 7
Compare,numeric,matter_matr-method

(delayed-ops), 7
Compare,numeric,matter_vec-method

(delayed-ops), 7
Compare,raw,matter_arr-method

(delayed-ops), 7
Compare,raw,matter_matc-method

(delayed-ops), 7
Compare,raw,matter_matr-method

(delayed-ops), 7
Compare,raw,matter_vec-method

(delayed-ops), 7
convert_datamode (matter-utils), 12
crossprod,ANY,matter-method

(matter_mat-class), 19
crossprod,matter,ANY-method

(matter_mat-class), 19

data:matter_ex (matter-utils), 12
data:matter_msi (matter-utils), 12
data:matter_sim (matter-utils), 12
datamode (matter-class), 10
datamode,atoms-method (matter-class), 10
datamode,matter-method (matter-class),

10
datamode<- (matter-class), 10
datamode<-,atoms-method (matter-class),

10
datamode<-,matter-method

(matter-class), 10
datamode<-,matter_vt-method

(matter-class), 10
datamode<-,sparse_mat-method

(sparse_mat-class), 29
datamode<-,virtual_mat-method

(virtual_mat-class), 36
delayed-ops, 7
digest, 6

44 INDEX

dim,atoms-method (matter-class), 10
dim,matter-method (matter-class), 10
dim<-,matter-method (matter-class), 10
dim<-,matter_arr-method

(matter_arr-class), 12
dim<-,matter_vec-method

(matter_vec-class), 23
dimnames,matter-method (matter-class),

10
dimnames<-,matter,ANY-method

(matter-class), 10
dimnames<-,matter_tbl,ANY-method

(matter_df-class), 14
drle, 9
drle (drle-class), 8
drle-class, 8

exp,matter_arr-method (delayed-ops), 7
exp,matter_fc-method (delayed-ops), 7
exp,matter_mat-method (delayed-ops), 7
exp,matter_vec-method (delayed-ops), 7

filemode (matter-class), 10
filemode,matter-method (matter-class),

10
filemode<- (matter-class), 10
filemode<-,matter-method

(matter-class), 10
filemode<-,matter_vt-method

(matter-class), 10
findInterval, 5

gc, 26

head,matter_tbl-method
(matter_df-class), 14

hex2raw (uuid), 35

irlba, 25
is.drle (drle-class), 8
is.matter (matter-class), 10
is.sparse (sparse_mat-class), 29
is.virtual (virtual_mat-class), 36

keys, 9
keys,sparse_mat-method

(sparse_mat-class), 29
keys<- (keys), 9
keys<-,sparse_mat-method

(sparse_mat-class), 29
keys<-,sparse_matc-method

(sparse_mat-class), 29
keys<-,sparse_matr-method

(sparse_mat-class), 29

length,atoms-method (matter-class), 10
length,drle-method (drle-class), 8
length,matter-method (matter-class), 10
length,rep_vt-method (rep_vt-class), 27
length<-,matter-method (matter-class),

10
lengths,matter_list-method

(matter_list-class), 17
lengths,matter_str-method

(matter_str-class), 21
levels,matter_fc-method

(matter_fc-class), 15
levels<-,matter_fc-method

(matter_fc-class), 15
lm.prof (matter-utils), 12
log,matter_arr,numeric-method

(delayed-ops), 7
log,matter_arr-method (delayed-ops), 7
log,matter_fc,numeric-method

(delayed-ops), 7
log,matter_fc-method (delayed-ops), 7
log,matter_matc,numeric-method

(delayed-ops), 7
log,matter_matc-method (delayed-ops), 7
log,matter_matr,numeric-method

(delayed-ops), 7
log,matter_matr-method (delayed-ops), 7
log,matter_vec,numeric-method

(delayed-ops), 7
log,matter_vec-method (delayed-ops), 7
log10,matter_arr-method (delayed-ops), 7
log10,matter_fc-method (delayed-ops), 7
log10,matter_mat-method (delayed-ops), 7
log10,matter_vec-method (delayed-ops), 7
log2,matter_arr-method (delayed-ops), 7
log2,matter_fc-method (delayed-ops), 7
log2,matter_mat-method (delayed-ops), 7
log2,matter_vec-method (delayed-ops), 7

make_datamode (matter-utils), 12
match, 5
Math, 8
matter, 4, 6–8, 10, 13–22, 24, 25, 31, 33, 37,

38
matter (matter-class), 10
matter-class, 10
matter-utils, 12
matter_arr, 12, 13
matter_arr (matter_arr-class), 12
matter_arr-class, 12
matter_df, 12, 14
matter_df (matter_df-class), 14
matter_df-class, 14

INDEX 45

matter_ex (matter-utils), 12
matter_fc, 12, 16
matter_fc (matter_fc-class), 15
matter_fc-class, 15
matter_list, 12, 18, 32
matter_list (matter_list-class), 17
matter_list-class, 17
matter_mat, 2, 3, 12, 20, 25, 28
matter_mat (matter_mat-class), 19
matter_mat-class, 19
matter_matc, 3
matter_matc (matter_mat-class), 19
matter_matc-class (matter_mat-class), 19
matter_matr, 3
matter_matr (matter_mat-class), 19
matter_matr-class (matter_mat-class), 19
matter_msi (matter-utils), 12
matter_sim (matter-utils), 12
matter_str, 12, 22
matter_str (matter_str-class), 21
matter_str-class, 21
matter_vec, 12, 16, 17, 23
matter_vec (matter_vec-class), 23
matter_vec-class, 23
max,matter-method (summary-stats), 33
mean (summary-stats), 33
mean,matter-method (summary-stats), 33
mem (profmem), 26
min,matter-method (summary-stats), 33
msi.prof (matter-utils), 12

names,matter-method (matter-class), 10
names<-,matter-method (matter-class), 10
names<-,matter_tbl-method

(matter_df-class), 14

paths (matter-class), 10
paths,matter-method (matter-class), 10
paths<- (matter-class), 10
paths<-,matter-method (matter-class), 10
paths<-,matter_vt-method

(matter-class), 10
pca.prof (matter-utils), 12
pmatch, 5
prcomp, 25, 25
prcomp,matter_mat-method (prcomp), 25
prcomp.out (matter-utils), 12
prod,matter-method (summary-stats), 33
profmem, 26

range,matter-method (summary-stats), 33
raw2hex (uuid), 35

rbind,matter-method (matter_mat-class),
19

readonly (matter-class), 10
readonly,matter-method (matter-class),

10
readonly<- (matter-class), 10
readonly<-,matter-method

(matter-class), 10
readonly<-,matter_vt-method

(matter-class), 10
rep, 27
rep_vt, 27
rep_vt (rep_vt-class), 27
rep_vt-class, 27
rowMeans, 3
rowMeans,matter_mat-method

(summary-stats), 33
rowSds (summary-stats), 33
rowSds,matter_mat-method

(summary-stats), 33
rowSums,matter_mat-method

(summary-stats), 33
rowVars (summary-stats), 33
rowVars,matter_mat-method

(summary-stats), 33

scale, 28, 28
scale,matter_mat-method (scale), 28
scale.matter (scale), 28
sd (summary-stats), 33
sd,matter-method (summary-stats), 33
sizeof (matter-utils), 12
sparse_mat, 2, 7, 10, 30, 35
sparse_mat (sparse_mat-class), 29
sparse_mat-class, 29
sparse_matc (sparse_mat-class), 29
sparse_matc-class (sparse_mat-class), 29
sparse_matr (sparse_mat-class), 29
sparse_matr-class (sparse_mat-class), 29
struct, 32
sum,matter-method (summary-stats), 33
Summary (summary-stats), 33
summary-stats, 33

t,matter_matc-method
(matter_mat-class), 19

t,matter_matr-method
(matter_mat-class), 19

t,matter_vec-method (matter_vec-class),
23

t,sparse_matc-method
(sparse_mat-class), 29

46 INDEX

t,sparse_matr-method
(sparse_mat-class), 29

t,virtual_mat-method
(virtual_mat-class), 36

t.matter (matter_mat-class), 19
tail,matter_tbl-method

(matter_df-class), 14
tcrossprod,ANY,matter-method

(matter_mat-class), 19
tcrossprod,matter,ANY-method

(matter_mat-class), 19
tempfile, 12, 16, 17, 19, 21, 23
tolerance, 35
tolerance,sparse_mat-method

(sparse_mat-class), 29
tolerance<- (tolerance), 35
tolerance<-,sparse_mat-method

(sparse_mat-class), 29

uuid, 35

var (summary-stats), 33
var,matter-method (summary-stats), 33
virtual_mat, 2, 37
virtual_mat (virtual_mat-class), 36
virtual_mat-class, 36
virtual_matc (virtual_mat-class), 36
virtual_matc-class (virtual_mat-class),

36
virtual_matr (virtual_mat-class), 36
virtual_matr-class (virtual_mat-class),

36
vm_used (matter-utils), 12

which,matter-method (matter-class), 10
widest_datamode (matter-utils), 12

	apply
	biglm
	bsearch
	checksum
	combiner
	delayed-ops
	drle-class
	keys
	matter-class
	matter-utils
	matter_arr-class
	matter_df-class
	matter_fc-class
	matter_list-class
	matter_mat-class
	matter_str-class
	matter_vec-class
	prcomp
	profmem
	rep_vt-class
	scale
	sparse_mat-class
	struct
	summary-stats
	tolerance
	uuid
	virtual_mat-class
	Index

