Package 'NetSAM'

April 16, 2019

Type Package

Title Network Seriation And Modularization

Version 1.22.0

Date 2014-01-23

Author Jing Wang <jing.wang.2@vanderbilt.edu>

Maintainer Bing Zhang

bing.zhang@vanderbilt.edu>

Description The NetSAM (Network Seriation and Modularization) package takes an edge-list representation of a network as an input, performs network seriation and modularization analysis, and generates as files that can be used as an input for the one-dimensional network visualization tool NetGestalt (http://www.netgestalt.org) or other network analysis.

License LGPL

LazyLoad yes

Depends R (>= 2.15.1), methods, igraph (>= 0.6-1), seriation (>= 1.0-6), graph (>= 1.34.0)

Imports methods

Suggests RUnit, BiocGenerics

Collate zzz.R NetSAM.R

biocViews Visualization, Network

git_url https://git.bioconductor.org/packages/NetSAM

git_branch RELEASE_3_8

git_last_commit 2a8f3cb

git_last_commit_date 2018-10-30

Date/Publication 2019-04-15

R topics documented:

NetSAM-package	2
inputNetwork	2
NetSAM	3

5

Index

```
NetSAM-package
```

Description

The NetSAM (Network Seriation and Modularization) package takes an edge-list representation of a network as an input, performs network seriation and modularization analysis, and generates as files that can be used as an input for the one-dimensional network visualization tool NetGestalt (http://www.netgestalt.org) or other network analysis.

Details

Package:	NetSAM
Type:	Package
Version:	1.3.0
Date:	2014-01-23
License:	LGPL
LazyLoad:	yes

Author(s)

Jing Wang Maintainer: Bing Zhang

Shang @Vanderbilt.edu>

References

NetGestalt: integrating multidimensional omics data over biological networks. Nature Methods 10, 597-598 (2013).

See Also

NetSAM

inputNetwork A network example with graphNEL class

Description

The network is a sub-network of HPRD (Human Protein Reference Database) network with 320 nodes and 769 edges, which is an example to show how to input network with graphNEL class into the package.

Usage

data(inputNetwork)

NetSAM

Format

graphNEL

NetSAM

Network Seriation and Modularization

Description

The NetSAM function uses random walk distance-based hierarchical clustering to identify the hierarchical modules of the network and then uses the optimal leaf ordering (OLO) method to optimize the one-dimensional ordering of the genes in each module by minimizing the sum of the pair-wise random walk distance of adjacent genes in the ordering.

Usage

NetSAM(inputNetwork, outputFileName, minModule = (-1), maxStep = 4, method = "Modularity Cutoff",

Arguments

inputNetwork	The network under analysis. inputNetwork can be the name of the input net- work file in the edge-list format (each row represents an edge with two node names separated by a tab or space) or be a data object in R (data object must be graphNEL class or data.frame (or matrix) class with two columns).
outputFileName	The name of the output file. If no file path is provided, the output file will be saved to the current path.
minModule	The minimum number of nodes for a module (or minimum module size). If the size of a module identified by the function is less than the specified number, the module will not be further partitioned into sub-modules. The default is -1 which means NetSAM will set minModule as 5 or 0.3 percent of the number of nodes in the input network, whichever is larger.
maxStep	Because NetSAM uses random walk distance-based hierarchical clustering to reveal the hierarchical organization of an input network, it requires a specified length of the random walks. To get the optimal length, the function will test a range of lengths ranging from 2 to maxStep. The default is 4.
method	To test whether a network under consideration has a non-random internal modu- lar organization, the function provides three options: "Modularity Cutoff", "ZS- core" and "Permutation". "Modularity Cutoff" means if the modularity score of the network is above a specified cutoff value, the network will be consid- ered to have internal organization and will be further partitioned. For "ZScore" and "Permutation", the function first uses the edge switching method to gener- ate a given number of random networks with the same number of nodes and an identical degree sequence and calculates the modularity scores for these random networks. Then, "ZScore" method will transform the real modularity score to a z score based on the random modularity scores and then transform the z score to a p value assuming a standard normal distribution. The "Permutation" method will compare the real modularity score with the random ones to calculate a p value. Finally, under a specified significance level, the function determines whether the network can be further partitioned. The default is "Modularity Cutoff".
ModularityThr	Threshold of modularity score for the "Modularity Cutoff" method. The default is 0.2

NetSAM

ZRandomNum	The number of random networks that will be generated for the "ZScore" calculation. The default is 10.
permuteNum	The number of random networks that will be generated for the "Permutation" p value calculation. The default is 100.
pThr	The significance level for determining whether a network has non-random inter- nal modular organization for the "ZScore" or "Permutation" methods.

Note

Because the seriation step requires pair-wise distance between all nodes, NetSAM is memory consuming. We recommend to use the 64 bit version of R to run the NetSAM. For networks with less than 10,000 nodes, we recommend to use a computer with 8GB memory. For networks with more than 10,000 nodes, a computer with at least 16GB memory is recommended.

Author(s)

Jing Wang

Examples

```
cat("The input network can be a file.\n")
inputNetwork <- system.file("extdata","exampleNetwork.txt",package="NetSAM")
cat("The input network can be also a data object, such as graphNEL object.\n")
data(inputNetwork)
outputFileName <- paste(getwd(),"/NetSAM",sep="")
result <- NetSAM(inputNetwork, outputFileName, minModule = (-1), maxStep = 4, method = "Modularity Cutoff", M</pre>
```

Index

*Topic **datasets** inputNetwork, 2 *Topic **methods** NetSAM, 3 *Topic **package** NetSAM-package, 2

inputNetwork, 2

NetSAM, 2, 3 NetSAM-package, 2