
Package ‘DelayedArray’
April 15, 2019

Title Delayed operations on array-like objects

Description Wrapping an array-like object (typically an on-disk object) in
a DelayedArray object allows one to perform common array operations
on it without loading the object in memory. In order to reduce memory
usage and optimize performance, operations on the object are either
delayed or executed using a block processing mechanism. Note that this
also works on in-memory array-like objects like DataFrame objects
(typically with Rle columns), Matrix objects, and ordinary arrays and
data frames.

Version 0.8.0

Encoding UTF-8

Author Hervé Pagès <hpages@fredhutch.org>, with contributions from
Peter Hickey <peter.hickey@gmail.com>

Maintainer Hervé Pagès <hpages@fredhutch.org>

biocViews Infrastructure, DataRepresentation, Annotation,
GenomeAnnotation

Depends R (>= 3.4), methods, stats4, matrixStats, BiocGenerics (>=
0.27.1), S4Vectors (>= 0.19.15), IRanges (>= 2.11.17),
BiocParallel

Imports stats

LinkingTo S4Vectors

Suggests Matrix, HDF5Array, genefilter, SummarizedExperiment, airway,
pryr, DelayedMatrixStats, knitr, BiocStyle, RUnit

License Artistic-2.0

VignetteBuilder knitr

Collate utils.R compress_atomic_vector.R Nindex-utils.R aperm2.R
linearInd.R bind-arrays.R Array-class.R extract_array.R
ArrayGrid-class.R show-utils.R SparseArraySeed-class.R
read_block.R mapToGrid.R makeCappedVolumeBox.R blockGrid.R
DelayedOp-class.R showtree.R DelayedArray-class.R chunkGrid.R
block_processing.R RealizationSink-class.R realize.R
DelayedArray-subsetting.R DelayedArray-utils.R
DelayedMatrix-utils.R DelayedArray-stats.R
DelayedMatrix-stats.R RleArray-class.R zzz.R

git_url https://git.bioconductor.org/packages/DelayedArray

git_branch RELEASE_3_8

1

2 ArrayGrid-class

git_last_commit 7c23cf4

git_last_commit_date 2018-10-30

Date/Publication 2019-04-15

R topics documented:
ArrayGrid-class . 2
bind-arrays . 6
blockGrid . 6
block_processing . 10
DelayedArray-class . 12
DelayedArray-stats . 17
DelayedArray-utils . 19
DelayedMatrix-stats . 22
DelayedOp-class . 24
linearInd . 26
makeCappedVolumeBox . 27
read_block . 29
RealizationSink . 31
realize . 34
RleArray-class . 35
showtree . 37
SparseArraySeed-class . 40

Index 43

ArrayGrid-class ArrayGrid and ArrayViewport objects

Description

ArrayGrid and ArrayViewport objects are used internally to support block processing of array-like
objects.

Usage

Constructor functions:
ArbitraryArrayGrid(tickmarks)
RegularArrayGrid(refdim, spacings=refdim)

downsample(x, ratio=1L)

Arguments

tickmarks A list of integer vectors, one along each dimension of the reference array, repre-
senting the tickmarks along that dimension. Each integer vector must be sorted
in ascending order. NAs or negative values are not allowed.

refdim An integer vector containing the dimensions of the reference array.

spacings An integer vector specifying the grid spacing along each dimension.

x An ArrayGrid object.

ArrayGrid-class 3

ratio An integer vector specifying the ratio of the downsampling along each dimen-
sion. Can be of length 1, in which case the same ratio is used along all the
dimensions.

Value

• For ArbitraryArrayGrid(): An ArbitraryArrayGrid instance.

• For RegularArrayGrid(): A RegularArrayGrid instance.

• For downsample(): An ArrayGrid object on the same reference array than x.

See Also

• read_block.

• block_processing for more information about block processing of an array-like object.

• mapToGrid for mapping reference array positions to grid positions and vice-versa.

• chunkGrid.

• DelayedArray objects.

• array objects in base R.

Examples

A. ArrayGrid OBJECTS

Create a regularly-spaced grid on top of a 3700 x 100 x 33 array:
grid1 <- RegularArrayGrid(c(3700, 100, 33), c(250, 100, 10))

Dimensions of the reference array:
refdim(grid1)

Number of grid elements along each dimension of the reference array:
dim(grid1)

Total number of grid elements:
length(grid1)

First element in the grid:
grid1[[1L]] # same as grid1[[1L, 1L, 1L]]

Last element in the grid:
grid1[[length(grid1)]] # same as grid1[[15L, 1L, 4L]]

Dimensions of the grid elements:
dims(grid1) # one row per grid element

Lengths of the grid elements:
lengths(grid1) # same as rowProds(dims(grid1))
stopifnot(sum(lengths(grid1)) == prod(refdim(grid1)))

maxlength(grid1) # does not need to compute lengths(grid1)) first
so is more efficient than max(lengths(grid1))

stopifnot(maxlength(grid1) == max(lengths(grid1)))

4 ArrayGrid-class

Create an arbitrary-spaced grid on top of a 15 x 9 matrix:
grid2 <- ArbitraryArrayGrid(list(c(2L, 7:10, 13L, 15L), c(5:6, 6L, 9L)))

refdim(grid2)
dim(grid2)
length(grid2)
grid2[[1L]] # same as grid2[[1L, 1L]]
grid2[[length(grid2)]] # same as grid2[[15L, 9L]]

dims(grid2)
lengths(grid2)
array(lengths(grid2), dim(grid2)) # display the grid element lengths in

an array of same shape as grid2

stopifnot(sum(lengths(grid2)) == prod(refdim(grid2)))

maxlength(grid2) # does not need to compute lengths(grid2)) first
so is more efficient than max(lengths(grid2))

stopifnot(maxlength(grid2) == max(lengths(grid2)))

Max (i.e. highest) resolution grid:
Hgrid <- RegularArrayGrid(6:4, c(1, 1, 1))
Hgrid
dim(Hgrid) # same as refdim(Hgrid)
stopifnot(identical(dim(Hgrid), refdim(Hgrid)))
stopifnot(all(lengths(Hgrid) == 1))

Min (i.e. lowest) resolution grid:
Lgrid <- RegularArrayGrid(6:4, 6:4)
Lgrid
stopifnot(all(dim(Lgrid) == 1))
stopifnot(identical(dim(Lgrid[[1L]]), refdim(Lgrid)))
stopifnot(identical(dims(Lgrid), matrix(refdim(Lgrid), nrow=1)))

B. ArrayViewport OBJECTS

Grid elements are ArrayViewport objects:
grid1[[1L]]
class(grid1[[1L]])
grid1[[2L]]
grid1[[2L, 1L, 1L]]
grid1[[15L, 1L, 4L]]

Construction of a standalong ArrayViewport object:
m0 <- matrix(1:30, ncol=5)
block_dim <- c(4, 3)
viewport1 <- ArrayViewport(dim(m0), IRanges(c(3, 2), width=block_dim))
viewport1

dim(viewport1) # 'block_dim'
length(viewport1) # number of array elements in the viewport
ranges(viewport1)

C. GRIDS CAN BE TRANSPOSED

ArrayGrid-class 5

tgrid2 <- t(grid2)
dim(tgrid2)
refdim(tgrid2)

Use aperm() if the grid has more than 2 dimensions:
tgrid1 <- aperm(grid1)
dim(tgrid1)
refdim(tgrid1)

aperm(grid1, c(3, 1, 2))
aperm(grid1, c(1, 3, 2))
aperm(grid1, c(3, 1)) # some dimensions can be dropped
aperm(grid1, c(3, 2, 3)) # and some can be repeated

D. DOWNSAMPLING AN ArrayGrid OBJECT

The elements (ArrayViewport) of an ArrayGrid object can be replaced
with bigger elements obtained by merging adjacent elements. How many
adjacent elements to merge along each dimension is specified via the
'ratio' vector (one integer per dimension). We call this operation
"downsampling. It can be seen as reducing the "resolution" of a grid
by the specified ratio (if we think of the grid elements as pixels).
downsample(grid2, 2)
downsample(grid2, 3)
downsample(grid2, 4)

Downsampling preserves the dimensions of the reference array:
stopifnot(identical(refdim(downsample(grid2, 2)), refdim(grid2)))
stopifnot(identical(refdim(downsample(grid2, 3)), refdim(grid2)))
stopifnot(identical(refdim(downsample(grid2, 4)), refdim(grid2)))

A big enough ratio will eventually produce the coarsest possible grid
i.e. a grid with a single grid element covering the entire reference
array:
grid3 <- downsample(grid2, 7)
length(grid3)
grid3[[1L]]
stopifnot(identical(dim(grid3[[1L]]), refdim(grid3)))

Downsampling by a ratio of 1 is a no-op:
stopifnot(identical(downsample(grid2, 1), grid2))

Using one ratio per dimension:
downsample(grid2, c(2, 1))

Downsample a max resolution grid:
refdim <- c(45, 16, 20)
grid4 <- RegularArrayGrid(refdim, c(1, 1, 1))
ratio <- c(6, 1, 3)
stopifnot(identical(

downsample(grid4, ratio),
RegularArrayGrid(refdim, ratio)

))

6 blockGrid

bind-arrays Bind arrays along their rows or columns

Description

Bind array-like objects with an arbitrary number of dimensions along their rows (arbind) or columns
(acbind).

Usage

arbind(...)
acbind(...)

Arguments

... The array-like objects to bind.

Value

An array-like object, typically of the same class as the input objects if they all have the same class.

See Also

• DelayedArray in this package for arbind/acbind’ing DelayedArray objects.

• rbind and cbind in the base package for the corresponding operations on matrix-like objects.

• The abind package on CRAN.

Examples

a1 <- array(1:60, c(3, 5, 4),
dimnames=list(NULL, paste0("M1y", 1:5), NULL))

a2 <- array(101:240, c(7, 5, 4),
dimnames=list(paste0("M2x", 1:7), paste0("M2y", 1:5), NULL))

a3 <- array(10001:10100, c(5, 5, 4),
dimnames=list(paste0("M3x", 1:5), NULL, paste0("M3z", 1:4)))

arbind(a1, a2, a3)

blockGrid Define grids to use in the context of block processing

Description

blockGrid() is the primary utility function to use to define a grid that is suitable for block process-
ing of an array-like object.

rowGrid() and colGrid() are additional functions, specific to the 2-dimensional case. They can
be used to define blocks of full rows or full columns.

A family of utilities is provided to control the automatic block size (or length) and shape.

blockGrid 7

Usage

Define grids to use in the context of block processing:

blockGrid(x, block.length=NULL, chunk.grid=NULL, block.shape=NULL)

rowGrid(x, nrow=NULL, block.length=NULL)
colGrid(x, ncol=NULL, block.length=NULL)

Control the automatic block size (or length) and shape:

getAutoBlockSize()
setAutoBlockSize(size=1e8)

getAutoBlockLength(type)

getAutoBlockShape()
setAutoBlockShape(shape=c("hypercube",

"scale",
"first-dim-grows-first",
"last-dim-grows-first"))

Arguments

x An array-like or matrix-like object for blockGrid.
A matrix-like object for rowGrid and colGrid.

block.length The length of the blocks i.e. the number of array elements per block. By de-
fault the automatic block length (returned by getAutoBlockLength(type(x)))
is used. Depending on how much memory is available on your machine, you
might want to increase (or decrease) the automatic block length by adjusting the
automatic block size with setAutoBlockSize().

chunk.grid The grid of physical chunks. By default chunkGrid(x) is used.

block.shape A string specifying the shape of the blocks. See makeCappedVolumeBox for a
description of the supported shapes. By default getAutoBlockShape() is used.

nrow The number of rows of the blocks. The bottommost blocks might have less. See
examples below.

ncol The number of columns of the blocks. The rightmost blocks might have less.
See examples below.

size The automatic block size in bytes. Note that, except when the type of the array
data is "character" or "list", the size of a block is its length multiplied by
the size of an array element. For example, a block of 500x1000x500 doubles
has a length of 250 million elements and a size of 2 Gb (each double occupies 8
bytes of memory).
The automatic block size is set to 100 Mb at package startup and can be reset
anytime to this value by calling setAutoBlockSize() with no argument.

type A string specifying the type of the array data.

shape A string specifying the automatic block shape. See makeCappedVolumeBox for
a description of the supported shapes.
The automatic block shape is set to "hypercube" at package startup and can be
reset anytime to this value by calling setAutoBlockShape() with no argument.

8 blockGrid

Details

By default, primary block processing functions blockApply() and blockReduce() use the grid
returned by blockGrid(x) to process array-like object x block by block. This can be changed with
setAutoGridMaker(). See ?setAutoGridMaker for more information.

Value

blockGrid: An ArrayGrid object on reference array x. The grid elements define the blocks that
will be used to process x by block. The grid is optimal in the sense that:

1. It’s compatible with the grid of physical chunks a.k.a. chunk grid. This means that, when
the chunk grid is known (i.e. when chunkGrid(x) is not NULL or chunk.grid is supplied),
every block in the grid contains one or more full chunks. In other words, chunks never cross
block boundaries.

2. Its resolution is such that the blocks have a length that is as close as possibe to (but does not
exceed) block.length. An exception is made when some chunks already have a length that
is >= block.length, in which case the returned grid is the same as the chunk grid.

Note that the returned grid is regular (i.e. is a RegularArrayGrid object) unless the chunk grid is not
regular (i.e. is an ArbitraryArrayGrid object).

rowGrid: A RegularArrayGrid object on reference array x where the grid elements define blocks
made of full rows of x.

colGrid: A RegularArrayGrid object on reference array x where the grid elements define blocks
made of full columns of x.

getAutoBlockSize: The current automatic block size in bytes as a single numeric value.

setAutoBlockSize: The new automatic block size in bytes as an invisible single numeric value.

getAutoBlockLength: The automatic block length as a single integer value.

getAutoBlockShape: The current automatic block shape as a single string.

setAutoBlockShape: The new automatic block shape as an invisible single string.

See Also

• blockApply and family to process an array-like object block by block.

• ArrayGrid objects.

• The makeCappedVolumeBox utility to make capped volume boxes.

• chunkGrid.

• Advanced users: RealizationSink objects for writing an array-like object block by block to
disk (or to memory).

Examples

A VERSION OF sum() THAT USES BLOCK PROCESSING

block_sum <- function(a, grid)
{

sums <- lapply(grid, function(viewport) sum(read_block(a, viewport)))
sum(unlist(sums))

}

blockGrid 9

On an ordinary matrix:
m <- matrix(runif(600), ncol=12)
m_grid <- blockGrid(m, block.length=120)
sum1 <- block_sum(m, m_grid)
sum1

On a DelayedArray object:
library(HDF5Array)
M <- as(m, "HDF5Array")
sum2 <- block_sum(M, m_grid)
sum2

sum3 <- block_sum(M, colGrid(M, block.length=120))
sum3

sum4 <- block_sum(M, rowGrid(M, block.length=80))
sum4

Sanity checks:
sum0 <- sum(m)
stopifnot(identical(sum1, sum0))
stopifnot(identical(sum2, sum0))
stopifnot(identical(sum3, sum0))
stopifnot(identical(sum4, sum0))

blockGrid()

grid <- blockGrid(m, block.length=120)
grid
as.list(grid) # turn the grid into a list of ArrayViewport objects
table(lengths(grid))
stopifnot(maxlength(grid) <= 120)

grid <- blockGrid(m, block.length=120,
block.shape="first-dim-grows-first")

grid
table(lengths(grid))
stopifnot(maxlength(grid) <= 120)

grid <- blockGrid(m, block.length=120,
block.shape="last-dim-grows-first")

grid
table(lengths(grid))
stopifnot(maxlength(grid) <= 120)

blockGrid(m, block.length=100)
blockGrid(m, block.length=75)
blockGrid(m, block.length=25)
blockGrid(m, block.length=20)
blockGrid(m, block.length=10)

rowGrid() AND colGrid()

rowGrid(m, nrow=10) # 5 blocks of 10 rows each

10 block_processing

rowGrid(m, nrow=15) # 3 blocks of 15 rows each plus 1 block of 5 rows
colGrid(m, ncol=5) # 2 blocks of 5 cols each plus 1 block of 2 cols

See ?RealizationSink for an advanced example of user-implemented
block processing using colGrid() and a realization sink.

CONTROL THE DEFAULT BLOCK SIZE (OR LENGTH) AND SHAPE

getAutoBlockSize()

getAutoBlockLength("double")
getAutoBlockLength("integer")
getAutoBlockLength("logical")
getAutoBlockLength("raw")

setAutoBlockSize(140)
getAutoBlockLength(type(m))
blockGrid(m)
lengths(blockGrid(m))
dims(blockGrid(m))

getAutoBlockShape()
setAutoBlockShape("scale")
blockGrid(m)
lengths(blockGrid(m))
dims(blockGrid(m))

Reset automatic block size and shape to factory settings:
setAutoBlockSize()
setAutoBlockShape()

block_processing Block processing of an array-like object

Description

A set of utilities for processing an array-like object block by block.

Usage

blockApply(x, FUN, ..., grid=NULL, BPPARAM=getAutoBPPARAM())
blockReduce(FUN, x, init, BREAKIF=NULL, grid=NULL)

effectiveGrid(block)
currentBlockId(block)
currentViewport(block)

getAutoGridMaker()
setAutoGridMaker(GRIDMAKER="blockGrid")
getAutoBPPARAM()
setAutoBPPARAM(BPPARAM=NULL)

block_processing 11

Arguments

x An array-like object.

FUN Coming soon...

... Coming soon...

grid Coming soon...

BPPARAM Coming soon...

init Coming soon...

BREAKIF Coming soon...

block Coming soon...

GRIDMAKER The function to use as automatic grid maker, that is, the function that will be used
by blockApply() and blockReduce() to make a grid when no grid is supplied
via their grid argument. The function will be called on array-like object x and
must return an ArrayGrid object, say grid, that is compatible with x i.e. such
that refdim(grid) is identical to dim(x).
GRIDMAKER can be specified as a function or as a single string naming a function.
It can be a user-defined function or a pre-defined grid maker like blockGrid,
rowGrid, or colGrid.
The automatic grid maker is set to blockGrid at package startup and can be
reset anytime to this value by calling setAutoGridMaker() with no argument.

Details

Coming soon...

See Also

• blockGrid to define grids to use in the context of block processing of array-like objects.

• MulticoreParam, SnowParam, and bpparam, from the BiocParallel package.

• read_block.

• DelayedArray objects.

• Advanced users: RealizationSink objects for writing an array-like object block by block to
disk (or to memory).

Examples

blockApply()

Coming soon...

blockReduce()

Coming soon...

CONTROL THE DEFAULT GRID MAKER

12 DelayedArray-class

getAutoGridMaker()
setAutoGridMaker(function(x) colGrid(x, ncol=5))
getAutoGridMaker()

m <- matrix(runif(600), ncol=12)
blockApply(m, currentViewport)

Reset automatic grid maker to factory settings:
setAutoGridMaker()

DelayedArray-class DelayedArray objects

Description

Wrapping an array-like object (typically an on-disk object) in a DelayedArray object allows one to
perform common array operations on it without loading the object in memory. In order to reduce
memory usage and optimize performance, operations on the object are either delayed or executed
using a block processing mechanism.

Usage

DelayedArray(seed) # constructor function
seed(x) # seed getter
nseed(x) # seed counter
path(object, ...) # path getter
type(x)

Arguments

seed An array-like object.

x, object A DelayedArray object. For type(), x can also be any array-like object, that is,
any object for which dim(x) is not NULL.

... Additional arguments passed to methods.

In-memory versus on-disk realization

To realize a DelayedArray object (i.e. to trigger execution of the delayed operations carried by
the object and return the result as an ordinary array), call as.array on it. However this realizes
the full object at once in memory which could require too much memory if the object is big. A
big DelayedArray object is preferrably realized on disk e.g. by calling writeHDF5Array on it
(this function is defined in the HDF5Array package) or coercing it to an HDF5Array object with
as(x, "HDF5Array"). Other on-disk backends can be supported. This uses a block processing
strategy so that the full object is not realized at once in memory. Instead the object is processed
block by block i.e. the blocks are realized in memory and written to disk one at a time. See
?writeHDF5Array in the HDF5Array package for more information about this.

DelayedArray-class 13

Accessors

DelayedArray objects support the same set of getters as ordinary arrays i.e. dim(), length(), and
dimnames(). In addition, they support seed(), nseed(), path(), and type().

type() is the DelayedArray equivalent of typeof() (or storage.mode()) for ordinary arrays and
vectors. Note that, for convenience and consistency, type() also supports ordinary arrays and
vectors. It also supports any array-like object, that is, any object x for which dim(x) is not NULL.

dimnames(), seed(), and path() also work as setters.

Subsetting

A DelayedArray object can be subsetted with [like an ordinary array, but with the following dif-
ferences:

• Multi-dimensional single bracket subsetting (i.e. subsetting of the form x[i_1, i_2, ..., i_n]
with one (possibly missing) subscript per dimension) returns a DelayedArray object where the
subsetting is actually delayed. So it’s a very light operation. One notable exception to this is
when drop=TRUE and the result has only one dimension, in which case it is returned as an
ordinary vector (atomic or list). Note that NAs in the subscripts are not supported.

• Linear single bracket subsetting (a.k.a. 1D-style subsetting, that is, subsetting of the form
x[i]) only works if the subscript i is a numeric vector at the moment. Furthermore, i cannot
contain NAs and all the indices in it must be >= 1 and <= length(x) for now. It returns an
atomic vector of the same length as i. This is NOT a delayed operation (block processing is
triggered).

Subsetting with [[is supported but only the linear form of it at the moment i.e. the x[[i]] form
where i is a single numeric value >= 1 and <= length(x). It is equivalent to x[i][[1]].

Subassignment to a DelayedArray object with [<- is also supported like with an ordinary array, but
with the following restrictions:

• Multi-dimensional subassignment (i.e. subassignment of the form x[i_1, i_2, ..., i_n] <- value
with one (possibly missing) subscript per dimension) only accepts a replacement value (a.k.a.
right value) that is an array-like object (e.g. ordinary array, dgCMatrix object, DelayedArray
object, etc...) or an ordinary vector (atomic or list) of length 1.

• Linear subassignment (a.k.a. 1D-style subassignment, that is, subassignment of the form
x[i] <- value) only works if the subscript i is a logical DelayedArray object of the same
dimensions as x and if the replacement value is an ordinary vector (atomic or list) of length 1.

• Filling with a vector, that is, subassignment of the form x[] <- v where v is an ordinary
vector (atomic or list), is only supported if the length of the vector is a divisor of nrow(x).

These 3 forms of subassignment are implemented as delayed operations so are very light.

Single value replacement (x[[...]] <- value) is not supported yet.

See Also

• realize for realizing a DelayedArray object in memory or on disk.

• block_processing for more information about block processing of an array-like object.

• DelayedArray-utils for common operations on DelayedArray objects.

• DelayedArray-stats for statistical functions on DelayedArray objects.

• DelayedMatrix-stats for DelayedMatrix row/col summarization.

• RleArray objects.

14 DelayedArray-class

• HDF5Array objects in the HDF5Array package.

• DataFrame objects in the S4Vectors package.

• array objects in base R.

Examples

A. WRAP AN ORDINARY ARRAY IN A DelayedArray OBJECT

a <- array(runif(1500000), dim=c(10000, 30, 5))
A <- DelayedArray(a)
A
The seed of a DelayedArray object is **always** treated as a
"read-only" object so will never be modified by the operations
we perform on A:
stopifnot(identical(a, seed(A)))
type(A)

Multi-dimensional single bracket subsetting:
m <- a[11:20 , 5, -3] # an ordinary matrix
M <- A[11:20 , 5, -3] # a DelayedMatrix object
stopifnot(identical(m, as.array(M)))

Linear single bracket subsetting:
A[11:20]
A[A <= 1e-5]
stopifnot(identical(a[a <= 1e-5], A[A <= 1e-5]))

Subassignment:
A[A < 0.2] <- NA
a[a < 0.2] <- NA
stopifnot(identical(a, as.array(A)))

A[2:5, 1:2,] <- array(1:40, c(4, 2, 5))
a[2:5, 1:2,] <- array(1:40, c(4, 2, 5))
stopifnot(identical(a, as.array(A)))

Other operations:
crazy <- function(x) (5 * x[, , 1] ^ 3 + 1L) * log(x[, , 2])
b <- crazy(a)
head(b)

B <- crazy(A) # very fast! (all operations are delayed)
B

cs <- colSums(b)
CS <- colSums(B)
stopifnot(identical(cs, CS))

B. WRAP A DataFrame OBJECT IN A DelayedArray OBJECT

Generate random coverage and score along an imaginary chromosome:
cov <- Rle(sample(20, 5000, replace=TRUE), sample(6, 5000, replace=TRUE))
score <- Rle(sample(100, nrun(cov), replace=TRUE), runLength(cov))

DelayedArray-class 15

DF <- DataFrame(cov, score)
A2 <- DelayedArray(DF)
A2
seed(A2) # 'DF'

Coercion of a DelayedMatrix object to DataFrame produces a DataFrame
object with Rle columns:
as(A2, "DataFrame")
stopifnot(identical(DF, as(A2, "DataFrame")))

t(A2) # transposition is delayed so is very fast and memory-efficient
colSums(A2)

C. AN HDF5Array OBJECT IS A (PARTICULAR KIND OF) DelayedArray OBJECT

library(HDF5Array)
A3 <- as(a, "HDF5Array") # write 'a' to an HDF5 file
A3
is(A3, "DelayedArray") # TRUE
seed(A3) # an HDF5ArraySeed object

B3 <- crazy(A3) # very fast! (all operations are delayed)
B3 # not an HDF5Array object anymore because

now it carries delayed operations
CS3 <- colSums(B3)
stopifnot(identical(cs, CS3))

D. PERFORM THE DELAYED OPERATIONS

as(B3, "HDF5Array") # "realize" 'B3' on disk

If this is just an intermediate result, you can either keep going
with B3 or replace it with its "realized" version:
B3 <- as(B3, "HDF5Array") # no more delayed operations on new 'B3'
seed(B3)
path(B3)

For convenience, realize() can be used instead of explicit coercion.
The current "realization backend" controls where realization
happens e.g. in memory if set to NULL or in an HDF5 file if set
to "HDF5Array":
D <- cbind(B3, exp(B3))
D
setRealizationBackend("HDF5Array")
D <- realize(D)
D
See '?realize' for more information about "realization backends".

E. MODIFY THE PATH OF A DelayedArray OBJECT

This can be useful if the file containing the array data is on a
shared partition but the exact path to the partition depends on the
machine from which the data is being accessed.
For example:

16 DelayedArray-class

Not run:
library(HDF5Array)
A <- HDF5Array("/path/to/lab_data/my_precious_data.h5")
path(A)

Operate on A...
Now A carries delayed operations.
Make sure path(A) still works:
path(A)

Save A:
save(A, file="A.rda")

A.rda should be small (it doesn't contain the array data).
Send it to a co-worker that has access to my_precious_data.h5.

Co-worker loads it:
load("A.rda")
path(A)

A is broken because path(A) is incorrect for co-worker:
A # error!

Co-worker fixes the path (in this case this is better done using the
dirname() setter rather than the path() setter):
dirname(A) <- "E:/other/path/to/lab_data"

A "works" again:
A

End(Not run)

F. WRAP A SPARSE MATRIX IN A DelayedArray OBJECT

Not run:
library(Matrix)
M <- 75000L
N <- 1800L
p <- sparseMatrix(sample(M, 9000000, replace=TRUE),

sample(N, 9000000, replace=TRUE),
x=runif(9000000), dims=c(M, N))

P <- DelayedArray(p)
P
p2 <- as(P, "sparseMatrix")
stopifnot(identical(p, p2))

The following is based on the following post by Murat Tasan on the
R-help mailing list:
https://stat.ethz.ch/pipermail/r-help/2017-May/446702.html

As pointed out by Murat, the straight-forward row normalization
directly on sparse matrix 'p' would consume too much memory:
row_normalized_p <- p / rowSums(p^2) # consumes too much memory
because the rowSums() result is being recycled (appropriately) into a
dense matrix with dimensions equal to dim(p).

DelayedArray-stats 17

Murat came up with the following solution that is very fast and
memory-efficient:
row_normalized_p1 <- Diagonal(x=1/sqrt(Matrix::rowSums(p^2)))

With a DelayedArray object, the straight-forward approach uses a
block processing strategy behind the scene so it doesn't consume
too much memory.

First, let's see the block processing in action:
DelayedArray:::set_verbose_block_processing(TRUE)
and check the automatic block size:
getAutoBlockSize()

row_normalized_P <- P / sqrt(DelayedArray::rowSums(P^2))

Increasing the block size increases the speed but also memory usage:
setAutoBlockSize(2e8)
row_normalized_P2 <- P / sqrt(DelayedArray::rowSums(P^2))
stopifnot(all.equal(row_normalized_P, row_normalized_P2))

Back to sparse representation:
DelayedArray:::set_verbose_block_processing(FALSE)
row_normalized_p2 <- as(row_normalized_P, "sparseMatrix")
stopifnot(all.equal(row_normalized_p1, row_normalized_p2))

setAutoBlockSize()

End(Not run)

DelayedArray-stats Statistical functions on DelayedArray objects

Description

Statistical functions on DelayedArray objects.

All these functions are implemented as delayed operations.

Usage

--- The Normal Distribution -----

S4 method for signature 'DelayedArray'
dnorm(x, mean=0, sd=1, log=FALSE)
S4 method for signature 'DelayedArray'
pnorm(q, mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
S4 method for signature 'DelayedArray'
qnorm(p, mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)

--- The Binomial Distribution ---

S4 method for signature 'DelayedArray'
dbinom(x, size, prob, log=FALSE)

18 DelayedArray-stats

S4 method for signature 'DelayedArray'
pbinom(q, size, prob, lower.tail=TRUE, log.p=FALSE)
S4 method for signature 'DelayedArray'
qbinom(p, size, prob, lower.tail=TRUE, log.p=FALSE)

--- The Poisson Distribution ----

S4 method for signature 'DelayedArray'
dpois(x, lambda, log=FALSE)
S4 method for signature 'DelayedArray'
ppois(q, lambda, lower.tail=TRUE, log.p=FALSE)
S4 method for signature 'DelayedArray'
qpois(p, lambda, lower.tail=TRUE, log.p=FALSE)

--- The Logistic Distribution ---

S4 method for signature 'DelayedArray'
dlogis(x, location=0, scale=1, log=FALSE)
S4 method for signature 'DelayedArray'
plogis(q, location=0, scale=1, lower.tail=TRUE, log.p=FALSE)
S4 method for signature 'DelayedArray'
qlogis(p, location=0, scale=1, lower.tail=TRUE, log.p=FALSE)

Arguments

x, q, p A DelayedArray object.
mean, sd, log, lower.tail, log.p, size, prob, lambda, location, scale

See ?stats::dnorm, ?stats::dbinom, ?stats::dpois, and ?stats::dlogis,
for a description of these arguments.

See Also

• dnorm, dbinom, dpois, and dlogis in the stats package for the corresponding operations on
ordinary arrays or matrices.

• DelayedMatrix-stats for DelayedMatrix row/col summarization.

• DelayedArray objects.

• HDF5Array objects in the HDF5Array package.

• array objects in base R.

Examples

a <- array(4 * runif(1500000), dim=c(10000, 30, 5))
A <- DelayedArray(a)
A

A2 <- dnorm(A + 1)[, , -3] # very fast! (operations are delayed)
A2

a2 <- as.array(A2) # "realize" 'A2' in memory (as an ordinary
array)

DelayedArray(a2) == A2 # DelayedArray object of type "logical"
stopifnot(all(DelayedArray(a2) == A2))

DelayedArray-utils 19

library(HDF5Array)
A3 <- as(A2, "HDF5Array") # "realize" 'A2' on disk (as an HDF5Array

object)

A3 == A2 # DelayedArray object of type "logical"
stopifnot(all(A3 == A2))

See '?DelayedArray' for general information about DelayedArray objects
and their "realization".

DelayedArray-utils Common operations on DelayedArray objects

Description

Common operations on DelayedArray objects.

Details

The operations currently supported on DelayedArray objects are:

Delayed operations:

• rbind and cbind

• all the members of the Ops, Math, and Math2 groups

• sweep

• !

• is.na, is.finite, is.infinite, is.nan

• lengths

• nchar, tolower, toupper, grepl, sub, gsub

• pmax2 and pmin2

• t

• statistical functions like dnorm, dbinom, dpois, and dlogis (for the Normal, Binomial, Pois-
son, and Logistic distribution, respectively) and related functions (documented in DelayedArray-
stats)

Block-processed operations:

• anyNA, which

• unique, table

• all the members of the Summary group

• mean

• apply

• matrix multiplication (%*%) of an ordinary matrix by a DelayedMatrix object

• matrix row/col summarization (see ?`DelayedMatrix-stats`)

20 DelayedArray-utils

See Also

• cbind in the base package for rbind/cbind’ing ordinary arrays.

• arbind and acbind in this package (DelayedArray) for binding ordinary arrays of arbitrary
dimensions along their rows or columns.

• is.na, !, table, mean, apply, and %*% in the base package for the corresponding operations
on ordinary arrays or matrices.

• DelayedArray-stats for statistical functions on DelayedArray objects.

• DelayedMatrix-stats for DelayedMatrix row/col summarization.

• setRealizationBackend for how to set a realization backend.

• writeHDF5Array in the HDF5Array package for writing an array-like object to an HDF5 file
and other low-level utilities to control the location of automatically created HDF5 datasets.

• DelayedArray objects.

• HDF5Array objects in the HDF5Array package.

• S4groupGeneric in the methods package for the members of the Ops, Math, and Math2
groups.

• array objects in base R.

Examples

BIND DelayedArray OBJECTS

DelayedArray objects can be bound along their 1st (rows) or 2nd
(columns) dimension with rbind() or cbind(). These operations are
equivalent to arbind() and acbind(), respectively, and are all
delayed.

On 2D objects:
library(HDF5Array)
toy_h5 <- system.file("extdata", "toy.h5", package="HDF5Array")
h5ls(toy_h5)

M1 <- HDF5Array(toy_h5, "M1")
M2 <- HDF5Array(toy_h5, "M2")

M12 <- rbind(M1, t(M2)) # delayed
M12
colMeans(M12) # block-processed

On objects with more than 2 dimensions:
example(arbind) # to create arrays a1, a2, a3

A1 <- DelayedArray(a1)
A2 <- DelayedArray(a2)
A3 <- DelayedArray(a3)
A123 <- rbind(A1, A2, A3) # delayed
A123

On 1D objects:
v1 <- array(11:15, 5, dimnames=list(LETTERS[1:5]))
v2 <- array(letters[1:3])
V1 <- DelayedArray(v1)

DelayedArray-utils 21

V2 <- DelayedArray(v2)
V12 <- rbind(V1, V2)
V12

Not run: cbind(V1, V2) # Error! (the objects to cbind() must have at least 2
dimensions)

End(Not run)

Note that base::rbind() and base::cbind() do something completely
different on ordinary arrays that are not matrices. They treat them
as if they were vectors:
rbind(a1, a2, a3)
cbind(a1, a2, a3)
rbind(v1, v2)
cbind(v1, v2)

Also note that DelayedArray objects of arbitrary dimensions can be
stored inside a DataFrame object as long as they all have the same
first dimension (nrow()):
DF <- DataFrame(M=I(tail(M1, n=5)), A=I(A3), V=I(V1))
DF[-3,]
DF2 <- rbind(DF, DF)
DF2$V

Sanity checks:
m1 <- as.matrix(M1)
m2 <- as.matrix(M2)
stopifnot(identical(rbind(m1, t(m2)), as.matrix(M12)))
stopifnot(identical(arbind(a1, a2, a3), as.array(A123)))
stopifnot(identical(arbind(v1, v2), as.array(V12)))
stopifnot(identical(rbind(DFM, DFM), DF2$M))
stopifnot(identical(rbind(DFA, DFA), DF2$A))
stopifnot(identical(rbind(DFV, DFV), DF2$V))

MORE OPERATIONS

M1 >= 0.5 & M1 < 0.75 # delayed
log(M1) # delayed
pmax2(M2, 0) # delayed

table() is block-processed:
a4 <- array(sample(50L, 2000000L, replace=TRUE), c(200, 4, 2500))
A4 <- as(a4, "HDF5Array")
table(A4)
a5 <- array(sample(20L, 2000000L, replace=TRUE), c(200, 4, 2500))
A5 <- as(a5, "HDF5Array")
table(A5)

A4 - 2 * A5 # delayed
table(A4 - 2 * A5) # block-processed

range() is block-processed:
range(A4 - 2 * A5)
range(M1)

22 DelayedMatrix-stats

cmeans <- colMeans(M2) # block-processed
sweep(M2, 2, cmeans) # delayed

MATRIX MULTIPLICATION

Matrix multiplication is not delayed: the output matrix is realized
block by block. The current "realization backend" controls where
realization happens e.g. in memory if set to NULL or in an HDF5 file
if set to "HDF5Array". See '?realize' for more information about
"realization backends".
The output matrix is returned as a DelayedMatrix object with no delayed
operations on it. The exact class of the object depends on the backend
e.g. it will be HDF5Matrix with "HDF5Array" backend.

m <- matrix(runif(50000), ncol=nrow(M1))

Set backend to NULL for in-memory realization:
setRealizationBackend()
P1 <- m %*% M1
P1

Set backend to HDF5Array for realization in HDF5 file:
setRealizationBackend("HDF5Array")

With the HDF5Array backend, the output matrix will be written to an
automatic location on disk:
getHDF5DumpFile() # HDF5 file where the output matrix will be written
lsHDF5DumpFile()

P2 <- m %*% M1
P2

lsHDF5DumpFile()

Use setHDF5DumpFile() and setHDF5DumpName() from the HDF5Array package
to control the location of automatically created HDF5 datasets.

stopifnot(identical(as.array(P1), as.array(P2)))

DelayedMatrix-stats DelayedMatrix row/col summarization

Description

Only a small number of row/col summarization methods are provided by the DelayedArray pack-
age.

See the DelayedMatrixStats package for an extensive set of row/col summarization methods.

Usage

S4 method for signature 'DelayedMatrix'

DelayedMatrix-stats 23

rowSums(x, na.rm=FALSE, dims=1)
S4 method for signature 'DelayedMatrix'
colSums(x, na.rm=FALSE, dims=1)

S4 method for signature 'DelayedMatrix'
rowMeans(x, na.rm=FALSE, dims=1)
S4 method for signature 'DelayedMatrix'
colMeans(x, na.rm=FALSE, dims=1)

S4 method for signature 'DelayedMatrix'
rowMaxs(x, rows=NULL, cols=NULL, na.rm=FALSE, dim.=dim(x))
S4 method for signature 'DelayedMatrix'
colMaxs(x, rows=NULL, cols=NULL, na.rm=FALSE, dim.=dim(x))

S4 method for signature 'DelayedMatrix'
rowMins(x, rows=NULL, cols=NULL, na.rm=FALSE, dim.=dim(x))
S4 method for signature 'DelayedMatrix'
colMins(x, rows=NULL, cols=NULL, na.rm=FALSE, dim.=dim(x))

S4 method for signature 'DelayedMatrix'
rowRanges(x, rows=NULL, cols=NULL, na.rm=FALSE, dim.=dim(x))
S4 method for signature 'DelayedMatrix'
colRanges(x, rows=NULL, cols=NULL, na.rm=FALSE, dim.=dim(x))

Arguments

x A DelayedMatrix object.

na.rm Should missing values (including NaN) be omitted from the calculations?
dims, rows, cols, dim.

These arguments are not supported and should not be used.

Details

All these operations are block-processed.

See Also

• The DelayedMatrixStats package for more row/col summarization methods for DelayedMa-
trix objects.

• rowSums in the base package and rowMaxs in the matrixStats package for row/col summa-
rization of an ordinary matrix.

• DelayedArray-utils for other common operations on DelayedArray objects.

• DelayedMatrix objects.

• matrix objects in base R.

Examples

library(HDF5Array)
toy_h5 <- system.file("extdata", "toy.h5", package="HDF5Array")
h5ls(toy_h5)

M1 <- HDF5Array(toy_h5, "M1")

24 DelayedOp-class

M2 <- HDF5Array(toy_h5, "M2")

M12 <- rbind(M1, t(M2)) # delayed

All these operations are block-processed.

rowSums(M12)
colSums(M12)

rowMeans(M12)
colMeans(M12)

rmaxs <- rowMaxs(M12)
cmaxs <- colMaxs(M12)

rmins <- rowMins(M12)
cmins <- colMins(M12)

rranges <- rowRanges(M12)
cranges <- colRanges(M12)

Sanity checks:
m12 <- rbind(as.matrix(M1), t(as.matrix(M2)))
stopifnot(identical(rowSums(M12), rowSums(m12)))
stopifnot(identical(colSums(M12), colSums(m12)))
stopifnot(identical(rowMeans(M12), rowMeans(m12)))
stopifnot(identical(colMeans(M12), colMeans(m12)))
stopifnot(identical(rmaxs, rowMaxs(m12)))
stopifnot(identical(cmaxs, colMaxs(m12)))
stopifnot(identical(rmins, rowMins(m12)))
stopifnot(identical(cmins, colMins(m12)))
stopifnot(identical(rranges, cbind(rmins, rmaxs, deparse.level=0)))
stopifnot(identical(cranges, cbind(cmins, cmaxs, deparse.level=0)))

DelayedOp-class DelayedOp objects

Description

In a DelayedArray object the delayed operations are stored as a tree of DelayedOp objects. Each
node in the tree is represented by a DelayedOp object.

DelayedOp objects are used inside DelayedArray objects and are not intended to be manipulated
directly by the end user.

showtree and simplify can be used to visualize and simplify this tree.

Usage

is_noop(x)

Arguments

x A DelayedSubset, DelayedAperm, or DelayedDimnames object.

DelayedOp-class 25

Details

8 types of nodes are currently supported. Each type is a DelayedOp subclass:

Node type Represented operation
--
DelayedOp (VIRTUAL)
--
* DelayedUnaryOp (VIRTUAL)
o DelayedSubset Multi-dimensional single bracket

subsetting.
o DelayedAperm Extended aperm() (can drop and/or

add ineffective dimensions).
o DelayedUnaryIsoOp (VIRTUAL) Unary op that preserves the

geometry.
- DelayedUnaryIsoOpStack Simple ops stacked together.
- DelayedUnaryIsoOpWithArgs One op with vector-like arguments

along the dimensions of the input.
- DelayedSubassign Multi-dimensional single bracket

subassignment.
- DelayedDimnames Set/replace the dimnames.

--
* DelayedNaryOp (VIRTUAL)
o DelayedNaryIsoOp N-ary op that preserves the

geometry.
o DelayedAbind abind()

--

All the nodes are array-like objects that must comply with the seed contract i.e. they must support
dim(), dimnames(), and extract_array(). See ?extract_array for more information about the
seed contract.

is_noop() can only be called on a DelayedSubset, DelayedAperm, or DelayedDimnames object at
the moment, and will return TRUE if the object represents a no-op.

Note

The DelayedOp virtual class and its 8 concrete subclasses are for internal use only and never ex-
posed to the end user.

See Also

• DelayedArray objects.

• showtree to visualize, simplify, and inspect the tree of delayed operations in a DelayedArray
object.

• extract_array.

26 linearInd

linearInd Converting array indices into linear indices

Description

linearInd performs the reverse conversion of base::arrayInd, that is, it converts so-called array
indices (i.e. n-uplets) into linear indices.

Usage

linearInd(aind, dim)

Arguments

aind Typically a numeric matrix like one returned by base::arrayInd, that is, a
matrix where each row is an n-uplet representing an array index. Each array
index must describe a position relative to the implicit array i.e. to the array
whose dimensions are specified via the dim argument.
For convenience, aind can also be specified as a vector with one element per
dimension in the implicit array, in which case it will be treated like a 1-row
matrix.
Note that no bounds checking is performed, that is, values in the j-th column of
aind can be < 1 or > dim[j].

dim An integer vector containing the dimensions of the underlying array.
Note that dim can also be an integer matrix, in which case it must have the same
shape as aind, that is, 1 row per row in aind and 1 column per dimension.

Value

An integer vector with one element per row in aind if aind is a matrix.

A single integer if aind is a vector.

See Also

arrayInd in the base package for the reverse conversion.

Examples

dim <- 4:2
linearInd(c(4, 3, 1), dim)
linearInd(c(4, 3, 2), dim)

aind <- rbind(c(1, 1, 1),
c(2, 1, 1),
c(3, 1, 1),
c(4, 1, 1),
c(1, 2, 1),
c(1, 1, 2),
c(4, 3, 2))

linearInd(aind, dim)

makeCappedVolumeBox 27

With a matrix of dimensions:

dims <- rbind(c(4L, 3L),
c(5L, 3L),
c(6L, 3L))

aind <- rbind(c(1, 2),
c(1, 2),
c(1, 2))

linearInd(aind, dims)

Sanity checks:

dim <- c(33:30, 45L, 30L)
stopifnot(linearInd(rep(1, 6), dim) == 1)
stopifnot(linearInd(dim, dim) == prod(dim))

stopifnot(identical(linearInd(arrayInd(1:120, 6:4), 6:4), 1:120))
stopifnot(identical(linearInd(arrayInd(840:1, 4:7), 4:7), 840:1))

makeCappedVolumeBox Utilities to make capped volume boxes

Description

makeCappedVolumeBox returns the dimensions of the biggest multidimensional box (a.k.a. hyper-
rectangle) that satisfies 3 constraints: (1) its volume is capped, (2) it fits in the constraining box, (3)
it has the specified shape.

makeRegularArrayGridOfCappedLengthViewports makes a RegularArrayGrid object with grid
elements that are capped volume boxes with the specified constraints.

These are low-level utilities used internally to support blockGrid and family.

Usage

makeCappedVolumeBox(maxvol, maxdim, shape=c("hypercube",
"scale",
"first-dim-grows-first",
"last-dim-grows-first"))

makeRegularArrayGridOfCappedLengthViewports(refdim,
viewport_len,
viewport_shape=c("hypercube",

"scale",
"first-dim-grows-first",
"last-dim-grows-first"))

Arguments

maxvol The maximum volume of the box to return.

maxdim The dimensions of the constraining box.

shape The shape of the box to return.

28 makeCappedVolumeBox

refdim The dimensions of the reference array of the grid to return.

viewport_len The maximum length of the elements (a.k.a. viewports) of the grid to return.

viewport_shape The shape of the elements (a.k.a. viewports) of the grid to return.

Details

makeCappedVolumeBox returns the dimensions of a box that satisfies the following constraints:

1. The volume of the box is as close as possibe to (but no bigger than) maxvol.

2. The box fits in the constraining box i.e. in the box whose dimensions are specified via maxdim.

3. The box has a non-zero volume if the constraining box has a non-zero volume.

4. The shape of the box is as close as possible to the requested shape.

The supported shapes are:

• hypercube: The box should be as close as possible to an hypercube (a.k.a. n-cube), that is,
the ratio between its biggest and smallest dimensions should be as close as possible to 1.

• scale: The box should have the same proportions as the constraining box.

• first-dim-grows-first: The box will be grown along its 1st dimension first, then along its
2nd dimension, etc...

• last-dim-grows-first: Like first-dim-grows-first but starting along the last dimen-
sion.

See Also

• blockGrid to define grids to use in the context of block processing of array-like objects.

• ArrayGrid objects.

Examples

makeCappedVolumeBox()

maxdim <- c(50, 12) # dimensions of the "constraining box"

"hypercube" shape:
makeCappedVolumeBox(40, maxdim)
makeCappedVolumeBox(120, maxdim)
makeCappedVolumeBox(125, maxdim)
makeCappedVolumeBox(200, maxdim)

"scale" shape:
makeCappedVolumeBox(40, maxdim, shape="scale")
makeCappedVolumeBox(160, maxdim, shape="scale")

"first-dim-grows-first" and "last-dim-grows-first" shapes:
makeCappedVolumeBox(120, maxdim, shape="first-dim-grows-first")
makeCappedVolumeBox(149, maxdim, shape="first-dim-grows-first")
makeCappedVolumeBox(150, maxdim, shape="first-dim-grows-first")

makeCappedVolumeBox(40, maxdim, shape="last-dim-grows-first")
makeCappedVolumeBox(59, maxdim, shape="last-dim-grows-first")

read_block 29

makeCappedVolumeBox(60, maxdim, shape="last-dim-grows-first")

makeRegularArrayGridOfCappedLengthViewports()

grid1a <- makeRegularArrayGridOfCappedLengthViewports(maxdim, 40)
grid1a
as.list(grid1a) # turn the grid into a list of ArrayViewport objects
table(lengths(grid1a))
stopifnot(maxlength(grid1a) <= 40) # sanity check

grid1b <- makeRegularArrayGridOfCappedLengthViewports(maxdim, 40,
"first-dim-grows-first")

grid1b
as.list(grid1b) # turn the grid into a list of ArrayViewport objects
table(lengths(grid1b))
stopifnot(maxlength(grid1b) <= 40) # sanity check

grid2a <- makeRegularArrayGridOfCappedLengthViewports(maxdim, 120)
grid2a
as.list(grid2a) # turn the grid into a list of ArrayViewport objects
table(lengths(grid2a))
stopifnot(maxlength(grid2a) <= 120) # sanity check

grid2b <- makeRegularArrayGridOfCappedLengthViewports(maxdim, 120,
"first-dim-grows-first")

grid2b
as.list(grid2b) # turn the grid into a list of ArrayViewport objects
table(lengths(grid2b))
stopifnot(maxlength(grid2b) <= 120) # sanity check

grid3a <- makeRegularArrayGridOfCappedLengthViewports(maxdim, 200)
grid3a
as.list(grid3a) # turn the grid into a list of ArrayViewport objects
table(lengths(grid3a))
stopifnot(maxlength(grid3a) <= 200) # sanity check

grid3b <- makeRegularArrayGridOfCappedLengthViewports(maxdim, 200,
"first-dim-grows-first")

grid3b
as.list(grid3b) # turn the grid into a list of ArrayViewport objects
table(lengths(grid3b))
stopifnot(maxlength(grid3b) <= 200) # sanity check

read_block Read/write blocks of array data

Description

2 utilities for reading/writing blocks from/to an array-like object.

Usage

read_block(x, viewport)
write_block(x, viewport, block)

30 read_block

Arguments

x An array-like object.

viewport An ArrayViewport object.

block An ordinary array of the same dimensions as viewport.

See Also

• ArrayViewport objects.

• blockGrid to define grids to use in the context of block processing of array-like objects.

• block_processing for more information about block processing of an array-like object.

• DelayedArray objects.

• array objects in base R.

Examples

m0 <- matrix(1:30, ncol=5)

block_dim <- c(4, 3)
viewport1 <- ArrayViewport(dim(m0), IRanges(c(3, 2), width=block_dim))
viewport1

block1 <- read_block(m0, viewport1)
block1

No-op:
write_block(m0, viewport1, block1)
stopifnot(identical(m0, write_block(m0, viewport1, block1)))

write_block(m0, viewport1, block1 + 100L)

viewport2 <- ArrayViewport(dim(m0), IRanges(c(1, 3), width=block_dim))
write_block(m0, viewport2, block1 + 100L)

Using a grid:
grid0 <- RegularArrayGrid(dim(m0), spacings=c(3L, 2L))
grid0
length(grid0) # number of blocks defined by the grid
read_block(m0, grid0[[3L]]) # read 3rd block
read_block(m0, grid0[[1L, 3L]])

Walk on the grid, colum by column:
m1 <- m0
for (b in seq_along(grid0)) {

viewport <- grid0[[b]]
block <- read_block(m1, viewport)
block <- b * 1000L + block
m1 <- write_block(m1, viewport, block)

}
m1

Walk on the grid, row by row:
m2 <- m0
for (i in seq_len(dim(grid0)[[1]])) {

for (j in seq_len(dim(grid0)[[2]])) {

RealizationSink 31

viewport <- grid0[[i, j]]
block <- read_block(m2, viewport)
block <- (i * 10L + j) * 1000L + block
m2 <- write_block(m2, viewport, block)

}
}
m2

RealizationSink RealizationSink objects

Description

Get or set the realization backend for the current session with getRealizationBackend or setRealizationBackend.

Advanced users: Create a RealizationSink object with the backend-agnostic RealizationSink()
constructor. Use this object to write an array-like object block by block to disk (or to memory).

Usage

supportedRealizationBackends()
getRealizationBackend()
setRealizationBackend(BACKEND=NULL)

RealizationSink(dim, dimnames=NULL, type="double")

Arguments

BACKEND NULL (the default), or a single string specifying the name of a realization back-
end.

dim The dimensions (specified as an integer vector) of the RealizationSink object to
create.

dimnames The dimnames (specified as a list of character vectors or NULLs) of the Real-
izationSink object to create.

type The type of the data that will be written to the RealizationSink object to create.

Details

The realization backend controls where/how realization happens e.g. as an ordinary array if set to
NULL, as an RleArray object if set to "RleArray", or as an HDF5Array object if set to "HDF5Array".

Value

supportedRealizationBackends: A data frame with 1 row per supported realization backend.

getRealizationBackend: NULL or a single string specifying the name of the realization backend
currently in use.

RealizationSink: A RealizationSink object for the current realization backend.

32 RealizationSink

See Also

• write_block.

• blockGrid to define grids to use in the context of block processing of array-like objects.

• DelayedArray objects.

• RleArray objects.

• HDF5Array objects in the HDF5Array package.

• HDF5-dump-management in the HDF5Array package to control the location and physical
properties of automatically created HDF5 datasets.

• array objects in base R.

Examples

A. supportedRealizationBackends() AND FAMILY

supportedRealizationBackends()
getRealizationBackend() # backend is set to NULL

setRealizationBackend("HDF5Array")
supportedRealizationBackends()
getRealizationBackend() # backend is set to "HDF5Array"

B. A SIMPLE (AND VERY ARTIFICIAL) RealizationSink() EXAMPLE

getHDF5DumpChunkLength()
setHDF5DumpChunkLength(500L)
getHDF5DumpChunkShape()

sink <- RealizationSink(c(120L, 50L))
dim(sink)
chunkdim(sink)

grid <- blockGrid(sink, block.length=600)
for (b in seq_along(grid)) {

viewport <- grid[[b]]
block <- 101 * b + runif(length(viewport))
dim(block) <- dim(viewport)
write_block(sink, viewport, block)

}

Always close the RealizationSink object when you are done writing to
it and before coercing it to DelayedArray:
close(sink)
A <- as(sink, "DelayedArray")
A

C. AN ADVANCED EXAMPLE OF USER-IMPLEMENTED BLOCK PROCESSING USING
colGrid() AND A REALIZATION SINK

Say we have 2 matrices with the same number of columns. Each column
represents a biological sample:
library(HDF5Array)

RealizationSink 33

R <- as(matrix(runif(75000), ncol=1000), "HDF5Array") # 75 rows
G <- as(matrix(runif(250000), ncol=1000), "HDF5Array") # 250 rows

Say we want to compute the matrix U obtained by applying the same
binary functions FUN() to all samples i.e. U is defined as:
##
U[, j] <- FUN(R[, j], G[, j]) for 1 <= j <= 1000
##
Note that FUN() should return a vector of constant length, say 200,
so U will be a 200x1000 matrix. A naive implementation would be:
##
pFUN <- function(r, g) {
stopifnot(ncol(r) == ncol(g)) # sanity check
sapply(seq_len(ncol(r)), function(j) FUN(r[, j], g[, j]))
}
##
But because U is going to be too big to fit in memory, we can't
just do pFUN(R, G). So we want to compute U block by block and
write the blocks to disk as we go. The blocks will be made of full
columns. Also since we need to walk on 2 matrices at the same time
(R and G), we can't use blockApply() or blockReduce() so we'll use
a "for" loop.

Before we can write the "for" loop, we need 4 things:

1) Two grids of blocks, one on R and one on G. The blocks in the
2 grids must contain the same number of columns. We arbitrarily
choose to use blocks of 150 columns:
R_grid <- colGrid(R, ncol=150)
G_grid <- colGrid(G, ncol=150)

2) The function pFUN(). It will take 2 blocks as input, 1 from R
and 1 from G, apply FUN() to all the samples in the blocks,
and return a matrix with one columns per sample:
pFUN <- function(r, g) {

stopifnot(ncol(r) == ncol(g)) # sanity check
Return a matrix with 200 rows with random values. Completely
artificial sorry. A realistic example would actually need to
apply the same binary function to r[,j] and g[, j] for
1 <= j <= ncol(r).
matrix(runif(200 * ncol(r)), nrow=200)

}

3) A RealizationSink object where to write the matrices returned
by pFUN() as we go. Note that instead of creating a realization
sink by calling a backend-specific sink constructor (e.g.
HDF5Array:::HDF5RealizationSink), we use the backend-agnostic
constructor RealizationSink() and set the current realization
backend to HDF5:

setRealizationBackend("HDF5Array")
U_sink <- RealizationSink(c(200L, 1000L))

4) Finally, we create a grid on U_sink with blocks that contain the
same number of columns as the corresponding blocks in R and G:

U_grid <- colGrid(U_sink, ncol=150)

34 realize

Note that the 3 grids should have the same number of blocks:
stopifnot(length(U_grid) == length(R_grid))
stopifnot(length(U_grid) == length(G_grid))

Now we can procede. We write a loop where we walk on R and G at
the same time, block by block, apply pFUN(), and write the output
of pFUN() to U_sink:
for (b in seq_along(U_grid)) {

R_block <- read_block(R, R_grid[[b]])
G_block <- read_block(G, G_grid[[b]])
U_block <- pFUN(R_block, G_block)
write_block(U_sink, U_grid[[b]], U_block)

}

close(U_sink)
U <- as(U_sink, "DelayedArray")

A note about parallelization: even though concurrent block reading
from the same object is supported, concurrent writing to a sink is
not supported yet. So the above code cannot be parallelized at the
moment.

realize Realize a DelayedArray object

Description

Realize a DelayedArray object in memory or on disk.

Usage

realize(x, ...)

S4 method for signature 'ANY'
realize(x, BACKEND=getRealizationBackend())

Arguments

x The array-like object to realize.

... Additional arguments passed to methods.

BACKEND A single string specifying the name of the realization backend. Use the current
realization backend by default i.e. the backend returned by getRealizationBackend().

Value

A DelayedArray object. More precisely, it returns DelayedArray(as.array(x)) when the back-
end is set to NULL (the default). Otherwise it returns an instance of the class associated with the
specified backend (which should extend DelayedArray).

RleArray-class 35

See Also

• getRealizationBackend and setRealizationBackend for getting and setting the current
realization backend.

• DelayedArray objects.

• RleArray objects.

• HDF5Array objects in the HDF5Array package.

• array objects in base R.

Examples

library(HDF5Array)
toy_h5 <- system.file("extdata", "toy.h5", package="HDF5Array")
h5ls(toy_h5)
M1 <- HDF5Array(toy_h5, "M1")
M2 <- HDF5Array(toy_h5, "M2")
M3 <- rbind(log(M1), t(M2))

supportedRealizationBackends()
getRealizationBackend() # backend is set to NULL
realize(M3) # realization as ordinary array

setRealizationBackend("RleArray")
getRealizationBackend() # backend is set to "RleArray"
realize(M3) # realization as RleArray object

setRealizationBackend("HDF5Array")
getRealizationBackend() # backend is set to "HDF5Array"
realize(M3) # realization in HDF5 file

RleArray-class RleArray objects

Description

The RleArray class is an array-like container where the values are stored in a run-length encoding
format. RleArray objects support delayed operations and block processing.

Usage

RleArray(rle, dim, dimnames=NULL, chunksize=NULL) # constructor function

Arguments

rle An Rle object.

dim The dimensions of the object to be created, that is, an integer vector of length
one or more giving the maximal indices in each dimension.

dimnames Either NULL or the names for the dimensions. This must a list of length the
number of dimensions. Each list element must be either NULL or a character
vector along the corresponding dimension.

chunksize Experimental. Don’t use!

36 RleArray-class

Details

RleArray extends DelayedArray. All the operations available on DelayedArray objects work on
RleArray objects.

See Also

• Rle objects in the S4Vectors package.

• DelayedArray objects.

• DelayedArray-utils for common operations on DelayedArray objects.

• realize for realizing a DelayedArray object in memory or on disk.

• HDF5Array objects in the HDF5Array package.

• DataFrame objects in the S4Vectors package.

• array objects in base R.

Examples

rle <- Rle(sample(6L, 500000, replace=TRUE), 8)
a <- array(rle, dim=c(50, 20, 4000)) # array() expands the Rle object

internally with as.vector()

A <- RleArray(rle, dim=c(50, 20, 4000)) # Rle object is NOT expanded
A

object.size(a)
object.size(A)

stopifnot(identical(a, as.array(A)))

as(A, "Rle") # deconstruction

toto <- function(x) (5 * x[, , 1] ^ 3 + 1L) * log(x[, , 2])
b <- toto(a)
head(b)

B <- toto(A) # very fast! (operations are delayed)
B

stopifnot(identical(b, as.array(B)))

cs <- colSums(b)
CS <- colSums(B)
stopifnot(identical(cs, CS))

Coercion of a DelayedMatrix object to DataFrame produces a DataFrame
object with Rle columns:
as(B, "DataFrame")

Coercion of an RleList object to RleArray only works if all the list
elements in the RleList have the same length. Column names are taken
from the names of the list elements.
rle_list <- RleList(A=Rle(sample(3L, 100, replace=TRUE)),

B=Rle(sample(3L, 100, replace=TRUE)))
C <- as(rle_list, "RleArray")
C

showtree 37

stopifnot(identical(as(C, "RleList"), rle_list))

showtree Visualize, simplify, and inspect a tree of delayed operations

Description

NOTE: The tools documented in this man page are primarily intended for developers. End users of
DelayedArray objects will typically not need them.

showtree can be used to visualize the tree of delayed operations carried by a DelayedArray object.

simplify can be used to simplify this tree.

contentIsPristine can be used to know whether the operations in this tree leave the values of the
array elements intact or not.

netSubsetAndAperm returns an object that represents the net subsetting and net dimension rear-
rangement of all the operations in this tree.

Usage

showtree(x, show.node.dim=TRUE)
simplify(x, incremental=FALSE)

contentIsPristine(x)
netSubsetAndAperm(x, as.DelayedOp=FALSE)

Arguments

x Typically a DelayedArray object but can also be a DelayedOp object.
Additionally showtree accepts a list where each element is a DelayedArray or
DelayedOp object.

show.node.dim TRUE or FALSE. If TRUE (the default), the nodes dimensions and data type are
displayed.

incremental For internal use.

as.DelayedOp TRUE or FALSE. Control the form of the returned object. See details below.

Details

netSubsetAndAperm is only supported on a DelayedArray object x with a single seed i.e. if
nseed(x) == 1.

The mapping between the elements of x and the elements of its seed is affected by the following
delayed operations carried by x: [, drop(), and aperm(). x can carry any number of each of these
operations in any order but their net result can always be described by a net subsetting followed by
a net dimension rearrangement.

netSubsetAndAperm(x) returns an object that represents the net subsetting and net dimension re-
arrangement. The as.DelayedOp argument controls in what form this object should be returned:

38 showtree

• If as.DelayedOp is FALSE (the default), the returned object is a list of subscripts that describes
the net subsetting. The list contains one subscript per dimension in the seed. Each subscript
can be either a vector of positive integers or a NULL. A NULL indicates a missing subscript.
In addition, if x carries delayed operations that rearrange its dimensions (i.e. operations that
drop and/or permute some of the original dimensions), the net dimension rearrangement is
described in a dimmap attribute added to the list. This attribute is an integer vector parallel to
dim(x) that reports how the dimensions of x are mapped to the dimensions of its seed.

• If as.DelayedOp is TRUE, the returned object is a linear tree with 2 DelayedOp nodes and a leaf
node. The leaf node is the seed of x. Walking the tree from the seed, the 2 DelayedOp nodes
are of type DelayedSubset and DelayedAperm, in that order (this reflects the order in which
the operations apply). More precisely, the returned object is a DelayedAperm object with
one child (the DelayedSubset object), and one grandchid (the seed of x). The DelayedSub-
set and DelayedAperm nodes represent the net subsetting and net dimension rearrangement,
respectively. Either or both of them can be a no-op.

Note that the returned object describes how the elements of x map to their corresponding element
in seed(x).

Value

The simplified object for simplify.

TRUE or FALSE for contentIsPristine.

An ordinary list (possibly with the dimmap attribute on it) for netSubsetAndAperm. Unless as.DelayedOp
is set to TRUE, in which case a DelayedAperm object is returned (see Details section above for more
information).

See Also

• DelayedArray objects.

• DelayedOp objects.

Examples

showtree()

m1 <- matrix(runif(150), nrow=15, ncol=10)
M1 <- DelayedArray(m1)

By default, the tree of delayed operations carried by a DelayedArray
object gets simplified each time a delayed operation is added to it.
This can be disabled via a global option:
options(DelayedArray.simplify=FALSE)
M2 <- log(t(M1[5:1, c(TRUE, FALSE)] + 10))[-1,]
showtree(M2)

Note that as part of the simplification process, some operations
can be reordered:
options(DelayedArray.simplify=TRUE)
M2 <- log(t(M1[5:1, c(TRUE, FALSE)] + 10))[-1,]
showtree(M2)

In the above example, the tree is linear i.e. all the operations
are represented by unary nodes. The simplest way to know if a

showtree 39

tree is linear is by counting its leaves with nseed():
nseed(M2) # only 1 leaf means the tree is linear

options(DelayedArray.simplify=FALSE)

dimnames(M1) <- list(letters[1:15], LETTERS[1:10])
showtree(M1)

m2 <- matrix(1:20, nrow=10)
Y <- cbind(t(M1[, 10:1]), DelayedArray(m2), M1[6:15, "A", drop=FALSE])
showtree(Y)
showtree(Y, show.node.dim=FALSE)
nseed(Y) # the tree is not linear

Z <- t(Y[10:1,])[1:15,] + 0.4 * M1
showtree(Z)
nseed(Z)

Z@seed@seeds
Z@seed@seeds[[2]]@seed # reaching to M1
Z@seed@seeds[[1]]@seed@seed@seed # reaching to Y

contentIsPristine()

a <- array(1:120, c(4, 5, 2))
A <- DelayedArray(a)

stopifnot(contentIsPristine(A))
stopifnot(contentIsPristine(A[1, ,]))
stopifnot(contentIsPristine(t(A[1, ,])))
stopifnot(contentIsPristine(cbind(A[1, ,], A[2, ,])))
dimnames(A) <- list(LETTERS[1:4], letters[1:5], NULL)
stopifnot(contentIsPristine(A))

contentIsPristine(log(A)) # FALSE
contentIsPristine(A - 11:14) # FALSE
contentIsPristine(A * A) # FALSE

netSubsetAndAperm()

a <- array(1:120, c(4, 5, 2))
M <- aperm(DelayedArray(a)[, -1,] / 100)[, , 3] + 99:98
M
showtree(M)

netSubsetAndAperm(M) # 1st dimension was dropped, 2nd and 3rd
dimension were permuted (transposition)

op2 <- netSubsetAndAperm(M, as.DelayedOp=TRUE)
op2 # 2 nested delayed operations
op1 <- op2@seed
class(op1) # DelayedSubset
class(op2) # DelayedAperm
op1@index
op2@perm

40 SparseArraySeed-class

DelayedArray(op2) # same as M from a [, drop(), and aperm() point of
view but the individual array elements are now
reset to their original values i.e. to the values
they have in the seed

stopifnot(contentIsPristine(DelayedArray(op2)))

A simple function that returns TRUE if a DelayedArray object carries
no "net subsetting" and no "net dimension rearrangement":
is_aligned_with_seed <- function(x)
{

if (nseed(x) != 1L)
return(FALSE)

op2 <- netSubsetAndAperm(x, as.DelayedOp=TRUE)
op1 <- op2@seed
is_noop(op1) && is_noop(op2)

}

M <- DelayedArray(a[, , 1])
is_aligned_with_seed(log(M + 11:14) > 3) # TRUE
is_aligned_with_seed(M[4:1,]) # FALSE
is_aligned_with_seed(M[4:1,][4:1,]) # TRUE
is_aligned_with_seed(t(M)) # FALSE
is_aligned_with_seed(t(t(M))) # TRUE
is_aligned_with_seed(t(0.5 * t(M[4:1,])[, 4:1])) # TRUE

options(DelayedArray.simplify=TRUE)

SparseArraySeed-class SparseArraySeed objects

Description

SparseArraySeed objects are used internally to support block processing of array-like objects.

Usage

Constructor function:
SparseArraySeed(dim, aind=NULL, nzdata=NULL, check=TRUE)

Getters (in addition to dim() and length()):
aind(x)
nzdata(x)
sparsity(x)

Two low-level utilities:
dense2sparse(x)
sparse2dense(sas)

Arguments

dim The dimensions (specified as an integer vector) of the SparseArraySeed object
to create.

SparseArraySeed-class 41

aind A matrix containing the array indices of the nonzero data.
This must be an integer matrix like one returned by base::arrayInd, that is,
with length(dim) columns and where each row is an n-uplet representing an
array index.

nzdata A vector of length nrow(aind) containing the nonzero data.

check Should the object be validated upon construction?

x A SparseArraySeed object for the aind, nzdata, and sparsity getters.
An array-like object for dense2sparse.

sas A SparseArraySeed object.

Value

• For SparseArraySeed(): A SparseArraySeed instance.

• For aind(): The matrix containing the array indices of the nonzero data.

• For nzdata(): The vector of nonzero data.

• For sparsity(): The number of zero-valued elements in the implicit array divided by the
total number of array elements (a.k.a. the length of the array).

• For dense2sparse(): A SparseArraySeed instance.

• For sparse2dense(): An ordinary array.

See Also

• The read_sparse_block function.

• block_processing for more information about block processing of an array-like object.

• extract_array.

• DelayedArray objects.

• arrayInd in the base package.

• array objects in base R.

Examples

EXAMPLE 1

aind1 <- rbind(c(2,4,3), c(2,1,3), c(5,4,3), c(5,3,3),

c(5,4,1), c(5,1,1), c(5,4,2), c(5,4,1))
nzdata1 <- 11.11 * seq_len(nrow(aind1))
sas1 <- SparseArraySeed(5:3, aind1, nzdata1)

dim(sas1) # the dimensions of the implicit array
length(sas1) # the length of the implicit array
aind(sas1)
nzdata(sas1)
sparsity(sas1)

sparse2dense(sas1)
as.array(sas1) # same as sparse2dense(sas1)

Not run:
as.matrix(sas1) # error!

42 SparseArraySeed-class

End(Not run)

EXAMPLE 2

m2 <- matrix(c(5:-2, rep.int(c(0L, 99L), 11)), ncol=6)
sas2 <- dense2sparse(m2)
dim(sas2)
length(sas2)
aind(sas2)
nzdata(sas2)
sparsity(sas2)

stopifnot(identical(sparse2dense(sas2), m2))

as.matrix(sas2) # same as sparse2dense(sas2)

t(sas2)
stopifnot(identical(as.matrix(t(sas2)), t(as.matrix(sas2))))

Go back and forth between SparseArraySeed and dgCMatrix objects:
M2 <- as(sas2, "dgCMatrix")
stopifnot(identical(M2, as(m2, "dgCMatrix")))

sas2b <- as(M2, "SparseArraySeed")
'sas2b' is the same as 'sas2' except that
'nzdata(sas2b)' is of type numeric instead of integer:
all.equal(sas2b, sas2)
typeof(nzdata(sas2b)) # numeric
typeof(nzdata(sas2)) # integer

SEED CONTRACT

SparseArraySeed objects comply with the "seed contract".
In particular they support extract_array():
extract_array(sas1, list(c(5, 3:2, 5), NULL, 3))

See '?extract_array' for more information about the "seed contract".

This means that they can be wrapped in a DelayedArray object:
A1 <- DelayedArray(sas1)
A1

A big very sparse DelayedMatrix object:
aind3 <- cbind(sample(25000, 600000, replace=TRUE),

sample(195000, 600000, replace=TRUE))
nzdata3 <- runif(600000)
sas3 <- SparseArraySeed(c(25000, 195000), aind3, nzdata3)
sparsity(sas3)

M3 <- DelayedArray(sas3)
M3
colSums(M3[, 1:20])

Index

!,DelayedArray-method
(DelayedArray-utils), 19

∗Topic classes
ArrayGrid-class, 2
DelayedArray-class, 12
RleArray-class, 35
SparseArraySeed-class, 40

∗Topic methods
ArrayGrid-class, 2
bind-arrays, 6
block_processing, 10
DelayedArray-class, 12
DelayedArray-stats, 17
DelayedArray-utils, 19
DelayedMatrix-stats, 22
DelayedOp-class, 24
read_block, 29
realize, 34
RleArray-class, 35
showtree, 37
SparseArraySeed-class, 40

∗Topic utilities
blockGrid, 6
linearInd, 26
makeCappedVolumeBox, 27
RealizationSink, 31

+,DelayedArray,missing-method
(DelayedArray-utils), 19

-,DelayedArray,missing-method
(DelayedArray-utils), 19

[,DelayedArray-method
(DelayedArray-class), 12

[<-,DelayedArray-method
(DelayedArray-class), 12

[[,DelayedArray-method
(DelayedArray-class), 12

%*% (DelayedArray-utils), 19
%*%,ANY,DelayedMatrix-method

(DelayedArray-utils), 19
%*%,DelayedMatrix,ANY-method

(DelayedArray-utils), 19
%*%,DelayedMatrix,DelayedMatrix-method

(DelayedArray-utils), 19

%*%, 20

acbind, 20
acbind (bind-arrays), 6
acbind,array-method (bind-arrays), 6
acbind,DelayedArray-method

(DelayedArray-utils), 19
aind (SparseArraySeed-class), 40
aind,SparseArraySeed-method

(SparseArraySeed-class), 40
anyNA,DelayedArray-method

(DelayedArray-utils), 19
aperm (DelayedArray-class), 12
aperm,ArbitraryArrayGrid-method

(ArrayGrid-class), 2
aperm,DelayedArray-method

(DelayedArray-class), 12
aperm,RegularArrayGrid-method

(ArrayGrid-class), 2
aperm,SparseArraySeed-method

(SparseArraySeed-class), 40
aperm.ArbitraryArrayGrid

(ArrayGrid-class), 2
aperm.DelayedArray

(DelayedArray-class), 12
aperm.RegularArrayGrid

(ArrayGrid-class), 2
aperm.SparseArraySeed

(SparseArraySeed-class), 40
apply, 20
apply (DelayedArray-utils), 19
apply,DelayedArray-method

(DelayedArray-utils), 19
arbind, 20
arbind (bind-arrays), 6
arbind,array-method (bind-arrays), 6
arbind,DelayedArray-method

(DelayedArray-utils), 19
ArbitraryArrayGrid, 8
ArbitraryArrayGrid (ArrayGrid-class), 2
ArbitraryArrayGrid-class

(ArrayGrid-class), 2
array, 3, 14, 18, 20, 30, 32, 35, 36, 41
ArrayGrid, 8, 11, 28

43

44 INDEX

ArrayGrid (ArrayGrid-class), 2
ArrayGrid-class, 2
arrayInd, 26, 41
arrayRealizationSink-class

(RealizationSink), 31
ArrayViewport, 30
ArrayViewport (ArrayGrid-class), 2
ArrayViewport-class (ArrayGrid-class), 2
as.array,SparseArraySeed-method

(SparseArraySeed-class), 40
as.array.SparseArraySeed

(SparseArraySeed-class), 40
as.character,ArrayGrid-method

(ArrayGrid-class), 2
as.character.ArrayGrid

(ArrayGrid-class), 2
as.matrix,SparseArraySeed-method

(SparseArraySeed-class), 40
as.matrix.SparseArraySeed

(SparseArraySeed-class), 40

bind arrays (bind-arrays), 6
bind-arrays, 6
bindROWS,DelayedArray-method

(DelayedArray-utils), 19
block_processing, 3, 10, 13, 30, 41
BLOCK_write_to_sink (realize), 34
blockApply, 8
blockApply (block_processing), 10
blockGrid, 6, 11, 27, 28, 30, 32
blockReduce, 8
blockReduce (block_processing), 10
bpparam, 11

c,DelayedArray-method
(DelayedArray-class), 12

capped_volume_boxes
(makeCappedVolumeBox), 27

cbind, 6, 20
cbind (DelayedArray-utils), 19
cbind,DelayedArray-method

(DelayedArray-utils), 19
ChunkedRleArraySeed-class

(RleArray-class), 35
chunkGrid, 3, 7, 8
class:ArbitraryArrayGrid

(ArrayGrid-class), 2
class:ArrayGrid (ArrayGrid-class), 2
class:arrayRealizationSink

(RealizationSink), 31
class:ArrayViewport (ArrayGrid-class), 2
class:ChunkedRleArraySeed

(RleArray-class), 35

class:DelayedAbind (DelayedOp-class), 24
class:DelayedAperm (DelayedOp-class), 24
class:DelayedArray

(DelayedArray-class), 12
class:DelayedArray1

(DelayedArray-class), 12
class:DelayedDimnames

(DelayedOp-class), 24
class:DelayedMatrix

(DelayedArray-class), 12
class:DelayedNaryIsoOp

(DelayedOp-class), 24
class:DelayedNaryOp (DelayedOp-class),

24
class:DelayedOp (DelayedOp-class), 24
class:DelayedSubassign

(DelayedOp-class), 24
class:DelayedSubset (DelayedOp-class),

24
class:DelayedUnaryIsoOp

(DelayedOp-class), 24
class:DelayedUnaryIsoOpStack

(DelayedOp-class), 24
class:DelayedUnaryIsoOpWithArgs

(DelayedOp-class), 24
class:DelayedUnaryOp (DelayedOp-class),

24
class:RealizationSink

(RealizationSink), 31
class:RegularArrayGrid

(ArrayGrid-class), 2
class:RleArray (RleArray-class), 35
class:RleArraySeed (RleArray-class), 35
class:RleMatrix (RleArray-class), 35
class:RleRealizationSink

(RleArray-class), 35
class:SolidRleArraySeed

(RleArray-class), 35
class:SparseArraySeed

(SparseArraySeed-class), 40
close,RealizationSink-method

(RealizationSink), 31
coerce,ANY,RleArray-method

(RleArray-class), 35
coerce,ANY,RleMatrix-method

(RleArray-class), 35
coerce,ANY,SparseArraySeed-method

(SparseArraySeed-class), 40
coerce,arrayRealizationSink,DelayedArray-method

(RealizationSink), 31
coerce,ChunkedRleArraySeed,SolidRleArraySeed-method

(RleArray-class), 35

INDEX 45

coerce,DataFrame,RleArray-method
(RleArray-class), 35

coerce,DelayedArray,DelayedMatrix-method
(DelayedArray-class), 12

coerce,DelayedArray,RleArray-method
(RleArray-class), 35

coerce,DelayedArray,SparseArraySeed-method
(DelayedArray-class), 12

coerce,DelayedMatrix,DataFrame-method
(RleArray-class), 35

coerce,DelayedMatrix,DelayedArray-method
(DelayedArray-class), 12

coerce,DelayedMatrix,dgCMatrix-method
(DelayedArray-class), 12

coerce,DelayedMatrix,RleMatrix-method
(RleArray-class), 35

coerce,DelayedMatrix,sparseMatrix-method
(DelayedArray-class), 12

coerce,dgCMatrix,SparseArraySeed-method
(SparseArraySeed-class), 40

coerce,RleArray,Rle-method
(RleArray-class), 35

coerce,RleArray,RleMatrix-method
(RleArray-class), 35

coerce,RleList,RleArray-method
(RleArray-class), 35

coerce,RleMatrix,DataFrame-method
(RleArray-class), 35

coerce,RleMatrix,RleList-method
(RleArray-class), 35

coerce,RleRealizationSink,ChunkedRleArraySeed-method
(RleArray-class), 35

coerce,RleRealizationSink,DelayedArray-method
(RleArray-class), 35

coerce,RleRealizationSink,Rle-method
(RleArray-class), 35

coerce,RleRealizationSink,RleArray-method
(RleArray-class), 35

coerce,SolidRleArraySeed,Rle-method
(RleArray-class), 35

coerce,SparseArraySeed,dgCMatrix-method
(SparseArraySeed-class), 40

coerce,SparseArraySeed,sparseMatrix-method
(SparseArraySeed-class), 40

colGrid, 11
colGrid (blockGrid), 6
colMaxs (DelayedMatrix-stats), 22
colMaxs,DelayedMatrix-method

(DelayedMatrix-stats), 22
colMeans (DelayedMatrix-stats), 22
colMeans,DelayedMatrix-method

(DelayedMatrix-stats), 22

colMins (DelayedMatrix-stats), 22
colMins,DelayedMatrix-method

(DelayedMatrix-stats), 22
colRanges (DelayedMatrix-stats), 22
colRanges,DelayedMatrix-method

(DelayedMatrix-stats), 22
colSums (DelayedMatrix-stats), 22
colSums,DelayedMatrix-method

(DelayedMatrix-stats), 22
contentIsPristine (showtree), 37
currentBlockId (block_processing), 10
currentViewport (block_processing), 10

DataFrame, 14, 36
dbinom, 18
dbinom (DelayedArray-stats), 17
dbinom,DelayedArray-method

(DelayedArray-stats), 17
DelayedAbind (DelayedOp-class), 24
DelayedAbind-class (DelayedOp-class), 24
DelayedAperm, 38
DelayedAperm (DelayedOp-class), 24
DelayedAperm-class (DelayedOp-class), 24
DelayedArray, 3, 6, 11, 13, 17–20, 23–25, 30,

32, 34–38, 41
DelayedArray (DelayedArray-class), 12
DelayedArray,ANY-method

(DelayedArray-class), 12
DelayedArray,DelayedArray-method

(DelayedArray-class), 12
DelayedArray,DelayedOp-method

(DelayedArray-class), 12
DelayedArray,RleArraySeed-method

(RleArray-class), 35
DelayedArray-class, 12
DelayedArray-stats, 13, 17, 19, 20
DelayedArray-utils, 13, 19, 23, 36
DelayedArray1 (DelayedArray-class), 12
DelayedArray1-class

(DelayedArray-class), 12
DelayedDimnames (DelayedOp-class), 24
DelayedDimnames-class

(DelayedOp-class), 24
DelayedMatrix, 13, 18–20, 23
DelayedMatrix (DelayedArray-class), 12
DelayedMatrix-class

(DelayedArray-class), 12
DelayedMatrix-stats, 13, 18, 20, 22
DelayedNaryIsoOp (DelayedOp-class), 24
DelayedNaryIsoOp-class

(DelayedOp-class), 24
DelayedNaryOp (DelayedOp-class), 24

46 INDEX

DelayedNaryOp-class (DelayedOp-class),
24

DelayedOp, 37, 38
DelayedOp (DelayedOp-class), 24
DelayedOp-class, 24
DelayedSubassign (DelayedOp-class), 24
DelayedSubassign-class

(DelayedOp-class), 24
DelayedSubset, 38
DelayedSubset (DelayedOp-class), 24
DelayedSubset-class (DelayedOp-class),

24
DelayedUnaryIsoOp (DelayedOp-class), 24
DelayedUnaryIsoOp-class

(DelayedOp-class), 24
DelayedUnaryIsoOpStack

(DelayedOp-class), 24
DelayedUnaryIsoOpStack-class

(DelayedOp-class), 24
DelayedUnaryIsoOpWithArgs

(DelayedOp-class), 24
DelayedUnaryIsoOpWithArgs-class

(DelayedOp-class), 24
DelayedUnaryOp (DelayedOp-class), 24
DelayedUnaryOp-class (DelayedOp-class),

24
dense2sparse (SparseArraySeed-class), 40
dim,ArbitraryArrayGrid-method

(ArrayGrid-class), 2
dim,arrayRealizationSink-method

(RealizationSink), 31
dim,ArrayViewport-method

(ArrayGrid-class), 2
dim,DelayedAbind-method

(DelayedOp-class), 24
dim,DelayedAperm-method

(DelayedOp-class), 24
dim,DelayedArray-method

(DelayedArray-class), 12
dim,DelayedNaryIsoOp-method

(DelayedOp-class), 24
dim,DelayedSubset-method

(DelayedOp-class), 24
dim,DelayedUnaryIsoOp-method

(DelayedOp-class), 24
dim,RegularArrayGrid-method

(ArrayGrid-class), 2
dim,RleArraySeed-method

(RleArray-class), 35
dim<-,DelayedArray-method

(DelayedArray-class), 12
dimnames,DelayedAbind-method

(DelayedOp-class), 24
dimnames,DelayedAperm-method

(DelayedOp-class), 24
dimnames,DelayedArray-method

(DelayedArray-class), 12
dimnames,DelayedDimnames-method

(DelayedOp-class), 24
dimnames,DelayedNaryIsoOp-method

(DelayedOp-class), 24
dimnames,DelayedSubset-method

(DelayedOp-class), 24
dimnames,DelayedUnaryIsoOp-method

(DelayedOp-class), 24
dimnames,RleArraySeed-method

(RleArray-class), 35
dimnames<-,DelayedArray-method

(DelayedArray-class), 12
dims (ArrayGrid-class), 2
dims,ArrayGrid-method

(ArrayGrid-class), 2
dlogis, 18
dlogis (DelayedArray-stats), 17
dlogis,DelayedArray-method

(DelayedArray-stats), 17
dnorm, 18
dnorm (DelayedArray-stats), 17
dnorm,DelayedArray-method

(DelayedArray-stats), 17
downsample (ArrayGrid-class), 2
downsample,ArbitraryArrayGrid-method

(ArrayGrid-class), 2
downsample,RegularArrayGrid-method

(ArrayGrid-class), 2
dpois, 18
dpois (DelayedArray-stats), 17
dpois,DelayedArray-method

(DelayedArray-stats), 17
drop,DelayedArray-method

(DelayedArray-class), 12

effectiveGrid (block_processing), 10
end,ArrayViewport-method

(ArrayGrid-class), 2
extract_array, 25, 41
extract_array,ChunkedRleArraySeed-method

(RleArray-class), 35
extract_array,DelayedAbind-method

(DelayedOp-class), 24
extract_array,DelayedAperm-method

(DelayedOp-class), 24
extract_array,DelayedArray-method

(DelayedArray-class), 12

INDEX 47

extract_array,DelayedNaryIsoOp-method
(DelayedOp-class), 24

extract_array,DelayedSubassign-method
(DelayedOp-class), 24

extract_array,DelayedSubset-method
(DelayedOp-class), 24

extract_array,DelayedUnaryIsoOp-method
(DelayedOp-class), 24

extract_array,DelayedUnaryIsoOpStack-method
(DelayedOp-class), 24

extract_array,DelayedUnaryIsoOpWithArgs-method
(DelayedOp-class), 24

extract_array,SolidRleArraySeed-method
(RleArray-class), 35

extract_array,SparseArraySeed-method
(SparseArraySeed-class), 40

extract_sparse_array
(SparseArraySeed-class), 40

extract_sparse_array,DelayedAbind-method
(DelayedOp-class), 24

extract_sparse_array,DelayedAperm-method
(DelayedOp-class), 24

extract_sparse_array,DelayedNaryIsoOp-method
(DelayedOp-class), 24

extract_sparse_array,DelayedSubassign-method
(DelayedOp-class), 24

extract_sparse_array,DelayedSubset-method
(DelayedOp-class), 24

extract_sparse_array,DelayedUnaryIsoOp-method
(DelayedOp-class), 24

extract_sparse_array,DelayedUnaryIsoOpStack-method
(DelayedOp-class), 24

extract_sparse_array,DelayedUnaryIsoOpWithArgs-method
(DelayedOp-class), 24

extract_sparse_array,SparseArraySeed-method
(SparseArraySeed-class), 40

get_type_size (blockGrid), 6
getAutoBlockLength (blockGrid), 6
getAutoBlockShape (blockGrid), 6
getAutoBlockSize (blockGrid), 6
getAutoBPPARAM (block_processing), 10
getAutoGridMaker (block_processing), 10
getRealizationBackend, 34, 35
getRealizationBackend

(RealizationSink), 31
grepl,ANY,DelayedArray-method

(DelayedArray-utils), 19
gsub,ANY,ANY,DelayedArray-method

(DelayedArray-utils), 19

HDF5-dump-management, 32
HDF5Array, 12, 14, 18, 20, 31, 32, 35, 36

is.finite,DelayedArray-method
(DelayedArray-utils), 19

is.infinite,DelayedArray-method
(DelayedArray-utils), 19

is.na, 20
is.na,DelayedArray-method

(DelayedArray-utils), 19
is.nan,DelayedArray-method

(DelayedArray-utils), 19
is_noop (DelayedOp-class), 24
is_noop,DelayedAperm-method

(DelayedOp-class), 24
is_noop,DelayedDimnames-method

(DelayedOp-class), 24
is_noop,DelayedSubassign-method

(DelayedOp-class), 24
is_noop,DelayedSubset-method

(DelayedOp-class), 24
is_sparse (read_block), 29
is_sparse,ANY-method

(SparseArraySeed-class), 40
is_sparse,DelayedAbind-method

(DelayedOp-class), 24
is_sparse,DelayedAperm-method

(DelayedOp-class), 24
is_sparse,DelayedNaryIsoOp-method

(DelayedOp-class), 24
is_sparse,DelayedSubassign-method

(DelayedOp-class), 24
is_sparse,DelayedSubset-method

(DelayedOp-class), 24
is_sparse,DelayedUnaryIsoOp-method

(DelayedOp-class), 24
is_sparse,DelayedUnaryIsoOpStack-method

(DelayedOp-class), 24
is_sparse,DelayedUnaryIsoOpWithArgs-method

(DelayedOp-class), 24
is_sparse,SparseArraySeed-method

(SparseArraySeed-class), 40
isLinear (makeCappedVolumeBox), 27
isLinear,ArrayGrid-method

(makeCappedVolumeBox), 27
isLinear,ArrayViewport-method

(makeCappedVolumeBox), 27

lengths,ArrayGrid-method
(ArrayGrid-class), 2

lengths,DelayedArray-method
(DelayedArray-utils), 19

linearInd, 26

makeCappedVolumeBox, 7, 8, 27

48 INDEX

makeNindexFromArrayViewport
(ArrayGrid-class), 2

makeRegularArrayGridOfCappedLengthViewports
(makeCappedVolumeBox), 27

mapToGrid, 3
Math, 19, 20
Math2, 19, 20
matrix, 23
matrixClass (DelayedArray-class), 12
matrixClass,DelayedArray-method

(DelayedArray-class), 12
matrixClass,RleArray-method

(RleArray-class), 35
maxlength (ArrayGrid-class), 2
maxlength,ANY-method (ArrayGrid-class),

2
maxlength,ArbitraryArrayGrid-method

(ArrayGrid-class), 2
maxlength,RegularArrayGrid-method

(ArrayGrid-class), 2
mean, 20
mean (DelayedArray-utils), 19
mean,DelayedArray-method

(DelayedArray-utils), 19
mean.DelayedArray (DelayedArray-utils),

19
MulticoreParam, 11

names,DelayedArray-method
(DelayedArray-class), 12

names<-,DelayedArray-method
(DelayedArray-class), 12

nchar,DelayedArray-method
(DelayedArray-utils), 19

netSubsetAndAperm (showtree), 37
netSubsetAndAperm,ANY-method

(showtree), 37
netSubsetAndAperm,DelayedArray-method

(showtree), 37
new_DelayedArray (DelayedArray-class),

12
nseed (DelayedArray-class), 12
nseed,ANY-method (DelayedArray-class),

12
nzdata (SparseArraySeed-class), 40
nzdata,SparseArraySeed-method

(SparseArraySeed-class), 40

Ops, 19, 20

path (DelayedArray-class), 12
path,DelayedArray-method

(DelayedArray-class), 12

path<-,DelayedArray-method
(DelayedArray-class), 12

pbinom (DelayedArray-stats), 17
pbinom,DelayedArray-method

(DelayedArray-stats), 17
plogis (DelayedArray-stats), 17
plogis,DelayedArray-method

(DelayedArray-stats), 17
pmax2 (DelayedArray-utils), 19
pmax2,ANY,ANY-method

(DelayedArray-utils), 19
pmax2,DelayedArray,DelayedArray-method

(DelayedArray-utils), 19
pmax2,DelayedArray,vector-method

(DelayedArray-utils), 19
pmax2,vector,DelayedArray-method

(DelayedArray-utils), 19
pmin2 (DelayedArray-utils), 19
pmin2,ANY,ANY-method

(DelayedArray-utils), 19
pmin2,DelayedArray,DelayedArray-method

(DelayedArray-utils), 19
pmin2,DelayedArray,vector-method

(DelayedArray-utils), 19
pmin2,vector,DelayedArray-method

(DelayedArray-utils), 19
pnorm (DelayedArray-stats), 17
pnorm,DelayedArray-method

(DelayedArray-stats), 17
ppois (DelayedArray-stats), 17
ppois,DelayedArray-method

(DelayedArray-stats), 17

qbinom (DelayedArray-stats), 17
qbinom,DelayedArray-method

(DelayedArray-stats), 17
qlogis (DelayedArray-stats), 17
qlogis,DelayedArray-method

(DelayedArray-stats), 17
qnorm (DelayedArray-stats), 17
qnorm,DelayedArray-method

(DelayedArray-stats), 17
qpois (DelayedArray-stats), 17
qpois,DelayedArray-method

(DelayedArray-stats), 17

range (DelayedArray-utils), 19
range,DelayedArray-method

(DelayedArray-utils), 19
range.DelayedArray

(DelayedArray-utils), 19
ranges,ArrayViewport-method

(ArrayGrid-class), 2

INDEX 49

rbind, 6
rbind (DelayedArray-utils), 19
rbind,DelayedArray-method

(DelayedArray-utils), 19
read_block, 3, 11, 29
read_block,ANY-method (read_block), 29
read_sparse_block, 41
read_sparse_block (read_block), 29
read_sparse_block,ANY-method

(read_block), 29
read_sparse_block,SparseArraySeed-method

(read_block), 29
RealizationSink, 8, 11, 31
RealizationSink-class

(RealizationSink), 31
realize, 13, 34, 36
realize,ANY-method (realize), 34
refdim (ArrayGrid-class), 2
refdim,ArbitraryArrayGrid-method

(ArrayGrid-class), 2
refdim,ArrayViewport-method

(ArrayGrid-class), 2
refdim,RegularArrayGrid-method

(ArrayGrid-class), 2
RegularArrayGrid, 8, 27
RegularArrayGrid (ArrayGrid-class), 2
RegularArrayGrid-class

(ArrayGrid-class), 2
Rle, 35, 36
RleArray, 13, 31, 32, 35
RleArray (RleArray-class), 35
RleArray-class, 35
RleArraySeed-class (RleArray-class), 35
RleMatrix (RleArray-class), 35
RleMatrix-class (RleArray-class), 35
RleRealizationSink-class

(RleArray-class), 35
round,DelayedArray-method

(DelayedArray-utils), 19
rowGrid, 11
rowGrid (blockGrid), 6
rowMaxs, 23
rowMaxs (DelayedMatrix-stats), 22
rowMaxs,DelayedMatrix-method

(DelayedMatrix-stats), 22
rowMeans (DelayedMatrix-stats), 22
rowMeans,DelayedMatrix-method

(DelayedMatrix-stats), 22
rowMins (DelayedMatrix-stats), 22
rowMins,DelayedMatrix-method

(DelayedMatrix-stats), 22
rowRanges (DelayedMatrix-stats), 22

rowRanges,DelayedMatrix-method
(DelayedMatrix-stats), 22

rowSums, 23
rowSums (DelayedMatrix-stats), 22
rowSums,DelayedMatrix-method

(DelayedMatrix-stats), 22

S4groupGeneric, 20
seed (DelayedArray-class), 12
seed,DelayedOp-method

(DelayedArray-class), 12
seed<- (DelayedArray-class), 12
seed<-,DelayedOp-method

(DelayedArray-class), 12
setAutoBlockShape (blockGrid), 6
setAutoBlockSize (blockGrid), 6
setAutoBPPARAM (block_processing), 10
setAutoGridMaker, 8
setAutoGridMaker (block_processing), 10
setRealizationBackend, 20, 35
setRealizationBackend

(RealizationSink), 31
show,ArrayGrid-method

(ArrayGrid-class), 2
show,ArrayViewport-method

(ArrayGrid-class), 2
show,DelayedArray-method

(DelayedArray-class), 12
show,DelayedOp-method (showtree), 37
showtree, 24, 25, 37
signif,DelayedArray-method

(DelayedArray-utils), 19
simplify, 24
simplify (showtree), 37
simplify,ANY-method (showtree), 37
simplify,DelayedAperm-method

(showtree), 37
simplify,DelayedArray-method

(showtree), 37
simplify,DelayedDimnames-method

(showtree), 37
simplify,DelayedSubassign-method

(showtree), 37
simplify,DelayedSubset-method

(showtree), 37
simplify,DelayedUnaryIsoOpStack-method

(showtree), 37
simplify,DelayedUnaryIsoOpWithArgs-method

(showtree), 37
SnowParam, 11
SolidRleArraySeed-class

(RleArray-class), 35
sparse2dense (SparseArraySeed-class), 40

50 INDEX

SparseArraySeed
(SparseArraySeed-class), 40

SparseArraySeed-class, 40
sparsity (SparseArraySeed-class), 40
sparsity,SparseArraySeed-method

(SparseArraySeed-class), 40
split,DelayedArray,ANY-method

(DelayedArray-class), 12
split.DelayedArray

(DelayedArray-class), 12
splitAsList,DelayedArray-method

(DelayedArray-class), 12
start,ArrayViewport-method

(ArrayGrid-class), 2
sub,ANY,ANY,DelayedArray-method

(DelayedArray-utils), 19
Summary, 19
summary,DelayedAbind-method

(DelayedOp-class), 24
summary,DelayedAperm-method

(DelayedOp-class), 24
summary,DelayedDimnames-method

(DelayedOp-class), 24
summary,DelayedNaryIsoOp-method

(DelayedOp-class), 24
summary,DelayedOp-method

(DelayedOp-class), 24
summary,DelayedSubassign-method

(DelayedOp-class), 24
summary,DelayedSubset-method

(DelayedOp-class), 24
summary,DelayedUnaryIsoOpStack-method

(DelayedOp-class), 24
summary,DelayedUnaryIsoOpWithArgs-method

(DelayedOp-class), 24
summary.DelayedAbind (DelayedOp-class),

24
summary.DelayedAperm (DelayedOp-class),

24
summary.DelayedDimnames

(DelayedOp-class), 24
summary.DelayedNaryIsoOp

(DelayedOp-class), 24
summary.DelayedOp (DelayedOp-class), 24
summary.DelayedSubassign

(DelayedOp-class), 24
summary.DelayedSubset

(DelayedOp-class), 24
summary.DelayedUnaryIsoOpStack

(DelayedOp-class), 24
summary.DelayedUnaryIsoOpWithArgs

(DelayedOp-class), 24

supportedRealizationBackends
(RealizationSink), 31

sweep (DelayedArray-utils), 19
sweep,DelayedArray-method

(DelayedArray-utils), 19

t (DelayedArray-utils), 19
table, 20
table (DelayedArray-utils), 19
table,DelayedArray-method

(DelayedArray-utils), 19
tolower,DelayedArray-method

(DelayedArray-utils), 19
toupper,DelayedArray-method

(DelayedArray-utils), 19
type (DelayedArray-class), 12
type,RleRealizationSink-method

(RleArray-class), 35

unique (DelayedArray-utils), 19
unique,DelayedArray-method

(DelayedArray-utils), 19
unique.DelayedArray

(DelayedArray-utils), 19
updateObject,ConformableSeedCombiner-method

(DelayedOp-class), 24
updateObject,DelayedArray-method

(DelayedArray-class), 12
updateObject,DelayedOp-method

(DelayedOp-class), 24
updateObject,SeedBinder-method

(DelayedOp-class), 24
updateObject,SeedDimPicker-method

(DelayedOp-class), 24

which,DelayedArray-method
(DelayedArray-utils), 19

width,ArrayViewport-method
(ArrayGrid-class), 2

write_block, 32
write_block (read_block), 29
write_block,ANY-method (read_block), 29
write_block,arrayRealizationSink-method

(RealizationSink), 31
write_block,RleRealizationSink-method

(RleArray-class), 35
write_sparse_block (read_block), 29
write_sparse_block,ANY-method

(read_block), 29
writeHDF5Array, 12, 20

	ArrayGrid-class
	bind-arrays
	blockGrid
	block_processing
	DelayedArray-class
	DelayedArray-stats
	DelayedArray-utils
	DelayedMatrix-stats
	DelayedOp-class
	linearInd
	makeCappedVolumeBox
	read_block
	RealizationSink
	realize
	RleArray-class
	showtree
	SparseArraySeed-class
	Index

