K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"          
##  [3] "CD3(Cd112)Di"           "CD235-61-7-15(In113)Di"
##  [5] "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"         
##  [9] "IgD(Nd145)Di"           "CD79b(Nd146)Di"        
## [11] "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"         
## [15] "IgM(Eu153)Di"           "Kappa(Sm154)Di"        
## [17] "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"          
## [21] "Rag1(Dy164)Di"          "PreBCR(Ho165)Di"       
## [23] "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"         
## [27] "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"  
##  [4] "pS6(Yb172)Di"    "cPARP(La139)Di"  "pPLCg2(Pr141)Di"
##  [7] "pSrc(Nd144)Di"   "Ki67(Sm152)Di"   "pErk12(Gd155)Di"
## [10] "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"  
## [16] "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 209 806 350 77 845 898 811 638 369 383 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  209  691  763  199  884  463  638  292  917    12
##  [2,]  806  792  686  422  938  758  591  768   11   633
##  [3,]  350  588  776   56  362  639  280  111  226   379
##  [4,]   77  414  612  273  297  336  457  820  847   410
##  [5,]  845  347  691  699  720  199  159  884   12   763
##  [6,]  898  270  778   91  153  640  869  163  331    26
##  [7,]  811  750  719  138  446  327  592  564  507   364
##  [8,]  638  284  123  356  842  399  999  532  731   953
##  [9,]  369  894   73 1000  555  424  329  703   98   759
## [10,]  383  722  864  606  207  262  483  255  256   679
## [11,]  830  792  768  841  897  422  590  633  511   866
## [12,]  347  199  498   92  292   80  463  924  845   991
## [13,]  325   51  819  730   88  666  949  433  825   516
## [14,]  236  887  289  380   81  230  642  687  321   651
## [15,]  366  618  274  308  201  602  302  810  738   620
## [16,]  142  111  246  341   95  600  576  908  233    57
## [17,]  633  682  349  783  792  437  591  441   83   511
## [18,]  803  466  959  775  191  781  197  508   84   594
## [19,]  236  651  513  858  289  595  791  352  107   219
## [20,]  145  336  706  779  477  273  636  300  355   855
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 3.47 4.26 4.06 4.13 4.17 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]
##  [1,] 3.468951 3.640917 4.075417 4.131262 4.331332 4.381185 4.456790
##  [2,] 4.257666 4.997540 5.163658 5.323673 5.454072 5.470879 5.561278
##  [3,] 4.064624 4.169140 4.405604 4.443858 4.472271 4.687441 4.733158
##  [4,] 4.126776 4.184986 4.227208 4.363565 4.366096 4.387111 4.536982
##  [5,] 4.167909 4.492409 4.555008 4.593553 4.614907 4.635549 4.648565
##  [6,] 2.614052 2.780300 2.907041 2.936318 3.092596 3.157273 3.184971
##  [7,] 3.183396 3.219186 3.307687 3.447516 3.452982 3.484379 3.498521
##  [8,] 4.404500 4.536367 4.637186 4.796344 5.120571 5.307969 5.317012
##  [9,] 2.874441 3.546798 3.898668 4.140438 4.295106 4.436593 4.472910
## [10,] 2.912934 3.012112 3.165423 3.230329 3.340812 3.447265 3.597304
## [11,] 3.920033 4.024391 4.220534 4.234330 4.258739 4.308642 4.314411
## [12,] 4.059664 4.191703 4.323342 4.331572 4.515605 4.524020 4.556114
## [13,] 2.616470 2.626894 2.680070 2.901289 2.917199 2.990677 3.029837
## [14,] 3.862732 4.026170 4.114932 4.159887 4.210450 4.247808 4.249349
## [15,] 2.396558 2.781732 2.816422 3.174945 3.200948 3.348340 3.372321
## [16,] 4.133291 4.350369 4.431408 4.457864 4.521023 4.581570 4.675234
## [17,] 3.408298 4.105685 4.237876 4.512711 4.569172 4.714625 4.740133
## [18,] 2.897730 2.899267 3.066022 3.206636 3.294599 3.305260 3.349499
## [19,] 3.132644 3.201004 3.639797 3.831475 3.868862 3.922722 3.997139
## [20,] 3.586636 3.682744 3.800485 3.800792 3.944320 4.024833 4.034886
##           [,8]     [,9]    [,10]
##  [1,] 4.552660 4.657486 4.818772
##  [2,] 5.605012 5.620357 5.695750
##  [3,] 4.824137 4.835348 4.880660
##  [4,] 4.594899 4.616670 4.631144
##  [5,] 4.740029 4.807212 5.062603
##  [6,] 3.269542 3.297179 3.364361
##  [7,] 3.513714 3.550226 3.617443
##  [8,] 5.324060 5.436872 5.445113
##  [9,] 4.506289 4.547244 4.639227
## [10,] 3.667046 3.716201 3.779358
## [11,] 4.343474 4.352183 4.410626
## [12,] 4.610779 4.626337 4.668932
## [13,] 3.067011 3.068922 3.154746
## [14,] 4.259102 4.300524 4.313850
## [15,] 3.400523 3.412980 3.421243
## [16,] 4.715303 4.733182 4.747115
## [17,] 4.991035 5.012193 5.012972
## [18,] 3.407082 3.497627 3.498950
## [19,] 4.010884 4.059065 4.074269
## [20,] 4.040303 4.049032 4.080342

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 x 34
##    `pCrkL(Lu175)Di~ `pCREB(Yb176)Di~ `pBTK(Yb171)Di.~ `pS6(Yb172)Di.I~
##               <dbl>            <dbl>            <dbl>            <dbl>
##  1            0.955            0.946                1            0.752
##  2            0.924            0.946                1            0.923
##  3            0.824            0.993                1            0.752
##  4            0.869            0.946                1            0.617
##  5            0.993            0.955                1            0.579
##  6            0.937            1                    1            0.692
##  7            0.956            0.972                1            0.868
##  8            0.926            0.955                1            0.724
##  9            0.788            0.946                1            0.631
## 10            0.869            0.946                1            0.822
## # ... with 990 more rows, and 30 more variables:
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, `pAKT(Tb159)Di.IL7.qvalue` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.qvalue` <dbl>, `pP38(Tm169)Di.IL7.qvalue` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>, `pSyk(Dy162)Di.IL7.qvalue` <dbl>,
## #   `tIkBa(Er166)Di.IL7.qvalue` <dbl>, `pCrkL(Lu175)Di.IL7.change` <dbl>,
## #   `pCREB(Yb176)Di.IL7.change` <dbl>, `pBTK(Yb171)Di.IL7.change` <dbl>,
## #   `pS6(Yb172)Di.IL7.change` <dbl>, `cPARP(La139)Di.IL7.change` <dbl>,
## #   `pPLCg2(Pr141)Di.IL7.change` <dbl>, `pSrc(Nd144)Di.IL7.change` <dbl>,
## #   `Ki67(Sm152)Di.IL7.change` <dbl>, `pErk12(Gd155)Di.IL7.change` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.change` <dbl>, `pAKT(Tb159)Di.IL7.change` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.change` <dbl>, `pP38(Tm169)Di.IL7.change` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.change` <dbl>, `pSyk(Dy162)Di.IL7.change` <dbl>,
## #   `tIkBa(Er166)Di.IL7.change` <dbl>, IL7.fraction.cond.2 <dbl>,
## #   density <dbl>

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 x 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(~
##             <dbl>          <dbl>          <dbl>            <dbl>
##  1         0.272         -0.133           0.572            0.471
##  2        -0.0797        -0.258          -0.168            0.840
##  3        -0.173         -0.127          -0.149           -0.246
##  4        -0.295         -0.577          -0.119           -0.740
##  5        -0.0385        -0.224          -0.194            0.227
##  6        -0.230         -0.227          -0.117            0.240
##  7        -0.190         -0.0925         -0.479            0.764
##  8        -0.243         -0.229          -0.141           -0.781
##  9        -0.388          0.832           1.07             0.247
## 10         0.291         -0.161          -0.104           -1.50 
## # ... with 20 more rows, and 47 more variables: `CD3(Cd114)Di` <dbl>,
## #   `CD45(In115)Di` <dbl>, `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>,
## #   `IgD(Nd145)Di` <dbl>, `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>,
## #   `CD34(Nd148)Di` <dbl>, `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>,
## #   `IgM(Eu153)Di` <dbl>, `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>,
## #   `Lambda(Gd157)Di` <dbl>, `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>,
## #   `Rag1(Dy164)Di` <dbl>, `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>,
## #   `CD38(Er168)Di` <dbl>, `CD40(Er170)Di` <dbl>, `CD33(Yb173)Di` <dbl>,
## #   `HLA-DR(Yb174)Di` <dbl>, Time <dbl>, Cell_length <dbl>,
## #   `cPARP(La139)Di` <dbl>, `pPLCg2(Pr141)Di` <dbl>,
## #   `pSrc(Nd144)Di` <dbl>, `pSTAT5(Nd150)Di` <dbl>, `Ki67(Sm152)Di` <dbl>,
## #   `pErk12(Gd155)Di` <dbl>, `pSTAT3(Gd158)Di` <dbl>,
## #   `pAKT(Tb159)Di` <dbl>, `pBLNK(Gd160)Di` <dbl>, `pSyk(Dy162)Di` <dbl>,
## #   `tIkBa(Er166)Di` <dbl>, `pP38(Tm169)Di` <dbl>, `pBTK(Yb171)Di` <dbl>,
## #   `pS6(Yb172)Di` <dbl>, `pCrkL(Lu175)Di` <dbl>, `pCREB(Yb176)Di` <dbl>,
## #   `DNA1(Ir191)Di` <dbl>, `DNA2(Ir193)Di` <dbl>,
## #   `Viability1(Pt195)Di` <dbl>, `Viability2(Pt196)Di` <dbl>,
## #   wanderlust <dbl>, condition <chr>
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.205 0.171 0.202 0.211 0.193 ...