loci2path 1.0.0
loci2path
takes query regions in the format of GenomicRanges
. Only the
Genomic Locations (chromosomes, start and end position) will be used. Strand
information and other metadata columns are ignored.
In the demo data, 47 regions associated with Psoriasis disease were downloaded
from immunoBase.org and used as demo query regions.
require(GenomicRanges)
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## Filter, Find, Map, Position, Reduce, anyDuplicated, append,
## as.data.frame, basename, cbind, colMeans, colSums, colnames,
## dirname, do.call, duplicated, eval, evalq, get, grep, grepl,
## intersect, is.unsorted, lapply, lengths, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, rank, rbind,
## rowMeans, rowSums, rownames, sapply, setdiff, sort, table,
## tapply, union, unique, unsplit, which, which.max, which.min
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
## Loading required package: IRanges
## Loading required package: GenomeInfoDb
bed.file <- system.file("extdata", "query/Psoriasis.BED", package = "loci2path")
query.bed <- read.table(bed.file, header=FALSE)
colnames(query.bed) <- c("chr","start","end")
query.gr <- makeGRangesFromDataFrame(query.bed)
eQTL sets are entities recording 1-to-1 links between eQTL SNPs and genes. eQTL set entity also contains the following information: tissue name for the eQTL study, IDs and genomic ranges for the eQTL SNPs, IDs for the associated genes.
eQTL set can be constructed manually by specifying the corresponding information in each slot.
eQTL set list is a list of multiple eQTL sets, usually collected from different tissues.
Below is an example to construct customized eQTL set and eQTL set list using demo data files. In the demo data folder, three eQTL sets downloaded from GTEx project are included. Due to the large size, each eQTL dataset is down sampled to 3000 records for demostration purpose.
library(loci2path)
##
## Attaching package: 'loci2path'
## The following object is masked _by_ '.GlobalEnv':
##
## query.gr
library(GenomicRanges)
brain.file <- system.file("extdata", "eqtl/brain.gtex.txt",
package="loci2path")
tab <- read.table(brain.file, stringsAsFactors=FALSE, header=TRUE)
snp.gr <- GRanges(seqnames=Rle(tab$snp.chr),
ranges=IRanges(start=tab$snp.pos,
width=1))
brain.eset <- eqtlSet(tissue="brain",
eqtlId=tab$snp.id,
eqtlRange=snp.gr,
gene=as.character(tab$gene.entrez.id))
brain.eset
## An object of class eqtlSet
## eQTL collected from tissue: brain
## number of eQTLs: 3000
## number of associated genes: 815
skin.file <- system.file("extdata", "eqtl/skin.gtex.txt", package="loci2path")
tab=read.table(skin.file, stringsAsFactors=FALSE, header=TRUE)
snp.gr <- GRanges(seqnames=Rle(tab$snp.chr),
ranges=IRanges(start=tab$snp.pos,
width=1))
skin.eset <- eqtlSet(tissue="skin",
eqtlId=tab$snp.id,
eqtlRange=snp.gr,
gene=as.character(tab$gene.entrez.id))
skin.eset
## An object of class eqtlSet
## eQTL collected from tissue: skin
## number of eQTLs: 3000
## number of associated genes: 1588
blood.file <- system.file("extdata", "eqtl/blood.gtex.txt",
package="loci2path")
tab <- read.table(blood.file, stringsAsFactors=FALSE, header=TRUE)
snp.gr <- GRanges(seqnames=Rle(tab$snp.chr),
ranges=IRanges(start=tab$snp.pos,
width=1))
blood.eset <- eqtlSet(tissue="blood",
eqtlId=tab$snp.id,
eqtlRange=snp.gr,
gene=as.character(tab$gene.entrez.id))
blood.eset
## An object of class eqtlSet
## eQTL collected from tissue: blood
## number of eQTLs: 3000
## number of associated genes: 1419
eset.list <- list(Brain=brain.eset, Skin=skin.eset, Blood=blood.eset)
eset.list
## $Brain
## An object of class eqtlSet
## eQTL collected from tissue: brain
## number of eQTLs: 3000
## number of associated genes: 815
##
## $Skin
## An object of class eqtlSet
## eQTL collected from tissue: skin
## number of eQTLs: 3000
## number of associated genes: 1588
##
## $Blood
## An object of class eqtlSet
## eQTL collected from tissue: blood
## number of eQTLs: 3000
## number of associated genes: 1419
A geneset collection contains a list of gene sets, with each gene set is represented as a vector of member genes. A vector of description is also provided as the metadata slot for each gene set. The total number of gene in the geneset collection is also required to perform the enrichment test. In this tutorial the BIOCARTA pathway collection was downloaded from MSigDB.
biocarta.link.file <- system.file("extdata", "geneSet/biocarta.txt",
package="loci2path")
biocarta.set.file <- system.file("extdata", "geneSet/biocarta.set.txt",
package="loci2path")
biocarta.link <- read.delim(biocarta.link.file, header=FALSE,
stringsAsFactors=FALSE)
set.geneid <- read.table(biocarta.set.file, stringsAsFactors=FALSE)
set.geneid <- strsplit(set.geneid[,1], split=",")
names(set.geneid) <- biocarta.link[,1]
head(biocarta.link)
## V1
## 1 BIOCARTA_RELA_PATHWAY
## 2 BIOCARTA_NO1_PATHWAY
## 3 BIOCARTA_CSK_PATHWAY
## 4 BIOCARTA_SRCRPTP_PATHWAY
## 5 BIOCARTA_AMI_PATHWAY
## 6 BIOCARTA_GRANULOCYTES_PATHWAY
## V2
## 1 http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_RELA_PATHWAY
## 2 http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_NO1_PATHWAY
## 3 http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_CSK_PATHWAY
## 4 http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_SRCRPTP_PATHWAY
## 5 http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_AMI_PATHWAY
## 6 http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_GRANULOCYTES_PATHWAY
head(set.geneid)
## $BIOCARTA_RELA_PATHWAY
## [1] "8517" "1147" "2033" "5970" "7124" "3551" "7133" "8841" "7132" "7189"
## [11] "8772" "1387" "8737" "4790" "4792" "8717"
##
## $BIOCARTA_NO1_PATHWAY
## [1] "5140" "805" "58" "124827" "801" "5577" "3827" "6262"
## [9] "1128" "7422" "3320" "6541" "5139" "5138" "624" "147908"
## [17] "121916" "4846" "1134" "2321" "3791" "5567" "7135" "5568"
## [25] "2324" "857" "207" "5573" "5576" "5575" "808" "5592"
## [33] "5593"
##
## $BIOCARTA_CSK_PATHWAY
## [1] "7535" "1445" "920" "5577" "5567" "915" "5568" "916" "917" "2778"
## [11] "2792" "6957" "2782" "6955" "5573" "5576" "919" "1387" "5575" "107"
## [21] "3932" "5788" "3123" "3122"
##
## $BIOCARTA_SRCRPTP_PATHWAY
## [1] "1445" "6714" "994" "995" "5579" "2885" "993" "5578" "891" "5786"
## [11] "983"
##
## $BIOCARTA_AMI_PATHWAY
## [1] "2159" "7035" "2147" "1282" "2149" "1284" "1285" "1286" "5627"
## [10] "2266" "5624" "2243" "5340" "462" "2244" "5327" "1288" "51327"
## [19] "1287" "2155"
##
## $BIOCARTA_GRANULOCYTES_PATHWAY
## [1] "5175" "7124" "3552" "3683" "3684" "3383" "6402" "6403" "3458" "6404"
## [11] "727" "3689" "1440" "3576"
In order to build gene set, we also need to know the total number of genes in order to perform enrichment test. In this study, the total number of gene in MSigDB pathway collection is 31,847(Liberzon et al. 2015)
#build geneSet
biocarta <- geneSet(
numGene=31847,
description=biocarta.link[,2],
geneSetList=set.geneid)
biocarta
## An object of class geneSet
## Number of gene sets: 217
## 6 ~ 87 genes within sets
#query from one eQTL set.
res.one <- query(
query.gr=query.gr,
loci=skin.eset,
path=biocarta)
#enrichment result table
res.one$result.table
## name_pthw eQTL_pthw eQTL_total_tissue eQTL_query
## V41 BIOCARTA_CLASSIC_PATHWAY 14 3000 78
## V42 BIOCARTA_COMP_PATHWAY 14 3000 78
## V111 BIOCARTA_LECTIN_PATHWAY 14 3000 78
## eQTL_pthw_query log_ratio pval_lr pval_fisher num_gene_set
## V41 2 1.703749 NA 0.04961954 14
## V42 2 1.703749 NA 0.04961954 19
## V111 2 1.703749 NA 0.04961954 12
## num_gene_query num_gene_hit gene_hit log_ratio_gene pval_fisher_gene
## V41 29 1 721 4.362345 0.01267584
## V42 29 1 721 4.056964 0.01716522
## V111 29 1 721 4.516496 0.01087455
#all the genes associated with eQTLs covered by the query region
res.one$cover.gene
## [1] "100129271" "353134" "353144" "353135" "130872" "11127"
## [7] "64167" "3106" "253018" "285834" "5460" "170679"
## [13] "3107" "100130889" "100507436" "721" "4277" "23586"
## [19] "10330" "283635" "80270" "84148" "29108" "201229"
## [25] "27175" "4669" "11201" "57153" "9825"
#query from one eQTL set.
res.esetlist <- query(
query.gr=query.gr,
loci=eset.list,
path=biocarta)
## Start query: 3 eqtl Sets...
## 1 of 3: Brain...
## 2 of 3: Skin...
## 3 of 3: Blood...
##
## done!
#enrichment result table, tissue column added
resultTable(res.esetlist)
## tissue name_pthw eQTL_pthw eQTL_total_tissue eQTL_query
## 1 Blood BIOCARTA_LECTIN_PATHWAY 24 3000 60
## 2 Blood BIOCARTA_CLASSIC_PATHWAY 24 3000 60
## 3 Blood BIOCARTA_COMP_PATHWAY 24 3000 60
## 4 Skin BIOCARTA_LECTIN_PATHWAY 14 3000 78
## 5 Skin BIOCARTA_CLASSIC_PATHWAY 14 3000 78
## 6 Skin BIOCARTA_COMP_PATHWAY 14 3000 78
## 7 Blood BIOCARTA_DC_PATHWAY 4 3000 60
## 8 Blood BIOCARTA_CHREBP2_PATHWAY 7 3000 60
## eQTL_pthw_query log_ratio pval_lr pval_fisher num_gene_set num_gene_query
## 1 2 1.427116 NA 0.08196929 12 29
## 2 2 1.427116 NA 0.08196929 14 29
## 3 2 1.427116 NA 0.08196929 19 29
## 4 2 1.703749 NA 0.04961954 12 29
## 5 2 1.703749 NA 0.04961954 14 29
## 6 2 1.703749 NA 0.04961954 19 29
## 7 1 2.525729 NA 0.07766952 22 29
## 8 1 1.966113 NA 0.13199866 42 29
## num_gene_hit gene_hit log_ratio_gene pval_fisher_gene
## 1 2 720;721 5.209643 5.254381e-05
## 2 2 720;721 5.055492 7.236494e-05
## 3 2 720;721 4.750111 1.355988e-04
## 4 1 721 4.516496 1.087455e-02
## 5 1 721 4.362345 1.267584e-02
## 6 1 721 4.056964 1.716522e-02
## 7 1 3687 3.910360 1.984938e-02
## 8 1 6945 3.263733 3.756375e-02
#all the genes associated with eQTLs covered by the query region;
#names of the list are tissue names from eqtl set list
coveredGene(res.esetlist)
## $Brain
## [1] "84542" "130872" "64167" "3107" "100507436" "55012"
## [7] "116028" "9810" "84148" "27175" "11201" "164592"
##
## $Skin
## [1] "100129271" "353134" "353144" "353135" "130872" "11127"
## [7] "64167" "3106" "253018" "285834" "5460" "170679"
## [13] "3107" "100130889" "100507436" "721" "4277" "23586"
## [19] "10330" "283635" "80270" "84148" "29108" "201229"
## [25] "27175" "4669" "11201" "57153" "9825"
##
## $Blood
## [1] "130872" "6584" "51752" "64167" "100130889" "720"
## [7] "3106" "5460" "3107" "4277" "253018" "100507436"
## [13] "1590" "721" "6821" "6231" "280655" "283635"
## [19] "79759" "80270" "3687" "9810" "3965" "2548"
## [25] "2145" "6945" "10053" "57153" "147727"
#query from one eQTL set.
res.paral <- query(
query.gr=query.gr,
loci=eset.list,
path=biocarta,
parallel=TRUE)
## Start query: 3 eqtl Sets...
## Run in parallel mode...
##
## done!
#should return the same result as res.esetlist
result <- resultTable(res.esetlist)
#all the genes associated with eQTLs covered by the query region
res.one$cover.gene
## [1] "100129271" "353134" "353144" "353135" "130872" "11127"
## [7] "64167" "3106" "253018" "285834" "5460" "170679"
## [13] "3107" "100130889" "100507436" "721" "4277" "23586"
## [19] "10330" "283635" "80270" "84148" "29108" "201229"
## [25] "27175" "4669" "11201" "57153" "9825"
#all the genes associated with eQTLs covered by the query region;
#names of the list are tissue names from eqtl set list
coveredGene(res.esetlist)
## $Brain
## [1] "84542" "130872" "64167" "3107" "100507436" "55012"
## [7] "116028" "9810" "84148" "27175" "11201" "164592"
##
## $Skin
## [1] "100129271" "353134" "353144" "353135" "130872" "11127"
## [7] "64167" "3106" "253018" "285834" "5460" "170679"
## [13] "3107" "100130889" "100507436" "721" "4277" "23586"
## [19] "10330" "283635" "80270" "84148" "29108" "201229"
## [25] "27175" "4669" "11201" "57153" "9825"
##
## $Blood
## [1] "130872" "6584" "51752" "64167" "100130889" "720"
## [7] "3106" "5460" "3107" "4277" "253018" "100507436"
## [13] "1590" "721" "6821" "6231" "280655" "283635"
## [19] "79759" "80270" "3687" "9810" "3965" "2548"
## [25] "2145" "6945" "10053" "57153" "147727"
tissue.degree <- getTissueDegree(res.esetlist, eset.list)
#check gene-tissue mapping for each gene
head(tissue.degree$gene.tissue.map)
## $`100101267`
## [1] "Brain"
##
## $`100125556`
## [1] "Brain" "Skin" "Blood"
##
## $`100128081`
## [1] "Brain"
##
## $`100129583`
## [1] "Brain"
##
## $`100130418`
## [1] "Brain" "Skin"
##
## $`100130958`
## [1] "Brain" "Skin" "Blood"
#check degree for each gene
head(tissue.degree$gene.tissue.degree)
## 100101267 100125556 100128081 100129583 100130418 100130958
## 1 3 1 1 2 3
#average tissue degree for the input result table
tissue.degree$mean.tissue.degree
## [1] 2 2 2 2 2 2 1 1
#add avg. tissue degree to existing result table
res.tissue <- data.frame(resultTable(res.esetlist),
t.degree=tissue.degree$mean.tissue.degree)
In this case, in the generic function , only the argunment need to be provided. This will trigger the query of tissue specificity
#query tissue specificity
gr.tissue <- query(query.gr, loci=eset.list)
gr.tissue
## eQTL_gene_in_tissue eQTL_gene_in_query pval padj
## Blood 1419 29 8.922769e-14 2.676831e-13
## Skin 1588 29 1.432947e-12 2.865894e-12
## Brain 815 12 1.653003e-05 1.653003e-05
#extract tissue-pathway matrix
mat <- getMat(res.esetlist, test.method="gene")
#plot heatmap
heatmap.para <- getHeatmap(res.esetlist)
#plot word cloud
wc <- getWordcloud(res.esetlist)
##plot p-value distribution of result
#plot p-value distribution of result
pval <- getPval(res.esetlist, test.method="gene")
##obtain geneset description from object
#obtain geneset description from object
description <- getPathDescription(res.esetlist, biocarta)
head(description)
## [1] "http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_LECTIN_PATHWAY"
## [2] "http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_CLASSIC_PATHWAY"
## [3] "http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_COMP_PATHWAY"
## [4] "http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_LECTIN_PATHWAY"
## [5] "http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_CLASSIC_PATHWAY"
## [6] "http://www.broadinstitute.org/gsea/msigdb/cards/BIOCARTA_COMP_PATHWAY"
## R version 3.5.0 (2018-04-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] loci2path_1.0.0 GenomicRanges_1.32.0 GenomeInfoDb_1.16.0
## [4] IRanges_2.14.0 S4Vectors_0.18.0 BiocGenerics_0.26.0
## [7] BiocStyle_2.8.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.16 knitr_1.20 XVector_0.20.0
## [4] magrittr_1.5 zlibbioc_1.26.0 wordcloud_2.5
## [7] munsell_0.4.3 BiocParallel_1.14.0 colorspace_1.3-2
## [10] plyr_1.8.4 stringr_1.3.0 tools_3.5.0
## [13] grid_3.5.0 data.table_1.10.4-3 gtable_0.2.0
## [16] xfun_0.1 htmltools_0.3.6 yaml_2.1.18
## [19] rprojroot_1.3-2 digest_0.6.15 bookdown_0.7
## [22] GenomeInfoDbData_1.1.0 RColorBrewer_1.1-2 bitops_1.0-6
## [25] RCurl_1.95-4.10 slam_0.1-43 evaluate_0.10.1
## [28] rmarkdown_1.9 pheatmap_1.0.8 stringi_1.1.7
## [31] compiler_3.5.0 scales_0.5.0 backports_1.1.2
Liberzon, Arthur, Chet Birger, Helga Thorvaldsd??ttir, Mahmoud Ghandi, Jill P. Mesirov, and Pablo Tamayo. 2015. “The Molecular Signatures Database Hallmark Gene Set Collection.” Cell Systems 1 (6):417–25. https://doi.org/10.1016/j.cels.2015.12.004.