
ProCoNA: Protein Co-expression Network

Analysis

David L Gibbs

April 30, 2018

1 De Novo Peptide Networks

ProCoNA (protein co-expression network analysis) is an R package aimed at
constructing and analyzing peptide co-expression networks Gibbs et al. (2013).
These networks are constructed using data derived from mass spectroscopy ex-
periments (primarily accurate mass and time tag based LC-MS). This package
streamlines the process of building and testing networks using an S4 object to
bundle relevant network information for downstream analysis. The package is
built around calls to WGCNA functions (weighted gene co-expression network
analysis), which are fast and robust. ProCoNA adds a suite of statistical tests
particularly suited to the unique challenges found in proteomics. These tests in-
clude permutation testing for module structure and within-protein correlation.
Peptide co-expression networks bring novel approaches for biological interpre-
tation, quality control, inference of protein abundance, potentially resolving
degenerate peptide-protein mappings, and biomarker signature discovery.

Simulated peptide data is found in the data directory along with a simu-
lated mass tag database. The simulated peptide data was generated using the
OpenMS MSSimulator with a random selection of mouse proteins. The pep-
tide data has peptide IDs as column names and a row for each sample. The
simulated masstag database is a table mapping each peptide ID to a peptide
sequence and potential parent proteins. The simulated phenotypes data frame
has five phenotypes labeled A to E.

The first thing we want to do is to remove any peptides with excessive missing
values. We do that by taking peptides that are present in greater than 80% of
the samples.

> options(keep.source = TRUE, width = 70, stringsAsFactors=FALSE, digits=2)

> library(ProCoNA)

==

*

* Package WGCNA 1.63 loaded.

*

1

* Important note: It appears that your system supports multi-threading,

* but it is not enabled within WGCNA in R.

* To allow multi-threading within WGCNA with all available cores, use

*

* allowWGCNAThreads()

*

* within R. Use disableWGCNAThreads() to disable threading if necessary.

* Alternatively, set the following environment variable on your system:

*

* ALLOW_WGCNA_THREADS=<number_of_processors>

*

* for example

*

* ALLOW_WGCNA_THREADS=20

*

* To set the environment variable in linux bash shell, type

*

* export ALLOW_WGCNA_THREADS=20

*

* before running R. Other operating systems or shells will

* have a similar command to achieve the same aim.

*

==

> data(ProCoNA_Data)

> peptideData <- subsetPeptideData(peptideData, percentageNAsAllowed=0.2)

> dim(peptideData)

[1] 60 474

At this point we have a matrix of peptide data; peptides in columns and
samples in rows. The ProCoNA network is based upon a correlation network
that is scaled with an appropriate power to make the distribution of correlations
approximately scale free. The WGCNA function pickSoftThreshold works very
well for this.

> beta <- pickSoftThreshold(peptideData, networkType="signed", RsquaredCut=0.8)

Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.

1 1 0.18000 8.04 0.99 256.00 257.000 281.0

2 2 0.03970 1.58 0.99 143.00 143.000 173.0

3 3 0.00075 0.14 0.99 82.30 82.200 110.0

4 4 0.04620 -0.79 0.99 48.80 48.500 72.1

5 5 0.08320 -0.83 0.98 29.80 29.100 49.0

6 6 0.20500 -1.05 0.93 18.70 18.000 34.4

7 7 0.32100 -1.18 0.86 12.10 11.400 24.8

8 8 0.44300 -1.26 0.84 7.97 7.340 18.3

2

9 9 0.56400 -1.29 0.89 5.39 4.780 13.8

10 10 0.72600 -1.38 0.96 3.72 3.170 10.7

11 12 0.80700 -1.54 0.91 1.87 1.440 6.8

12 14 0.88800 -1.60 0.99 1.00 0.693 4.5

13 16 0.87200 -1.65 0.91 0.56 0.346 3.1

14 18 0.83100 -1.67 0.85 0.33 0.180 2.1

15 20 0.93200 -1.60 0.98 0.20 0.095 1.5

> beta$powerEstimate

[1] 12

The first power with a scale-free model fit of R2 ≥ 0.8 is β = 12. So we’ll
use that in our network. At this point, the network can be built using a number
of different parameters. Only some of the most important parameters will be
mentioned here. Please see the documentation for the full list.

The network is built by first computing a correlation matrix, pairwise using
peptides. The correlations can be taken as the absolute value (“unsigned”) or the
direction of correlation can be preserved (“signed”). The correlations themselves
can be computed with Pearson’s or with a Robust Bi-weight correlation. Using
this correlation matrix as a basis, the rest of the network is computed starting
with the topological overlap matrix (TOM). A dendrogram is computed using
the distance matrix (1-TOM) which is then clustered using the dynamicTreecut
algorithm resulting in module assignments (dynamicColors) for each peptide.
Each module has an associated module eigenvector (ME) that acts as an overall
summary for the module. The MEs can be correlated with sample phenotypes to
search for biological relevance. Next, modules that are considered to be highly
similar are merged producing a new set of module assignments (mergedColors),
and module eigenvectors (mergedMEs).

After the network is complete, a permutation test can be performed indi-
cating the significance of each module. The test compares the mean topological
overlap within a given module to the topological overlap of random peptides
(with same size as the test module). The number of permutation can be con-
trolled with the toPermTestPermutes parameter. An example of calling the
network building function is shown below.

> peptideNetwork <- buildProconaNetwork(networkName="my network",

+ pepdat=peptideData,

+ networkType="signed",

+ pow=beta$powerEstmate,

+ pearson=FALSE,

+ toPermTestPermutes=1000)

Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.

1 1 0.0624 3.81 0.990 255.00 256.000 278.0

2 2 0.0094 0.74 0.988 142.00 142.000 168.0

3 3 0.0017 0.20 0.988 81.20 81.100 106.0

3

4 4 0.0093 -0.34 0.985 47.80 47.400 68.4

5 5 0.0339 -0.49 0.937 29.00 28.300 45.8

6 6 0.1900 -0.96 0.943 18.00 17.300 32.0

7 7 0.3000 -1.08 0.936 11.50 10.900 23.1

8 8 0.4650 -1.25 0.942 7.56 6.900 17.1

9 9 0.5940 -1.32 0.901 5.07 4.500 12.9

10 10 0.6550 -1.51 0.821 3.47 2.970 10.0

11 11 0.7290 -1.64 0.839 2.42 1.990 7.8

12 12 0.7160 -1.72 0.797 1.72 1.340 6.2

13 13 0.7540 -1.73 0.806 1.24 0.900 5.0

14 14 0.8750 -1.61 0.925 0.90 0.624 4.0

15 15 0.8940 -1.61 0.930 0.67 0.428 3.3

16 16 0.2190 -3.06 0.025 0.50 0.298 2.7

17 17 0.8220 -1.68 0.842 0.38 0.211 2.2

18 18 0.8460 -1.63 0.858 0.29 0.149 1.8

19 19 0.8540 -1.59 0.861 0.22 0.107 1.5

20 20 0.8670 -1.59 0.866 0.17 0.077 1.2

..connectivity..

..matrix multiplication (system BLAS)..

..normalization..

..done.

..cutHeight not given, setting it to 0.999 ===> 99% of the (truncated) height range in dendro.

..done.

0 1 2 3 4

6 139 131 108 90

mergeCloseModules: Merging modules whose distance is less than 0.1

.. will look for grey label ME0

multiSetMEs: Calculating module MEs.

Working on set 1 ...

moduleEigengenes : Working on ME for module 1

moduleEigengenes : Working on ME for module 2

moduleEigengenes : Working on ME for module 3

moduleEigengenes : Working on ME for module 4

Changing original colors:

1 to 1

2 to 2

3 to 3

4 to 4

Calculating new MEs...

multiSetMEs: Calculating module MEs.

Working on set 1 ...

moduleEigengenes : Working on ME for module 0

moduleEigengenes : Working on ME for module 1

moduleEigengenes : Working on ME for module 2

moduleEigengenes : Working on ME for module 3

4

moduleEigengenes : Working on ME for module 4

> peptideNetwork

Network Name: my network

Number of samples : 60

Number of peptides: 474

Number of modules : 5

Power used : 14

Network Type : signed

ProCoNA version : 0.99.2

The peptideNetwork is a S4 object of class ”proconaNet”. The object has
a number of slots to store the various parts of the network: the correlation
matrix, TOM, dendrogram, and module assignments as well as the permutation
test results and parameters used in building the network. You can see the entire
list by:

> getSlots("proconaNet")

proconaVersion networkName samples adj

"character" "character" "character" "matrix"

TOM peptides pepTree dynamicColors

"matrix" "character" "hclust" "numeric"

MEs mergedMEs mergedColors colorOrder

"data.frame" "data.frame" "numeric" "character"

power networkType permtest

"numeric" "character" "matrix"

We can get a summary of the network:

> printNet(peptideNetwork)

Network Name: my network

Number of samples : 60

Number of peptides: 474

Number of modules : 5

Power used : 14

Network Type : signed

ProCoNA version : 0.99.2

To access the various slots, we use accessor functions.

> networkName(peptideNetwork)

[1] "my network"

> samples(peptideNetwork)[1:5]

5

[1] "1" "2" "3" "4" "5"

> peptides(peptideNetwork)[1:5]

[1] "33699225" "7393735" "191136635" "7786631" "83228277"

> mergedColors(peptideNetwork)[1:5]

3 4 3 5

1 2 1 0 4

The topological significance of network modules is shown by:

> peptideNetwork <- toPermTest(peptideNetwork, 100)

> permtest(peptideNetwork)

module moduleSize TOMmean PermMean p-value

[1,] 1 139 0.0097 0.0026 0.01

[2,] 2 131 0.0074 0.0025 0.01

[3,] 4 90 0.0077 0.0026 0.01

[4,] 3 108 0.0104 0.0026 0.01

We can get a sense of what the network “looks” like by plotting the dendro-
gram.

> plotNet(peptideNetwork)

To learn more about individual modules we can subset peptides by module,
and compute the mean topological overlap.

> module1 <- which(mergedColors(peptideNetwork) == 1)

> module1_TOM <- TOM(peptideNetwork)[module1, module1]

> mean(utri(module1_TOM))

[1] 0.0097

Ultimately, we want to know if this network contains modules related to
a biological or clinical phenotype. To do that, we look at the correlation of
the module eigenvectors with a quantitative phenotype. The function correla-
tionWithPhenotypesHeatMap returns a data frame containing correlations and
p-values between modules and phenotypes and also plots a heatmap showing the
strength of correlation for each pair (as -log(p-value)). If a particular module
eigenvector has a significant correlation to some given phenotype, then we may
have found something interesting.

The function moduleMemberCorrelations instead returns a matrix of Pear-
son’s correlations but for peptides and both modules and phenotypes. This
matrix shows how each peptide is connected to both the module eigenvector
and the various phenotypes. Peptides can be sorted within the module by their

6

centrality (connection to module eigenvector), imposing a sort of importance
measure.

To extract peptide information and peptide correlations by module, enabling
one to sort peptides by connection to the module eigenvector or highest corre-
lation to a given phenotype, the moduleData function below is used, provided
below.

> phenotypeCor <- correlationWithPhenotypesHeatMap(net=peptideNetwork,

+ phenotypes=phenotypes[,1:5],

+ modules=1:5,

+ plotName="my plot",

+ title="snazzy heatmap",

+ textSize=0.7)

> pepcor <- moduleMemberCorrelations(pnet=peptideNetwork,

+ pepdat=peptideData,

+ phenotypes=phenotypes)

> ###

> # quick function to write out the tables for specific modules.

> moduleData <- function(pepnet, pepcors, module, pepinfo, fileprefix) {

+ moduleX <- peptides(pepnet)[which(mergedColors(pepnet)==module)]

+ moduleInfo <- pepinfo[which(pepinfo$Mass_Tag_ID %in% moduleX),]

+ moduleCors <- pepcors[which(pepcors$Module==module),]

+ corname <- paste(fileprefix, "_correlations.csv", sep="")

+ write.table(moduleCors, file=corname, sep=",", row.names=F)

+ infoname <- paste(fileprefix, "_peptide_info.csv", sep="")

+ write.table(moduleInfo, file=infoname, sep=",", row.names=F)

+ }

> ##

>

> # WRITE OUT A TABLE WITH THE BELOW FUNCTION CALL#

> # moduleData(peptideNetwork, pepcor, 1, masstagdb, "Module_1")

2 Running ProCoNA with the MSnbase infrastruc-
ture

In order to use this package, the data needed to be in a matrix form, with
peptides (or proteins) in columns, and samples in rows. However, most MS data
is not in this format. What to do!? One solution is to use the MSnbase package
in Bioconductor, we can read data, normalize it, summarize it by feature, and
export a quantitative expression! Consult the MSnbase vignette available with
vignette("MSnbase-demo", package = "MSnbase") for more details.

> library(MSnbase)

> file <- dir(system.file(package = "MSnbase", dir = "extdata"),

+ full.names = TRUE, pattern = "mzXML$")

7

> rawdata <- readMSData(file, msLevel = 2, verbose = FALSE)

> experiment <- removePeaks(itraqdata, t = 400, verbose = FALSE)

> experiment <- trimMz(experiment, mzlim = c(112, 120))

> qnt <- quantify(experiment,

+ method = "trap",

+ reporters = iTRAQ4,

+ strict = FALSE,

+ parallel = FALSE,

+ verbose = FALSE)

> qnt.quant <- normalise(qnt, "quantiles")

> gb <- fData(qnt)$PeptideSequence

> qnt2 <- combineFeatures(qnt.quant, groupBy = gb, fun = "median")

Similarly to the subsetPeptideData function above, it is easy to remove
data with too many missing values in an MSnSet instance with the filterNA

methods. The pNA argument controls the percentage of allowed NA values. Below
we remove proteins with any NA but setting pNA = 0.2 would have the same ef-
fect as the subsetPeptideData(peptideData, percentageNAsAllowed=0.2)

call above.

> sum(is.na(qnt2))

[1] 1

> qnt2 <- filterNA(qnt2, pNA = 0)

> sum(is.na(qnt2))

[1] 0

Finally, although one could extract (and transpose1) the expression data
with peptideData <- t(exprs(qnt2)), it is possible to directly proceed with
the standard ProCoNA analysis using an MSnSet instance:

> peptideNetwork <- buildProconaNetwork(networkName="my network",

+ pepdat=qnt2,

+ networkType="signed",

+ pow=beta$powerEstmate,

+ pearson=FALSE,

+ toPermTestPermutes=1000)

Be sure to see RforProteomics for more information about proteomics and
R/Bioconductor.

1Please note that ProCoNA requires input matrices to have samples in rows, which means
the assay data matrix must be transposed before use.

8

References

Gibbs D.L., Baratt A., Baric R.S., Kawaoka Y., Smith R.D., Orwoll E.S., Katze
M.G., McWeeney S.K. Protein Co-expression Network Analysis (ProCoNA)
Journal of Clinical Bioinformatics 2013, 3:11 doi:10.1186/2043-9113-3-11

Langfelder, P. (2008). WGCNA: an R package for weighted gene co-expression
network analysis. In BMC Bioinformatics,.

Falcon, S. and Gentleman, R. (2007). Using GOstats to test gene lists for GO
term association Bioinformatics 23 (2): 257-258

Langfelder P., Zhang, B., Horvath, S. (2008). Defining clusters from a hierar-
chical cluster tree: the Dynamic Tree Cut package for R Bioinformatics 24
(5): 719-720

Mason, M.J., Fan, G., Plath, K., Zhou, Q., and Horvath, S. (2009) Signed
weighted gene co-expression network analysis of transcriptional regulation in
murine embryonic stem cells. BMC Genomics. Jul 20;10:327

Gatto L., Lilley K. (2011) MSnbase – an R/Bioconductor package for iso-
baric tagged mass spectrometry data visualisation, processing and quantita-
tion Bioinformatics Jan 15;28(2):288-9.

Gatto L., Christoforou, A. (2013) Using R and Bioconductor for proteomics data
analysis. B iochim Biophys Acta. 2013 May 18. pii: S1570-9639(13)00186-6.
doi: 10.1016/j.bbapap.2013.04.032.

9

