Package 'adaptest'

October 15, 2018

```
Title Data-Adaptive Statistics for High-Dimensional Multiple Testing Version 1.0.0
```

Author Weixin Cai [aut, cre, cph], Nima Hejazi [aut], Alan Hubbard [ctb, ths]

Maintainer Weixin Cai <wcai@berkeley.edu>

Description Data-adaptive test statistics represent a general methodology for performing multiple hypothesis testing on effects sizes while maintaining honest statistical inference when operating in high-dimensional settings (<doi here>). The utilities provided here extend the use of this general methodology to many common data analytic challenges that arise in modern computational and genomic biology.

```
Depends R (>= 3.5.0)
License GPL-2
```

URL https://github.com/wilsoncai1992/adaptest

```
\pmb{BugReports} \  \, \texttt{https://github.com/wilsoncai1992/adaptest/issues} \\
```

Encoding UTF-8 **LazyData** true

Imports origami (>= 1.0.0), tmle, calibrate, methods, graphics, stats, utils, SummarizedExperiment

Suggests testthat, Matrix, SuperLearner, earth, gam, nnls, airway, rmarkdown, knitr, BiocStyle

VignetteBuilder knitr RoxygenNote 6.0.1.9000

biocViews Genetics, GeneExpression, DifferentialExpression, Sequencing, Microarray, Regression, DimensionReduction, MultipleComparison

git_url https://git.bioconductor.org/packages/adaptest

git_branch RELEASE_3_7
git_last_commit bb90fa5
git_last_commit_date 2018-04-30

Date/Publication 2018-10-15

2 adaptest

R topics documented:

daptest	- 2
dapTMLE-class	2
ioadaptest	2
v_param_est	
ata_adapt	1
get_composition	1
et_significant_biomarker	8
lot.data_adapt	9
rint.data_adapt	10
ank_DE	10
ank_ttest	1
imulated_array	12
imulated_treatment	12
ummary.data_adapt	1.
	1
	14

adaptest

Index

Data-adaptive Statistics for High-Dimensional Multiple Testing

Description

Computes marginal average treatment effects of a binary point treatment on multi-dimensional outcomes, adjusting for baseline covariates, using Targeted Minimum Loss-Based Estimation. A datamining algorithm is used to perform biomarker selection before multiple testing to increase power.

Usage

```
adaptest(Y, A, W = NULL, n_top, n_fold, parameter_wrapper = rank_DE,
  learning_library = c("SL.glm", "SL.step", "SL.glm.interaction", "SL.gam",
  "SL.earth"), absolute = FALSE, negative = FALSE, p_cutoff = 0.05,
  q_cutoff = 0.05)
```

Arguments

Y	(numeric vector) - A data.frame or matrix of binary or continuous biomarker measures (outcome variables). Alternatively, this will be an object of class adapTMLE if the wrapper bioadaptest is invoked (n.b., the wrapper is the preferred interface for standard data analytic use-cases arising in computational and genomic biology).
A	(numeric vector) - binary treatment indicator: $1 = \text{treatment}$, $0 = \text{control}$
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column correspond to one baseline covariate and each row corresponds to one observation.
n_top	(integer vector) - value for the number of candidate covariates to generate using the data-adaptive estimation algorithm
n_fold	(integer vector) - number of cross-validation folds.

adaptest 3

parameter_wrapper

(function) - user-defined function that takes input (Y, A, W, absolute, negative) and outputs a (integer vector) containing ranks of biomarkers (outcome variables). For details, please refer to the documentation for rank_DE

learning_library

(character vector) - library of learning algorithms to be used in fitting the "Q"

and "g" step of the standard TMLE procedure.

absolute (logical) - whether or not to test for absolute effect size. If FALSE, test for direc-

tional effect. This overrides argument negative.

negative (logical) - whether or not to test for negative effect size. If FALSE = test for

positive effect size. This is effective only when absolute = FALSE.

p_cutoff (numeric) - p-value cutoff (default as 0.05) at and below which to be considered

significant. Used in inference stage.

q_cutoff (numeric) - q-value cutoff (default as 0.05) at and below which to be considered

significant. Used in multiple testing stage.

Value

S4 object of class data_adapt, sub-classed from the container class SummarizedExperiment, with the following additional slots containing data-mining selected biomarkers and their TMLE-based differential expression and inference, as well as the original call to this function (for user reference), respectively.

top_index (integer vector) - indices for the data-mining selected biomarkers

top_colname (character vector) - names for the data-mining selected biomarkers

top_colname_significant_q (character vector) - names for the data-mining selected biomarkers, which are significant after multiple testing stage

DE (numeric vector) - differential expression effect sizes for the biomarkers in top_colname

 $\ensuremath{\text{p_value}}$ (numeric vector) - $\ensuremath{\text{p-value}}$ for the biomarkers in top_colname

q_value (numeric vector) - q-values for the biomarkers in top_colname

significant_q (integer vector) - indices of top_colname which is significant after multiple testing stage.

 $\label{lem:mean_rank_top} \mbox{ (numeric vector) - average ranking across folds of cross-validation folds for the biomarkers in top_colname$

folds (origami::folds class) - cross validation object

Examples

4 bioadaptest

adapTMLE-class

Constructor for class adaptmle

Description

Constructor for class adaptmle

Value

class adaptmle object, sub-classed from SummarizedExperiment.

Examples

```
library(SummarizedExperiment)
library(airway)
data(airway)
example_adaptmle_class <- function(se, n_top = 20, n_fold = 10) {</pre>
   call <- match.call(expand.dots = TRUE)</pre>
   adaptmle <- .adaptmle(</pre>
        SummarizedExperiment::SummarizedExperiment(
           assays = SummarizedExperiment::assay(se),
           colData = SummarizedExperiment::colData(se)
        ),
        call = call,
        folds = list(), # folds (from origami)
        plot_ingredients = list(), # top_colname
        diff_{exp} = as.numeric(rep(NaN, n_top)), # DE
        p_value = as.numeric(rep(NaN, n_top)), # p_value
        q_value = as.numeric(rep(NaN, n_top)), # q_value
        q_sig = as.numeric(rep(NaN, n_top)), # significant_q
        q_sig_names = list(), # top_colname_significant_q
         rank_mean = as.numeric(rep(NaN, n_top * n_fold)),  # mean_rank_top
        top_index = as.numeric(rep(NaN, n_top * n_fold)) # top_index
   return(adaptmle)
}
example_class <- example_adaptmle_class(se = airway)</pre>
```

bioadaptest

Data Adaptive Multiple Testing for Computational Biology

Description

A thin wrapper that implements the main data-adaptive multiple hypothesis testing strategy for data structures commonly found in computational biology experiments, using the popular Summarized-Experiment container class.

bioadaptest 5

Usage

```
bioadaptest(data_in, var_int, cntrl_set = NULL, n_top = 25, n_fold = 10,
    parameter_wrapper = rank_DE, learning_library = c("SL.mean", "SL.glm"),
    absolute = FALSE, negative = FALSE, p_cutoff = 0.05, q_cutoff = 0.05)
```

Arguments

data_in	An object of class SummarizedExperiment, a common container class for computational biology and bioinformatics. This object is used to construct the output object of class adaptmle.
var_int	A numeric vector of binary treatment assignment whose effect on the biological units is to be assessed. The data-adpative target parameter approach finds any biological sites strongly impacted by this quantity across the observed experimental units (subjects).
cntrl_set	A matrix of discrete variables representing baseline covariates that are controlled for in the estimation of the data-adaptive target parameter via targeted maximum likelihood estimation. If NULL, an identity vector is generated internally.
n_top	(integer vector) - value for the number of candidate covariates to generate using

(integer vector) - value for the number of candidate covariates to generate using the data-adaptive estimation algorithm.

n_fold (integer vector) - number of cross-validation folds.

parameter_wrapper

(function) - user-defined function that takes input (Y, A, W, absolute, negative) and outputs a (integer vector) containing ranks of biomarkers (outcome variables). For detail, please refer to the documentation for rank_DE.

learning_library

negative

p_cutoff

(character vector) - library of learning algorithms to be used in fitting the "Q" and "g" step of the standard TMLE procedure.

absolute (logical) - whether or not to test for absolute effect size. If FALSE, test for directional effect. This overrides argument negative.

(logical) - whether or not to test for negative effect size. If FALSE = test for

positive effect size. This is effective only when absolute = FALSE.

The minimum p-value required to evaluate a given biological unit (e.g., gene) as

statistically significant.

q_cutoff The minimum p-value required to evaluate a given biological unit (e.g., gene) as statistically significant after applying a correction for multiple hypothesis test-

ing.

Value

An object of class adaptmle, sub-classed from the popular container class SummarizedExperiment, containing information about the experiment being analyzed as well as results from applying the TMLE for the data-adaptive target parameter as produced by adpatest.

Examples

```
library(SummarizedExperiment)
library(airway)
set.seed(5678)
data(airway)
```

6 cv_param_est

cv_param_est

Compute data-adaptive parameter estimate for a single cross-validation fold

Description

Compute data-adaptive parameter estimate for a single cross-validation fold

Usage

```
cv_param_est(fold, data, parameter_wrapper, absolute, negative, n_top,
  learning_library, Y_name, A_name, W_name)
```

Arguments

fold fold output from origami
data entire training data
parameter_wrapper

user-defined function

absolute boolean: TRUE = test for absolute effect size. This FALSE = test for directional

effect. This overrides argument negative.

negative boolean: TRUE = test for negative effect size, FALSE = test for positive effect size n_{top} integer value for the number of candidate covariates to generate using the data-

adaptive estimation algorithm

learning_library

character of SuperLearner library

Y_name (character) colnames of all biomarkers
A_name (character) colnames of treatment

W_name (character) colnames of all baseline covariates

Value

```
data_adaptive_index (integer vector) rank for each gene
index_grid (integer matrix) gene index from rank 1 to rank K
psi_est estimand of DE for rank 1 to rank K genes
EIC_est estimand of EIC for rank 1 to rank K genes
```

data_adapt 7

data_adapt	S3-Style Constructor for Data Adaptive Parameter Class	

Description

S3-Style Constructor for Data Adaptive Parameter Class

Usage

```
data_adapt(Y, A, W = NULL, n_top, n_fold, absolute, negative,
    parameter_wrapper, learning_library)
```

Arguments

Υ	(numeric vector) - continuous or binary biomarkers outcome variables	
Α	(numeric vector) - binary treatment indicator: $1 = \text{treatment}$, $\emptyset = \text{control}$	
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column correspond to one baseline covariate. Each row correspond to one observation	
n_top	(integer vector) - value for the number of candidate covariates to generate using the data-adaptive estimation algorithm.	
n_fold	(integer vector) - number of cross-validation folds.	
absolute	(logical) - whether or not to test for absolute effect size. If FALSE, test for directional effect. This overrides argument negative.	
negative	(logical) - whether or not to test for negative effect size. If FALSE = test for positive effect size. This is effective only when absolute = FALSE.	
parameter_wrapper		
	(function) - user-defined function that takes input (Y, A, W, absolute, negative) and outputs a (integer vector) containing ranks of biomarkers (outcome vari-	

ables). For detail, please refer to the documentation for rank_DE. learning_library $\,$

(character vector) - library of learning algorithms to be used in fitting the "Q" and "g" step of the standard TMLE procedure.

Value

S3 object of class "data_adapt" for data-adaptive multiple testing.

mining	get_composition	Decomposition tables of the data-adaptive parameter after data- mining
--------	-----------------	---

Description

Customized informative tables for examining data-adaptive statistics.

Usage

```
get_composition(object, type = "small")
```

Arguments

object (data_adapt) - object of class data_adapt as returned by adaptest

type (character) - 'small' or 'big'. 'small' mode returns composition of data-adaptive

parameters after multiple testing stage. 'big' mode returns composition of data-

adaptive parameters before multiple testing stage.

Value

(numeric matrix) containing what fraction of the data-adaptive parameter comes from which biomarker in the original dataset.

Examples

get_significant_biomarker

Extract statistically significant biomarkers

Description

Extract statistically significant biomarkers

Usage

```
get_significant_biomarker(object, cutoff = 0.5)
```

Arguments

object data_adapt object

cutoff cut-off value for composition percentage

Value

(integer vector) of significant gene index

plot.data_adapt 9

Examples

plot.data_adapt

Plot method for data_adapt objects

Description

Customized plotting method for easily examining data-adaptive statistics

Usage

```
## S3 method for class 'data_adapt'
plot(x, ..., plot_type = c("biomarker", "adapt_param"))
```

Arguments

x (data_adapt) - object of class data_adapt as returned by adaptest
 ... additional arguments passed to plot as necessary
 plot_type character vector specifying which of the two types of plots to generate: "biomarker" for a plot sorted average CV-rank, or "adapt_param" for a plot sorted by q-values with labels corresponding to indices

Value

plot of model statistics

10 rank_DE

print.data_adapt

Description

Customized informative print method for examining data-adaptive statistics

Usage

```
## S3 method for class 'data_adapt'
print(x, ...)
```

Arguments

x (data_adapt) - object of class data_adapt as returned by adaptest
... additional arguments passed to print as necessary

Value

strings into stdout; containing information of the fitted model

rank_DE Compute ranking of biomarkers by sorting effect sizes

Description

Computes ranking of biomarkers based effect sizes, which are computed by Targeted Minimum Loss-Based Estimation. This function is designed to be called inside adaptest; it should not be run by itself outside of that context.

Usage

```
rank_DE(Y, A, W, absolute = FALSE, negative = FALSE,
  learning_library = c("SL.glm", "SL.step", "SL.glm.interaction", "SL.gam"))
```

Arguments

Υ	(numeric vector) - continuous or binary biomarkers outcome variables
A	(numeric vector) - binary treatment indicator: $1 = \text{treatment}$, $0 = \text{control}$
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column corrspond to one baseline covariate. Each row correspond to one observation
absolute	(logical) - whether or not to test for absolute effect size. If FALSE, test for directional effect. This overrides argument negative.
negative	(logical) - whether or not to test for negative effect size. If FALSE = test for positive effect size. This is effective only when absolute = FALSE.
learning_librar	у

(character vector) - library of learning algorithms to be used in fitting the "Q" and "g" step of the standard TMLE procedure.

rank_ttest 11

Value

an integer vector containing ranks of biomarkers.

Examples

rank_ttest

Compute ranking of biomarkers by sorting t-test p-values

Description

Compute ranking of biomarkers by sorting t-test p-values

Usage

```
rank_ttest(Y, A, W)
```

Arguments

Υ	(numeric vector) - continuous or binary biomarkers outcome variables
A	(numeric vector) - binary treatment indicator: $1 = \text{treatment}$, $0 = \text{control}$
W	(numeric vector, numeric matrix, or numeric data.frame) - matrix of baseline covariates where each column corrspond to one baseline covariate and each row correspond to one observation.

Value

an integer vector containing ranks of biomarkers.

Examples

12 simulated_treatment

simulated_array

Simulated differential expression data with one exposure

Description

A dataset containing 1e4 biomarkers and one exposure

Usage

simulated_array

Format

A numeric matrix containing 1e4 biomarkers of 1e2 subjects.

This is example data to be used in testing the adaptest procedure. Consult the vignettes for how to use this data.

Value

A matrix simulated_array

 $simulated_treatment$

Simulated differential expression data with one exposure

Description

A dataset containing 1e4 biomarkers and one exposure

Usage

simulated_treatment

Format

A numeric vector containing binary exposures

This is example data to be used in testing the adaptest procedure. Consult the vignettes for how to use this data.

Value

A numeric vector simulated_treatment.

summary.data_adapt 13

summary.data_adapt

Summary tables for data_adapt objects

Description

Summary tables for data_adapt objects

Usage

```
## S3 method for class 'data_adapt'
summary(object, type = "adapt_param", ...)
```

Arguments

object (data_adapt) object as returned by adaptest

type (character) - 'adapt_param' or 'biomarker'. 'adapt_param' mode summarizes

the data-adaptive target parameter. 'biomarker' mode summarizes chracteristics

of the biomarkers from the original data

... not implemented

Value

```
(data.frame) of the summary statistics
```

```
\label{type} \verb| = 'adapt_param' | with columns: 'data-adaptive parameters', 'Differential expression', 'p-values', 'q-values' | \end{type}
```

type = 'biomarker' wtih columns: 'biomakers', 'mean rank', 'appear in top'

Index

```
*Topic datasets
     simulated\_array, 12
     simulated\_treatment, 12
.adaptmle (adapTMLE-class), 4
adaptest, 2
adapTMLE-class, 4
bioadaptest, 4
cv_param_est, 6
data\_adapt, 7
{\tt get\_composition}, {\tt 7}
{\tt get\_significant\_biomarker}, 8
plot.data_adapt,9
\verb|print.data_adapt|, 10
rank_DE, 10
{\tt rank\_ttest}, {\color{red}11}
\verb|simulated_array|, 12|\\
simulated\_treatment, 12
summary.data_adapt, 13
```