Package 'MEAL'

October 16, 2018

3 3 3 3 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7
Title Perform methylation analysis
Version 1.10.1
Description Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated.
Depends R (>= 3.2.0), Biobase, MultiDataSet
License Artistic-2.0
biocViews DNAMethylation, Microarray, Software, WholeGenome
LazyData true
Imports GenomicRanges, SNPassoc, limma, DMRcate, snpStats, vegan, BiocGenerics, minfi, IRanges, S4Vectors, methods, parallel, ggplot2 (>= 2.0.0), permute, Gviz, missMethyl, isva, SummarizedExperiment, SmartSVA, graphics, stats, utils, matrixStats
Suggests testthat, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, IlluminaHumanMethylation450kanno.ilmn12.hg19, knitr, minfiData, BiocStyle, rmarkdown, brgedata
VignetteBuilder knitr
RoxygenNote 6.0.1
Encoding UTF-8
git_url https://git.bioconductor.org/packages/MEAL
git_branch RELEASE_3_7
git_last_commit 9c3bc44
git_last_commit_date 2018-05-23
Date/Publication 2018-10-15
Author Carlos Ruiz-Arenas [aut, cre], Juan R. Gonzalez [aut]
Maintainer Carlos Ruiz-Arenas <carlos.ruiz@isglobal.org></carlos.ruiz@isglobal.org>
R topics documented:
analysisRegionResults

2 analysisRegionResults

	calculateRelevantSNPs	3
	computeRDAR2	4
	correlationMethExprs	4
	correlationMethSNPs	5
	createRanges	7
	DARegionAnalysis	7
	explained Variance	8
	exportResults	9
	filterResults	9
	getGeneVals	10
	getProbeResults	11
	getRDAresults	11
	MEAL	12
	MEAL-defunct	12
	normalSNP	12
	plotFeature	13
	plotLM	13
	plotRDA	14
	plotRegion	15
	prepareMethylationSet	16
	runBlockFinder	16
	runBumphunter	17
	runDiffMeanAnalysis	18
	runDiffVarAnalysis	19
	runDMRcate	20
	runPipeline	20
	runRDA	22
	runRegionAnalysis	23
	topRDAhits	24
Index		25

analysisRegionResults Old class to encapsulate results (deprecated in new version)

Description

Old class to encapsulate results (deprecated in new version)

Usage

analysisRegionResults()

Value

Deprecated

Examples

analysisRegionResults()

analysisResults 3

analysisResults

Old class to encapsulate results (deprecated in new version)

Description

Old class to encapsulate results (deprecated in new version)

Usage

```
analysisResults()
```

Value

Deprecated

Examples

```
analysisResults()
```

calculateRelevantSNPs Calculate the SNPs correlated to cpgs

Description

This function estimates the correlation between the snps and the cpgs. For each pair cpg-SNP the p-value is returned.

Usage

```
calculateRelevantSNPs(set, snps, num_cores = 1)
```

Arguments

set MethylationSet

snps SnpSet

num_cores Numeric with the number of cores to be used.

Value

Data.frame with the pvalues for pairs SNPs-cpgs. SNPs are in the rows and cpgs in the columns.

```
## Not run:
## betamatrix: matrix of beta values
## phenodf: data.frame with the phenotypes
## snpsobject: SnpSet
set <- prepareMethylationSet(matrix = betamatrix, phenotypes = phenodf)
relevantSNPs <- calculateRelevantSNPs(set, snpsobject)
## End(Not run)</pre>
```

computeRDAR2	Compute signification of RDA test
--------------	-----------------------------------

Description

Compare R2 obtained in our region of interest with the global R^2 and the R^2 of regions with the same number of probes.

Usage

```
computeRDAR2(fullMat, varsmodel, covarsmodel = NULL, featNum, R2,
num_permutations = 1e+05 - 1)
```

Arguments

fullMat Matrix with the whole genome expression or methylation values

varsmodel Matrix with the model

covarsmodel Matrix with the covariables model

featNum Numeric with the number of features of the RDA model

R2 Numeric with the R2 of the RDA model

num_permutations

Numeric with the number of permutations.

Value

Numeric vector with the probability of finding a region with the same number of probes with a bigger R2 and the global R2.

correlationMethExprs Computes the correlation between methylation and expression

Description

Estimates the correlation between methylation and expression. When there are known variables that affect methylation and/or expression, their effect can be substracted using a linear model and then the residuals are used.

Usage

```
correlationMethExprs(multiset, meth_set_name = NULL, exprs_set_name = NULL,
  vars_meth = NULL, vars_exprs = NULL, sel_cpgs, flank = 250000,
  betas = TRUE, num_cores = 1, verbose = TRUE)
```

correlationMethSNPs 5

Arguments

multiset	MultiDataSet containing a methylation and an expression slots.
meth_set_name	Character vector with the name of the $\texttt{MultiDataSet}$'s slot containing methylation data.
exprs_set_name	Character vector with the name of the ${\tt MultiDataSet}$'s slot containing expression data.
vars_meth	Character vector with the names of the variables that will be used to obtain the methylation residuals. By default, none is used and residuals are not computed.
vars_exprs	Character vector with the names of the variables that will be used to obtain the expression residuals. By default, none is used and residuals are not computed.
sel_cpgs	Character vector with the name of the CpGs used in the analysis. If empty, all the CpGs of the methylation set will be used.
flank	Numeric with the number of pair bases used to define the cpg-expression probe pairs.
betas	If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)
num_cores	Numeric with the number of cores to be used.
verbose	Logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.

Details

For each cpg, a range is defined by the position of the cpg plus the flank parameter (upstream and downstream). Only those expression probes that are entirely in this range will be selected. For these reason, it is required that the ExpressionSet contains a featureData with the chromosome and the starting and ending positions of the probes.

Value

Data.frame with the results of the linear regression:

- cpg: Name of the cpg
- exprs: Name of the expression probe
- beta: coefficient of the methylation change
- se: standard error of the beta
- P.Value: p-value of the beta coefficient
- adj.P.Val: q-value computed using B&H

correlationMethSNPs Computes the correlation between methylation and SNPs

Description

Estimates the correlation between methylation and expression. When there are known variables that affect methylation and/or expression, their effect can be substracted using a linear model and then the residuals are used.

6 correlationMethSNPs

Usage

```
correlationMethSNPs(multiset, meth_set_name = NULL, snps_set_name = NULL,
  range, variable_names, covariable_names = NULL, snps_cutoff = 0.01,
 verbose = TRUE)
```

Arguments

multiset

MultiDataSet containing a methylation and an expression slots. Character vector with the name of the MultiDataSet's slot containing methylameth_set_name tion data. Character vector with the name of the MultiDataSet's slot containing SNPs snps_set_name range GenomicRanges with the range used in the analñysis variable_names Character vector with the names of the variables that will be used to obtain the methylation residuals. By default, none is used and residuals are not computed. covariable_names Character vector with the names of the variables that will be used to adjust the

model.

snps_cutoff Numerical with the threshold to consider a p-value from a SNP-cpg correlation significant.

> Logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.

Details

verbose

For each cpg, a range is defined by the position of the cpg plus the flank parameter (upstream and downstream). Only those expression probes that are entirely in this range will be selected. For these reason, it is required that the ExpressionSet contains a featureData with the chromosome and the starting and ending positions of the probes.

Value

List with the results:

- cpg: Name of the cpg
- exprs: Name of the expression probe
- beta: coefficient of the methylation change
- se: standard error of the beta
- P.Value: p-value of the beta coefficient
- adj.P.Val: q-value computed using B&H

createRanges 7

createRanges

Create GenomicRanges from data.frame

Description

Create GenomicRanges from data.frame

Usage

createRanges()

Value

Deprecated

Examples

createRanges()

DARegionAnalysis

Analyse methylation or expression in a specific range

Description

Analyse methylation or expression in a specific range

Usage

DARegionAnalysis()

Value

Deprecated

Examples

DARegionAnalysis()

8 explained Variance

Description

Using a data.frame as input, calculates the R2 between a dependent variable and some independent variables. Base adjusting by covariates can also be used.

Usage

```
explainedVariance(data, num_mainvar = 1, num_covariates = 0,
  variable_label = NULL)
```

Arguments

data Data.frame containing the dependent variable in the first column.

num_mainvar Numerical with the number of variables that should be grouped. They should be

at the beggining.

num_covariates Numerical with the number of variables that should be considered as covariates.

Covariates variables must be at the end.

variable_label Character with the name of the main variable in the results.

Details

explainedVariance computes R2 via linear models. The first column is considered to be the dependent variable. Therefore, a lineal model will be constructed for each of the remaining variables. In case that covariates were included, they will be included in all the models and, in addition, a model containing only the covariates will be returned.

Some variables can be grouped in the models to assess their effect together.

Value

Numeric vector with the R2 explained by each of the variables.

```
data(mtcars)
R2 <- explainedVariance(mtcars)
R2</pre>
```

exportResults 9

exportResults	Exports results data.frames to csv files.	
---------------	---	--

Description

Exports results to csv files. If more than one variable is present, subfolders with the name of the variable are created. For each variable, four files will be generated: probeResults.csv, dmrCateResults.csv, bumphunterResults.csv and blockFinderResults.csv

Usage

```
exportResults(object, dir = "./", prefix = NULL, fNames = c("chromosome",
    "start"))
```

Arguments

object ResultSet

dir Character with the path to export.

prefix Character with a prefix to be added to all file names.

fNames Names of the columns of object fData that will be added to the results data.frame.

Value

Files are saved into the given folder.

Examples

```
if (require(minfiData)){
set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
methyOneVar <- runPipeline(set, variable_names = "sex")
exportResults(methyOneVar)
}</pre>
```

filterResults

Filter the data.frame obtained from probe analysis

Description

Filter the data.frame obtained from probe analysis

Usage

```
filterResults(results, range, position = "position", chr = "chromosome")
```

Arguments

results	Data.frame with the results of probe analysis
range	GenomicRanges with the desired range.

position Character with the name of the column containing the positions chr Character with the name of the column containing the chromosome

10 getGeneVals

Value

Data.frame with the results of the probes of the range

tGeneVals	Get all probes related to a gene

Description

Given a ResultSet and a gene name returns the results of the analysis of all the probes of the gene.

Usage

Arguments

object	ResultSet
gene	Character with the name of the gene
rid	Name of the results: "DiffMean" for mean differences, "DiffVar" for variance differences. (Default: DiffMean)
genecol	Character with the column of object fData with the gene information
fNames	Names of the columns of object fData that will be added to the results data.frame.
	Further arguments passed to getProbeResults

Value

data.frame with the results of the analysis of the probes belonging to the gene

```
## Not run:
if (require(minfiData)){
  set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
  methyOneVar <- runPipeline(set, variable_names = "sex")
  getGeneVals(methyOneVar, "TSPY4")
}
## End(Not run)</pre>
```

getProbeResults 11

getProbeResults	Obtain probe results from a ResultSet

Description

It computes the statistics from the MArrayLM computed with DiffMeanAnalysis or DiffVarAnalysis. This function allows to specify the contrasts and to get F-statistics for a group of variables.

Usage

```
getProbeResults(object, rid = "DiffMean", coef = 2, contrast = NULL,
    fNames = c("chromosome", "start"), ...)
```

Arguments

object	ResultSet
rid	Name of the results: "DiffMean" for mean differences, "DiffVar" for variance differences. (Default: DiffMean)
coef	Number of the coefficient used to compute the statistics. If a vector is supplied, F-statistics evaluating the global effect of the coefficients are computed. (Default: 2).
contrast	Matrix of contrasts
fNames	Names of the columns of object fData that will be added to the results data.frame.
	Further arguments passed to getAssociation.

Value

data.frame with the probe results.

getRDAresults Get a summary of RDA results
--

Description

Get statistics from RDA result.

Usage

```
getRDAresults(object)
```

Arguments

object ResultSet

Value

Numeric vector with the RDA statistics

12 normalSNP

MEAL MEAL (Methylation and Expression AnaLizer): Package for analysing methylation and expression data

Description

MEAL is a package designed to facilitate the analysis methylation and expression data. The package can analyze one dataset and can find correlations between methylation and expression data. MEAL has a vignette that explains the main functionalities of the package.

MEAL-defunct Defunct functions

Description

These functions are defunct and no longer available.

Details

Defunct functions are: multiCorrMethExprs, DAPipeline, DAProbe, DARegion, RDAset, filterSet, plotBestFeatures, preparePhenotype

normalSNP

Normalize SNPs values

Description

SNPs values, introduced as numerical, are normalized to be used in lineal models.

Usage

```
normalSNP(snps)
```

Arguments

snps

Numerical vector or matrix representing the SNPs in the form: 0 homozygote recessive, 1 heterozygote, 2 homozygote dominant.

Value

Numerical vector or matrix with the snps normalized.

```
snps <- c(1, 0, 0, 1, 0, 0, 2, 1, 2)
normSNPs <- normalSNP(snps)
normSNPs
```

plotFeature 13

plotFeature	Plot values of a feature	

Description

Plot values of a feature splitted by one or two variables.

Usage

```
plotFeature(set, feat, variables = colnames(pheno)[1], betas = TRUE)
```

Arguments

set ExpressionSet, GenomicRatioSet or SummarizedExperiment.

feat Numeric with the index of the feature or character with its name.

variables Character vector with the names of the variables to be used in the splitting. Two

variables is the maximum allowed.

betas If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)

Value

A plot is generated on the current graphics device.

Examples

```
if (require(minfiData)){
set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
plotFeature(set, 1, variables = "Sample_Group")
}</pre>
```

plotLM

Plot a vector of R2

Description

Plot a vector of R2 where the first value is the main variable and the last one, if named *covariates* is treated as covariates.

Usage

```
plotLM(Rsquares, title = paste("Variance Explained in", feat_name),
  feat_name = NULL, variable_name = names(Rsquares)[1], max_columns = 6)
```

Arguments

Rsquares Numerical vector of R2 title Character with the plot title

feat_name Name of the feature used in default title. variable_name Character for the first column name

 14 plotRDA

Value

A plot in the graphical device

Examples

```
data(mtcars)
R2 <- explainedVariance(mtcars, variable_label = "cyl") ## variable equals to cyl column
plotLM(R2)</pre>
```

plotRDA

Plot RDA results

Description

Plot RDA results

Usage

```
plotRDA(object, pheno, n_feat = 5, main = "RDA plot")
```

Arguments

object ResultSet

pheno data.frame with the variables used to color the samples.

n_feat Numeric with the number of cpgs to be highlighted.

main Character with the plot title.

Value

A plot is generated on the current graphics device.

```
if (require(minfiData)){
set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
model <- model.matrix(~set$sex)
rda <- runRDA(set, model)
plotRDA(rda, pheno = data.frame(factor(set$sex)))
}</pre>
```

plotRegion 15

plotRegion	Plot results in a genomic region	

Description

Plot the results from the different analyses of a ResultSet in a specific genomic region. It can plot all the results from runPipeline.

Usage

```
plotRegion(rset, range, results = names(rset), genome = "hg19", rset2,
    tPV = 5, fNames = c("chromosome", "start", "end"),
    fNames2 = c("chromosome", "start", "end"))
```

Arguments

rset	ResultSet
range	GenomicRanges with the region coordinates
results	Character with the analyses that will be included in the plot. By default, all analyses available are included.
genome	String with the genome used to retrieve transcripts annotation: hg19, hg38, mm10. (Default: "hg19")
rset2	Additional ResultSet
tPV	Threshold for P-Value
fNames	Names from rset fData
fNames2	Names from rset2 fData

Details

This plot allows to have a quick summary of the methylation or gene expression analyses in a given region. If we use a ResultSet obtained from methylation data, transcripts annotation is obtained from archive. If we use a ResultSet obtained from gene expression data, transcripts annotation is taken from fData.

This plot can be used to plot the results of one dataset (methylation or gene expression) or to represent the association between methylation and gene expression data. If only one dataset is used, the p-values and the coefficients of DiffMean and DiffVar analyses are plotted. If we pass two ResultSets, rset should contain methylation results and a rset2 the gene expression results.

Value

Regional plot

16 runBlockFinder

prepareMethylationSet $Generating \ a \ MethylationSet$

Description

Generating a MethylationSet

Usage

```
prepareMethylationSet()
```

Value

Deprecated

Examples

prepareMethylationSet()

runBlockFinder

Run blockFinder

Description

Run blockFinder to a methylation dataset. This function contains all steps of blockFinder analysis, from model.matrix creation to running the analysis.

Usage

```
runBlockFinder(set, model, coefficient = 2, blockfinder_cutoff = 0.1,
  num_permutations = 0, resultSet = FALSE, verbose = FALSE, ...)
```

Arguments

set GenomicRatioSet, eSet derived object or SummarizedExperiment

model Model matrix or formula to get model matrix from set.

coefficient Numeric with the column of model matrix used in the analysis. (Default: 2)

blockfinder_cutoff

Numeric with the minimum cutoff to include a probe in a block. (Default: 0.1)

num_permutations

Numeric with the number of permutations run to compute the blocks p-value.

(Default: 0)

resultSet Should results be encapsulated in a resultSet? (Default: TRUE) verbose Logical value. Should the function be verbose? (Default: FALSE)

... Further arguments passed to blockFinder.

runBumphunter 17

Details

runBlockFinder is a wrapper for minfi blockFinder. This function runs all the steps required prior running blockFinder from the methylation set and the formula of the model. This implementation allows running blockFinder to other objects than GenomicRatioSet. The result can be encapsulated in a ResultSet to take adapate of its plotting capabilities.

Value

data.frame or resultSet with the result of blockFinder

See Also

blockFinder

hunter	
--------	--

Description

Run bumphunter to a methylation dataset. This function contains all steps of bumphunter analysis, from model.matrix creation to running the analysis.

Usage

```
runBumphunter(set, model, coefficient = 2, bumphunter_cutoff = 0.1,
  num_permutations = 0, bumps_max = 30000, betas = TRUE,
  check_perms = FALSE, verbose = FALSE, resultSet = FALSE, ...)
```

Arguments

set	GenomicRatioSet, eSet derived object or SummarizedExperiment
model	Model matrix or formula to get model matrix from set.
coefficient	Numeric with the column of model matrix used in the analysis. (Default: 2)
bumphunter_cut	off
	Numeric with the minimum cutoff to include a probe in a block. (Default: 0.1)
num_permutation	ns
	Numeric with the number of permutations run to compute the bumps p-value. (Default: 0)
bumps_max	Numeric with the maximum number of bumps used in the permutation. This parameter only applies when num_permutations is greater than 0. (Default: 30000)
betas	If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)
check_perms	Logical. Should we check that there are less bumps than bumps_max? This parameter only applies when num_permutations is greater than 0. (Default: TRUE)
verbose	Logical value. Should the function be verbose? (Default: FALSE)
resultSet	Should results be encapsulated in a resultSet? (Default: TRUE)
	Further arguments passed to bumphunter.

Details

runBumphunter is a wrapper for minfi bumphunter. This function runs all the steps required prior running bumphunter from the methylation set and the formula of the model. This implementation allows running bumphunter to other objects than GenomicRatioSet. The result can be encapsulated in a ResultSet to take adayantege of its plotting capabilities.

If the user wants to run permutations to calculate p-values, this implementation can filter the bumps to avoid doing a very high number of permutations and to reduce computation time. To do so, we can set the maximum number of bumps that we want to permute with the bumps_max parameter. runBumphunter increases bumphunter_cutoff value until the number of bumps is lower than bumps_max.

Value

data.frame or resultSet with the result of bumphunter

See Also

bumphunter

runDiffMeanAnalysis

Run differential mean analysis

Description

Run differential mean analysis using t-moderated statistics. This function relies on 1mFit from limma package.

Usage

```
runDiffMeanAnalysis(set, model, method = "ls", max_iterations = 100,
  betas = TRUE, resultSet = TRUE, warnings = TRUE)
```

Arguments

 ${\tt Set} \qquad \qquad {\tt Matrix}, {\tt GenomicRatioSet}, {\tt SummarizedExperiment} \ or \ {\tt ExpressionSet}.$

model Model matrix or formula to get model matrix from set.

method String indicating the method used in the regression: "ls" or "robust". (Default:

"ls")

max_iterations Numeric indicating the maximum number of iterations done in the robust method.

betas If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)

resultSet Should results be encapsulated in a resultSet? (Default: TRUE)

warnings Should warnings be displayed? (Default:TRUE)

Value

MArrayLM or resultSet with the result of the differential mean analysis.

runDiffVarAnalysis 19

Examples

```
if (require(minfiData)){
  mvalues <- getM(MsetEx)[1:100, ]
  model <- model.matrix(~ Sample_Group, data = pData(MsetEx))
  res <- runDiffMeanAnalysis(mvalues, model, method = "ls")
  res
}</pre>
```

runDiffVarAnalysis

Run differential variance analysis

Description

Run differential variance analysis. This analysis can only be run with categorical variables. This function relies on varFit from missMethyl package.

Usage

```
runDiffVarAnalysis(set, model, coefficient = NULL, resultSet = TRUE,
  betas = TRUE, warnings = TRUE, ...)
```

Arguments

set	Matrix, GenomicRatioSet, SummarizedExperiment or ExpressionSet.
model	Model matrix or formula to get model matrix from set.
coefficient	Numeric with the coefficients used to make the groups. If NULL, all possible groups will be computed.
resultSet	Should results be encapsulated in a resultSet? (Default: TRUE)
betas	If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)
warnings	Should warnings be displayed? (Default:TRUE)
	Further arguments passed to varFit.

Value

MArrayLM or resultSet with the result of the differential variance analysis.

```
if (require(minfiData)){
  mvalues <- getM(MsetEx)[1:100, ]
  model <- model.matrix(~ Sample_Group, data = pData(MsetEx))
  res <- runDiffVarAnalysis(mvalues, model)
  res
}</pre>
```

20 runPipeline

|--|--|

Description

Run DMRcate to a methylation dataset. This function contains all steps of DMRcate analysis, from model.matrix creation to running the analysis.

Usage

```
runDMRcate(set, model, coefficient = 2, resultSet = FALSE, ...)
```

Arguments

set	GenomicRatioSet, eSet derived object or SummarizedExperiment
model	Model matrix or formula to get model matrix from set.
coefficient	Numeric with the column of model matrix used in the analysis. (Default: 2)
resultSet	Should results be encapsulated in a resultSet? (Default: TRUE)
	Further arguments passed to cpg. annotate or dmrcate.

Details

runDMRcate is a wrapper for dmrcate function. runDMRcate runs all the steps required prior running blockFinder from the methylation set and the formula of the model. This implementation allows running blockFinder to other objects than GenomicRatioSet. The result can be encapsulated in a ResultSet to take adavantege of its plotting capabilities.

Value

data.frame or resultSet with the result of bumphunter

See Also

```
dmrcate, cpg.annotate
```

runPipeline Perform differential methylation analysis	ul methylation analysis	
---	-------------------------	--

Description

Wrapper for analysing differential methylation and expression at region and probe level.

Usage

```
runPipeline(set, variable_names, covariable_names = NULL, model = NULL,
num_vars, sva = FALSE, betas = TRUE, range,
region_methods = c("bumphunter", "blockFinder", "DMRcate"),
verbose = FALSE, warnings = TRUE, DiffMean_params = NULL,
DiffVar_params = list(coefficient = 1:2), bumphunter_params = NULL,
blockFinder_params = NULL, dmrcate_params = NULL, rda_params = NULL)
```

runPipeline 21

Arguments

set GenomicRatioSet, eSet derived object or SummarizedExperiment

variable_names Character vector with the names of the variables that will be returned as result. covariable_names

Character vector with the names of the variables that will be used to adjust the

model.

model Model matrix or formula to get model matrix from set.

num_vars Numeric with the number of variables in the matrix for which the analysis will

be performed. Compulsory if equation is not null.

sva Logical. Should Surrogate Variable Analysis be applied? (Default: FALSE) betas If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)

range GenomicRanges with the region used for RDA

region_methods Character vector with the methods used in runRegionAnalysis. If "none", re-

gion analysis is not performed.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If

FALSE nothing should be printed.

warnings Should warnings be displayed? (Default:TRUE)

DiffMean_params

List with other parameter passed to runBumphunter function.

 ${\tt DiffVar_params} \quad List \ with \ other \ parameter \ passed \ to \ run {\tt Bumphunter} \ function.$

bumphunter_params

List with other parameter passed to runBumphunter function.

blockFinder_params

List with other parameter passed to runBlockFinder function.

 ${\tt dmrcate_params} \quad List \ with \ other \ parameter \ passed \ to \ {\tt runDMRcate} \ function.$

rda_params List with other parameter passed to runRDA function.

Details

This function is the main wrapper of the package. First, it simplifies the the set to only contain the common samples between phenotype and features. In addition, it allows to change the class of the variables and to apply genomic models (more information on preparePhenotype). Afterwards, analysis per probe and per region are done merging the results in an AnalysisResults object.

Default linear model will contain a sum of the variables and covariables. If interactions are desired, a costum formula can be specified. In that case, variables and covariables must also be specified in order to assure the proper work of the resulting AnalysisResult. In addition, the number of variables of the model for which the calculation will be done **must** be specified.

Value

ResultSet object

```
if (require(minfiData)){
set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
res <- runPipeline(set, variable_names = "Sample_Group")
res
}</pre>
```

22 runRDA

ru	nRDA	
ru	NKDA	

Calculate RDA for a set

Description

Perform RDA calculation for a AnalysisRegionResults. Feature values will be considered the matrix X and phenotypes the matrix Y. Adjusting for covariates is done using a model matrix passed in covarsmodel.

Usage

```
runRDA(set, model, num_vars = ncol(model), range, betas = FALSE,
  resultSet = TRUE, num_permutations = 10000)
```

Arguments

set MethylationSet, ExpressionSet or matrix

model Model matrix or formula to get model matrix from set.

num_vars Numeric with the number of variables in the matrix for which the analysis will

be performed. Compulsory if equation is not null.

range GenomicRanges with the region used for RDA

betas If set is a GenomicRatioSet, should beta values be used? (Default: TRUE)

resultSet Should results be encapsulated in a resultSet? (Default: TRUE)

num_permutations

1e4)

Value

Object of class rda or resultSet

See Also

rda

```
if (require(minfiData)){
set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
model <- model.matrix(~set$age)
rda <- runRDA(set, model)
rda
}</pre>
```

runRegionAnalysis 23

runRegionAnalysis

Run different DMR detection methods

Description

This function is a wrapper of two known region differentially methylated detection methods: *Bumphunter*, blockFinder and *DMRcate*.

Usage

```
runRegionAnalysis(set, model, methods = c("blockFinder", "bumphunter",
   "DMRcate"), coefficient = 2, bumphunter_params = NULL,
   blockFinder_params = NULL, dmrcate_params = NULL, verbose = FALSE,
   resultSet = TRUE)
```

Arguments

set GenomicRatioSet, eSet derived object or SummarizedExperiment

model Model matrix representing a linear model.

methods Character vector with the names of the methods used to estimate the regions.

Valid names are: "blockFinder", "bumphunter" and "DMRcate".

coefficient Numeric with the index of the model matrix used to perform the analysis.

bumphunter_params

List with other parameter passed to runBumphunter function.

blockFinder_params

List with other parameter passed to runBlockFinder function.

 ${\tt dmrcate_params} \quad List \ with \ other \ parameter \ passed \ to \ {\tt runDMRcate} \ function.$

verbose Logical value. Should the function be verbose? (Default: FALSE) resultSet Should results be encapsulated in a resultSet? (Default: TRUE)

Details

runRegionAnalysis performs a methylation region analysis using *bumphunter*, blockFinder and *DMRcate*. Bumphunter allows the modification of several parameters that should be properly used.

Cutoff will determine the number of bumps that will be detected. The smaller the cutoff, the higher the number of positions above the limits, so there will be more regions and they will be greater. Bumphunter can pick a cutoff using the null distribution, i.e. permutating the samples. There is no standard cutoff and it will depend on the features of the experiment. Permutations are used to estimate p-values and, if needed, can be used to pick a cutoff. The advised number of permutation is 1000. The number of permutations will define the maximum number of bumps that will be considered for analysing. The more bumps, the longer permutation time. As before, there is not an accepted limit but minfi tutorial recommends not to exceed 30000 bumps. Finally, if supported, it is very advisable to use parallelization to perform the permutations.

Due to minfi design, *BlockFinder* can only be run using own minfi annotation. This annotation is based on hg19 and Illumina 450k chipset. Cpg sites not named like in this annotation package will not be included. As a result, the use of *BlockFinder* is not recommended.

DMRcate uses a first step where linear regression is performed in order to estimate coefficients of the variable of interest. This first step is equal to the calculation performed in DAProbe, but using in this situation linear regression and not robust linear regression.

24 topRDAhits

Value

List or resultSet with the result of the DMR detection methods.

See Also

```
bumphunter, blockFinder, dmrcate
```

Examples

```
if (require(minfiData)){
set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
model <- model.matrix(~Sample_Group, data = pData(MsetEx))
res <- runRegionAnalysis(set, model)
res
}</pre>
```

topRDAhits

Get the top features associated with the RDA

Description

Get a list of the features significantly associated to the first two RDA components

Usage

```
topRDAhits(object, tPV = 0.05)
```

Arguments

object ResultSet

tPV numeric with the p-value threshold. Only features with a p-values below this

threshold will be shown.

Value

data.frame with the features, the component, the correlation and the p-value

```
if (require(minfiData) & require(GenomicRanges)){
  set <- ratioConvert(mapToGenome(MsetEx[1:10,]))
  model <- model.matrix(~set$sex)
  rda <- runRDA(set, model)
  topRDAhits(rda)
}</pre>
```

Index

```
{\it analysis} {\it RegionResults}, {\it 2}
analysisResults, 3
blockFinder, 17, 24
bumphunter, 18, 24
{\tt calculateRelevantSNPs}, {\tt 3}
computeRDAR2, 4
correlationMethExprs, 4
correlationMethSNPs, 5
cpg.annotate, 20
createRanges, 7
{\tt DARegionAnalysis}, \\ {\tt 7}
dmrcate, 20, 24
{\tt explainedVariance}, \\ 8
exportResults, 9
filterResults, 9
getGeneVals, 10
getProbeResults, 11
getRDAresults, 11
MEAL, 12
MEAL-defunct, 12
MEAL-package (MEAL), 12
normalSNP, 12
plotFeature, 13
plotLM, 13
plotRDA, 14
plotRegion, 15
{\tt prepare Methylation Set}, 16
rda, 22
runBlockFinder, 16
runBumphunter, 17
runDiffMeanAnalysis, 18
\verb"runDiffVarAnalysis", 19"
runDMRcate, 20
runPipeline, 20
runRDA, 22
runRegionAnalysis, 23
topRDAhits, 24
```