
Package ‘DropletUtils’
October 16, 2018

Version 1.0.3

Date 2018-08-07

Title Utilities for Handling Single-Cell Droplet Data

Maintainer Aaron Lun <alun@wehi.edu.au>

Depends R (>= 3.5), BiocParallel, SingleCellExperiment

Imports S4Vectors, Matrix, methods, utils, stats, edgeR, Rcpp, rhdf5

Suggests testthat, beachmat, knitr, BiocStyle, rmarkdown, HDF5Array

biocViews SingleCell, Sequencing, RNASeq, GeneExpression,
Transcriptomics, DataImport, Coverage

Description Provides a number of utility functions for handling
single-cell (RNA-seq) data from droplet technologies such as 10X
Genomics. This includes data loading, identification of cells from
empty droplets, removal of barcode-swapped pseudo-cells, and
downsampling of the count matrix.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

LinkingTo Rcpp, beachmat, Rhdf5lib

SystemRequirements C++11

RoxygenNote 6.0.1

git_url https://git.bioconductor.org/packages/DropletUtils

git_branch RELEASE_3_7

git_last_commit 076f4fa

git_last_commit_date 2018-08-07

Date/Publication 2018-10-15

Author Aaron Lun [aut, cre],
Jonathan Griffiths [ctb],
Davis McCarthy [ctb]

R topics documented:
barcodeRanks . 2
defaultDrops . 4

1

2 barcodeRanks

downsampleMatrix . 5
downsampleReads . 6
emptyDrops . 7
makeCountMatrix . 10
read10xCounts . 11
read10xMatrix . 12
read10xMolInfo . 13
swappedDrops . 14
write10xCounts . 16

Index 18

barcodeRanks Calculate barcode ranks

Description

Compute barcode rank statistics and identifry the knee and inflection points on the total count curve.

Usage

barcodeRanks(m, lower=100, fit.bounds=NULL, df=20, ...)

Arguments

m A real sparse matrix object, either a dgTMatrix or dgCMatrix. Columns repre-
sent barcoded droplets, rows represent cells.

lower A numeric scalar specifying the lower bound on the total UMI count, at or below
which all barcodes are assumed to correspond to empty droplets.

fit.bounds A numeric vector of length 2, specifying the lower and upper bouunds on the
total UMI count for spline fitting.

df, ... Further arguments to pass to smooth.spline.

Details

Analyses of droplet-based scRNA-seq data often show a plot of the log-total count against the
log-rank of each barcode, where the highest ranks have the largest totals. This is equivalent to
a transposed empirical cumulative density plot with log-transformed axes, which focuses on the
barcodes with the largest counts. The barcodeRanks function will compute these ranks for all
barcodes. Barcodes with the same total count receive the same average rank to avoid problems with
discrete runs of the same total.

The function will also identify a number of interesting points on the curve for downstream use,
namely the inflection and knee points. Both of these points correspond to a sharp transition between
two components of the total count distribution, presumably reflecting the difference between empty
droplets with little RNA and cell-containing droplets with much more RNA.

• The inflection point is computed as the point on the rank/total curve where the first derivative is
minimized. The derivative is computed directly from all points on the curve with total counts
greater than lower. This avoids issues with erratic behaviour of the curve at lower totals.

barcodeRanks 3

• The knee point is defined as the point on the curve where the signed curvature is minimized.
This requires calculation of the second derivative, which is much more sensitive to noise in
the curve. To overcome this, a smooth spline is fitted to the log-total counts against the log-
rank using the smooth.spline function. Derivatives are then calculated from the fitted spline
using predict.

We supply a default setting of df to avoid overfitting the spline, which results in unstability in the
higher derivatives (and thus the curvature). This and other arguments to smooth.spline can be
tuned if the estimated knee point is not at an appropriate location. We also restrict the fit to lie
within the bounds defined by fit.bounds to focus on the region containing the knee point. This
allows us to obtain an accurate fit with low df, rather than attempting to model the entire curve.

If fit.bounds is not specified, the upper bound is automatically set to the inflection point, which
should lie after the knee point. The lower bound is set to the point at which the first derivative is
closest to zero, i.e., the “plateau” region before the knee point. Note that only points with total
counts above lower will be considered, regardless of how fit.bounds is defined.

Value

A list with the following elements:

rank: A numeric vector of average ranks for each column of m.

total: A numeric vector of total counts for each column of m.

fitted: A numeric vector of fitted total counts from the spline for each column of m. This is NA for
points with x outside of fit.bounds.

knee: A numeric scalar containing the total count at the knee point.

inflection: A numeric scalar containing the total count at the inflection point.

Author(s)

Aaron Lun

See Also

emptyDrops

Examples

Mocking up some data:
set.seed(2000)
my.counts <- DropletUtils:::simCounts()

Computing barcode rank statistics:
br.out <- barcodeRanks(my.counts)
names(br.out)

Making a plot.
plot(br.out$rank, br.out$total, log="xy", xlab="Rank", ylab="Total")
o <- order(br.out$rank)
lines(br.out$rank[o], br.out$fitted[o], col="red")
abline(h=br.out$knee, col="dodgerblue", lty=2)
abline(h=br.out$inflection, col="forestgreen", lty=2)
legend("bottomleft", lty=2, col=c("dodgerblue", "forestgreen"),

legend=c("knee", "inflection"))

4 defaultDrops

defaultDrops Call cells from number of UMIs

Description

Call cells according to the number of UMIs associated with each barcode, as implemented in Cell-
Ranger.

Usage

defaultDrops(m, expected=3000, upper.quant=0.99, lower.prop=0.1)

Arguments

m A real sparse matrix object, either a dgTMatrix or dgCMatrix. Columns repre-
sent barcoded droplets, rows represent cells. The matrix should correspond to
an individual sample.

expected A numeric scalar specifying the expected number of cells in this sample, as
specified in the call to CellRanger.

upper.quant A numeric scalar between 0 and 1 specifying the quantile of the top expected
barcodes to consider for the first step of the algorithm

lower.prop A numeric scalar between 0 and 1 specifying the fraction of molecules of the
upper.quant quantile result that a barcode must exceed to be called as a cell

Details

The defaultDrops function will call cells based on library size similarly to the CellRanger software
suite from 10X Genomics. Default arguments correspond to an exact reproduction of CellRanger’s
algorithm, where the number of expected cells was also left at CellRanger default value.

The method considers the upper.quant quantile of the top expected barcodes, ordered by decreas-
ing number of UMIs, as a threshold. Any barcodes containing more molecules than lower.prop
times this threshold is considered to be a cell, and is retained for further analysis.

This method may be vulnerable to calling very well-captured background RNA, or missing real
cells that were poorly captured. See ?emptyDrops for an alternative approach.

Value

defaultDrops will return a logical vector of length ncol(m). Each element of the vector reports
whether each column of m was called as a cell.

Author(s)

Jonathan Griffiths

References

10X Genomics (2017). Cell Ranger Algorithms Overview. https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/algorithms/overview

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview

downsampleMatrix 5

See Also

emptyDrops

Examples

Mocking up some data:
set.seed(0)
my.counts <- DropletUtils:::simCounts()

Identify likely cell-containing droplets.
called <- defaultDrops(my.counts)
table(called)

Get matrix of called cells.
cell.counts <- my.counts[, called]

downsampleMatrix Downsample a count matrix

Description

Downsample a count matrix to a desired proportion for each cell.

Usage

downsampleMatrix(x, prop, bycol=TRUE)

Arguments

x A numeric matrix of counts.

prop A numeric scalar or, if bycol=TRUE, a vector of length ncol(x). All values
should lie in [0, 1] specifying the downsampling proportion for the matrix or for
each cell.

bycol A logical scalar indicating whether downsampling should be performed on a
column-by-column basis.

Details

Given multiple batches of very different sequencing depths, it can be beneficial to downsample
the deepest batches to match the coverage of the shallowest batches. This avoids differences in
technical noise that can drive clustering by batch.

If bycol=TRUE, sampling without replacement is performed on the count vector for each cell. This
yields a new count vector where the total is equal to prop times the original total count. Each count
in the returned matrix is guaranteed to be smaller than the original value in x. Different proportions
can be specified for different cells by setting prop to a vector.

If bycol=FALSE, downsampling without replacement is performed on the entire matrix. This yields
a new matrix where the total count across all cells is equal to prop times the original total. The new
total count for each cell may not be exactly equal to prop times the original value, which may or
may not be more appropriate than bycol=TRUE for particular applications.

Technically, downsampling on the reads with downsampleReads is more appropriate as it recapitu-
lates the effect of differences in sequencing depth per cell. However, in practice, the aim is to obtain

6 downsampleReads

cells that have similar total counts across batches, for which downsampling on the UMI counts is a
more direct approach.

Note that this function was originally implemented in the scater package as downsampleCounts.

Value

A numeric matrix of downsampled counts, of the same type as x.

Author(s)

Aaron Lun

See Also

downsampleReads

Examples

example(read10xCounts)
downsampled <- downsampleMatrix(counts(sce10x), prop = 0.5)

downsampleReads Downsample reads in a 10X Genomics dataset

Description

Generate a UMI count matrix after downsampling reads from the molecule information file pro-
duced by CellRanger for 10X Genomics data.

Usage

downsampleReads(sample, prop, barcode.length=NULL, bycol=FALSE)

Arguments

sample A string containing the path to the molecule information HDF5 file.

barcode.length An integer scalar specifying the length of the cell barcode, see read10xMolInfo.

prop A numeric scalar or, if bycol=TRUE, a vector of length ncol(x). All values
should lie in [0, 1] specifying the downsampling proportion for the matrix or for
each cell.

bycol A logical scalar indicating whether downsampling should be performed on a
column-by-column basis.

emptyDrops 7

Details

This function downsamples the reads for each molecule by the specified prop, using the information
in sample. It then constructs a UMI count matrix based on the molecules with non-zero read counts.
The aim is to eliminate differences in technical noise that can drive clustering by batch, as described
in downsampleMatrix.

Subsampling the reads with downsampleReads recapitulates the effect of differences in sequencing
depth per cell. This provides an alternative to downsampling with the CellRanger aggr function
or subsampling with the 10X Genomics R kit. Note that this differs from directly subsampling the
UMI count matrix with downsampleMatrix.

If bycol=TRUE, sampling without replacement is performed on the reads for each cell. The total
number of reads for each cell after downsampling is guaranteed to be prop times the original total.
Different proportions can be specified for different cells by setting prop to a vector.

If bycol=FALSE, downsampling without replacement is performed on all reads from the entire
dataset. The total number of reads for each cell after downsampling may not be exactly equal
to prop times the original value. Note that this is the more natural approach and is the default,
which differs from the default used in downsampleMatrix.

Value

A numeric sparse matrix containing the downsampled UMI counts for each gene (row) and barcode
(column).

Author(s)

Aaron Lun

See Also

downsampleMatrix, read10xMolInfo

Examples

Mocking up some 10X HDF5-formatted data.
out <- DropletUtils:::sim10xMolInfo(tempfile(), nsamples=1)

Downsampling by the reads.
downsampleReads(out, barcode.length=4, prop=0.5)

emptyDrops Identify empty droplets

Description

Distinguish between droplets containing cells and ambient RNA in a droplet-based single-cell RNA
sequencing experiment.

Usage

testEmptyDrops(m, lower=100, niters=10000, test.ambient=FALSE,
ignore=NULL, BPPARAM=SerialParam())

emptyDrops(m, lower=100, retain=NULL, barcode.args=list(), ...)

8 emptyDrops

Arguments

m A numeric matrix object, usually a dgTMatrix or dgCMatrix. Columns represent
barcoded droplets, rows represent genes.

lower A numeric scalar specifying the lower bound on the total UMI count, at or below
which all barcodes are assumed to correspond to empty droplets.

niters An integer scalar specifying the number of iterations to use for the Monte Carlo
p-value calculations.

test.ambient A logical scalar indicating whether results should be returned for barcodes with
totals less than or equal to lower.

ignore A numeric scalar specifying the lower bound on the total UMI count, at or below
which barcodes will be ignored (see Details for how this differs from lower).

BPPARAM A BiocParallelParam object indicating whether parallelization should be used to
compute p-values.

retain A numeric scalar specifying the threshold for the total UMI count above which
all barcodes are assumed to contain cells.

barcode.args Further arguments to pass to barcodeRanks.
... Further arguments to pass to testEmptyDrops.

Value

testEmptyDrops will return a DataFrame with the following components:

Total: Integer, the total UMI count for each barcode.
LogProb: Numeric, the log-probability of observing the barcode’s count vector under the null

model.
PValue: Numeric, the Monte Carlo p-value against the null model.
Limited: Logical, indicating whether a lower p-value could be obtained by increasing npts.

For barcodes with counts below lower, NA values are returned for all fields if test.ambient=FALSE.
This is to ensure that the number of rows in the output DataFrame is identical to ncol(m).

emptyDrops will return a DataFrame like testEmptyDrops, with an additional FDR field.

Details about testEmptyDrops

The testEmptyDrops function will obtain an estimate of the composition of the ambient pool of
RNA based on the barcodes with total UMI counts below lower. This assumes that a cell-containing
droplet would generally have higher total counts than empty droplets containing RNA from the am-
bient pool. Counts for the low-count barcodes are pooled together, and an estimate of the proportion
vector for the ambient pool is calculated using goodTuringProportions. The count vector for each
barcode above lower is then tested for a significant deviation from these proportions.

The null hypothesis is that transcript molecules are included into droplets by multinomial sampling
from the ambient profile. For each barcode, the probability of obtaining its count vector based on
the null model is computed. Then, niters count vectors are simulated from the null model. The
proportion of simulated vectors with probabilities lower than the observed multinomial probability
for that barcode is used to calculate the p-value. We use this Monte Carlo approach as an exact
multinomial p-value is difficult to calculate.

The ignore argument can also be set to ignore barcodes with total counts less than or equal to
ignore. This differs from the lower argument in that the ignored barcodes are not necessarily used
to compute the ambient profile. Users can interpret ignore as the minimum total count required for
a barcode to be considered as a potential cell. In contrast, lower is the maximum total count below
which all barcodes are assumed to be empty droplets.

emptyDrops 9

Details about emptyDrops

The emptyDrops function combines the results of testEmptyDrops with barcodeRanks to identify
droplets that are likely to contain cells. Specifically, the total count K at the knee point is determined,
and barcodes that contain more than K total counts are always retained. This ensures that cells
with profiles that are very similar to the ambient pool are not inadvertently discarded. If retain is
specified, this is used instead of K, which may be useful if the knee point was not correctly identified
in complex log-rank curves. Users can set retain=Inf to disable automatic retention of barcodes
with large totals.

The Benjamini-Hochberg correction is also applied to the Monte Carlo p-values to correct for multi-
ple testing. Cells can then be defined by taking all barcodes with significantly non-ambient profiles,
e.g., at a false discovery rate of 1%. All barcodes with total counts above K (or retain) are assigned
p-values of zero during correction, reflecting our assumption that they are true positives. This en-
sures that their Monte Carlo p-values do not affect the correction of other genes, and also means
that they will have FDR values of zero. Nonetheless, their original Monte Carlo p-values are still
reported in the output.

Author(s)

Aaron Lun

References

Lun A, Riesenfeld S, Andrews T, Dao TP, Gomes T, participants in the 1st Human Cell Atlas
Jamboree, Marioni JC (2018). Distinguishing cells from empty droplets in droplet-based single-
cell RNA sequencing data. biorXiv.

Phipson B, Smyth GK (2010). Permutation P-values should never be zero: calculating exact P-
values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9:Article 39.

See Also

barcodeRanks, defaultDrops

Examples

Mocking up some data:
set.seed(0)
my.counts <- DropletUtils:::simCounts()

Identify likely cell-containing droplets.
out <- emptyDrops(my.counts)
out

is.cell <- out$FDR <= 0.01
sum(is.cell, na.rm=TRUE)

Check if p-values are lower-bounded by 'npts'
(increase 'npts' if any Limited==TRUE and Sig==FALSE)
table(Sig=is.cell, Limited=out$Limited)

10 makeCountMatrix

makeCountMatrix Make a count matrix

Description

Construct a count matrix from per-molecule information, typically the cell and gene of origin.

Usage

makeCountMatrix(gene, cell, all.genes=NULL, all.cells=NULL, value=NULL)

Arguments

gene An integer or character vector specifying the gene to which each molecule was
assigned.

cell An integer or character vector specifying the cell to which each molecule was
assigned.

all.genes A character vector containing the names of all genes in the dataset.

all.cells A character vector containing the names of all cells in the dataset.

value A numeric vector containing values for each molecule.

Details

Each element of the vectors gene, cell and (if specified) value contain information for a single
transcript molecule. Each entry of the output matrix corresponds to a single gene and cell com-
bination. If multiple molecules are present with the same combination, their values in value are
summed together, and the sum is used as the entry of the output matrix.

If value=NULL, it will default to a vector of all 1’s. Each entry of the output matrix represents the
number of molecules with the corresponding combination, i.e., UMI counts. Users can pass other
metrics such as the number of reads covering each molecule. This would yield a read count matrix
rather than a UMI count matrix.

If all.genes is not specified, it is kept as NULL for integer gene. Otherwise, it is defined as the
sorted unique values of character gene. The same occurs for cell and all.cells.

If gene is integer, its values should be positive and no greater than length(all.genes) if all.genes!=NULL.
If gene is character, its values should be a subset of those in all.genes. The same requirements
apply to cell and all.cells.

Value

A sparse matrix where rows are genes, columns are cells and entries are the sum of value for
each gene/cell combination. Rows and columns are named if the gene or cell are character or if
all.genes or all.cells are specified.

Author(s)

Aaron Lun

See Also

read10xMolInfo

read10xCounts 11

Examples

nmolecules <- 100
gene.id <- sample(LETTERS, nmolecules, replace=TRUE)
cell.id <- sample(20, nmolecules, replace=TRUE)
makeCountMatrix(gene.id, cell.id)

read10xCounts Load in data from 10x experiment

Description

Creates a SingleCellExperiment from the CellRanger output directories for 10X Genomics data.

Usage

read10xCounts(samples, col.names=FALSE, ...)

Arguments

samples A character vector containing one or more directory names, each corresponding
to a 10X sample. Each directory should contain the "matrix.mtx", "genes.tsv"
and "barcodes.tsv" files generated by CellRanger.

col.names A logical scalar indicating whether the columns of the output object should be
named with the cell barcodes.

... Further arguments to pass to read10xMatrix.

Details

This function was originally developed from the Read10X function from the Seurat package. It was
then taken from the read10xResults implementation in the scater package.

If col.names=TRUE and length(sample)==1, each column is named by the cell barcode. For
multiple samples, the columns are unnamed to avoid problems with non-unique barcodes across
samples.

Note that user-level manipulation of sparse matrices requires loading of the Matrix package. Oth-
erwise, calculation of rowSums, colSums, etc. will result in errors.

Value

A SingleCellExperiment object with counts data stored as a sparse matrix. Matrices are combined
by column if multiple samples were specified. Rows are named with the gene identifier (usually
ENSEMBL).

Author(s)

Davis McCarthy, with modifications from Aaron Lun

References

Zheng GX, Terry JM, Belgrader P, and others (2017). Massively parallel digital transcriptional
profiling of single cells. Nat Commun 8:14049.

10X Genomics (2017). Gene-Barcode Matrices. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/matrices

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices

12 read10xMatrix

See Also

write10xCounts

Examples

Mocking up some 10X genomics output.
example(write10xCounts)

Reading it in.
sce10x <- read10xCounts(tmpdir)

Column names are dropped with multiple 'samples'.
sce10x2 <- read10xCounts(c(tmpdir, tmpdir))

read10xMatrix Read in the 10x count matrix

Description

Creates a sparse or HDF5-backed count matrix from the MatrixMarket file produced by CellRanger.

Usage

read10xMatrix(file, hdf5.out=FALSE, chunk.size)

Arguments

file String containing the path to a MatrixMarket file, usually named "matrix.mtx".

hdf5.out A logical scalar indicating whether a HDF5Matrix object should be produced.

chunk.size An integer scalar specifying the chunk size when reading in records from file.

Details

When hdf5.out=FALSE, readMM is used directly. However, for very large 10x experiments with
more than .Machine$integer.max non-zero entries, dgCMatrix may encounter integer overflows.
In such cases, setting hdf5.out=TRUE will produce a HDF5Matrix object instead.

Value

A dgCMatrix object (or a HDF5Matrix object, if hdf5.out=TRUE) containing the counts for each
gene (row) and cell barcode (column).

Author(s)

Aaron Lun

References

10X Genomics (2017). Gene-Barcode Matrices. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/matrices

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices

read10xMolInfo 13

See Also

readMM, read10xCounts

Examples

Mocking up some 10X genomics output.
example(write10xCounts)

mm.path <- file.path(tmpdir, "matrix.mtx")
X <- read10xMatrix(mm.path)
altX <- read10xMatrix(mm.path, chunk.size=10, hdf5.out=TRUE)

read10xMolInfo Read the 10X molecule information file

Description

Extract relevant fields from the molecule information HDF5 file, produced by CellRanger for 10X
Genomics data.

Usage

read10xMolInfo(sample, barcode.length=NULL, keep.unmapped=FALSE)

Arguments

sample A string containing the path to the molecule information HDF5 file.
barcode.length An integer scalar specifying the length of the cell barcode.
keep.unmapped A logical scalar indicating whether unmapped molecules should be reported.

Details

Molecules that were not assigned to any gene have gene set to length(genes)+1. By default, these
are removed when keep.unmapped=FALSE.

The length of the cell barcode is automatically inferred if barcode.length=NULL. Currently, ver-
sion 1 of the 10X chemistry uses 14 nt barcodes, while version 2 uses 16 nt barcodes.

Value

A list is returned containing two elements. The first element is named data and is a DataFrame
where each row corresponds to a single transcript molecule. The fields are as follows:

barcode: Character, the cell barcode for each molecule.
umi: Integer, the processed UMI barcode in 2-bit encoding.
gem_group: Integer, the GEM group.
gene: Integer, the index of the gene to which the molecule was assigned. This refers to an entry in

the genes vector, see below.
reads: Integer, the number of reads mapped to this molecule.

The second element of the list is named genes and is a character vector containing the names of all
genes in the annotation. This contains the names of the various entries of gene for the individual
molecules.

14 swappedDrops

Author(s)

Aaron Lun, based on code by Jonathan Griffiths

References

Zheng GX, Terry JM, Belgrader P, and others (2017). Massively parallel digital transcriptional
profiling of single cells. Nat Commun 8:14049.

10X Genomics (2017). Molecule info. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/molecule_info

See Also

makeCountMatrix

Examples

Mocking up some 10X HDF5-formatted data.
out <- DropletUtils:::sim10xMolInfo(tempfile())

Reading the resulting file.
read10xMolInfo(out)

swappedDrops Clean barcode-swapped droplet data

Description

Remove the effects of barcode swapping on droplet-based single-cell RNA-seq data, specifically
10X Genomics datasets.

Usage

swappedDrops(samples, barcode.length=NULL, get.swapped=FALSE,
get.diagnostics=FALSE, min.frac=0.8)

Arguments

samples A character vector containing paths to the molecule information HDF5 files,
produced by CellRanger for 10X Genomics data.

barcode.length An integer scalar specifying the length of the cell barcode, see read10xMolInfo.

get.swapped A logical scalar indicating whether the UMI counts corresponding to swapped
molecules should also be returned.

get.diagnostics

A logical scalar indicating whether to return the number of reads for each swapped
molecule in each sample.

min.frac A numeric scalar specifying the minimum fraction of reads required for a swapped
molecule to be assigned to a sample.

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/molecule_info
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/molecule_info

swappedDrops 15

Details

Barcode swapping on the Illumina sequencer occurs when multiplexed samples undergo PCR re-
amplification on the flow cell by excess primer with different barcodes. This results in sequencing
of the wrong barcode and molecules being assigned to incorrect samples after debarcoding. With
droplet data, there is the opportunity to remove such effects based on the combination of gene, UMI
and cell barcode for each observed transcript molecule. It is very unlikely that the same combination
will arise from different molecules in multiple samples. Thus, observation of the same combination
across multiple samples is indicative of barcode swapping.

For each potentially swapped molecule in 10X Genomics data, the number of reads corresponding
to that molecule is extracted from the molecule information file. The fraction of reads in each
sample is calculated, and the molecule is assigned to the sample with the largest fraction if it is
greater than min.frac. This assumes that the swapping rate is low, so the true sample of origin for
a molecule should contain the majority of the reads. Setting min.frac=1 will effectively remove
all molecules that appear in multiple samples. We do not recommend setting min.frac lower than
0.5.

Value

A list is returned with the cleaned element, itself a list of sparse matrices is returned. Each matrix
corresponds to a sample and contains the UMI count for each gene (row) and barcode (column) after
removing swapped molecules. All barcodes that were originally observed are reported as columns,
though note that it is possible for some barcodes to contain no counts.

If get.swapped=TRUE, a swapped element is returned in the top-level list. This contains sample-
specific sparse matrices of UMI counts corresponding to the swapped molecules. Adding the
cleaned and swapped matrices for each sample should yield the total UMI count prior to removal of
swapped molecules.

If get.diagnostics=TRUE, the top-level list will also contain an additional diagnostics matrix.
Each entry of this matrix contains the number of reads for each molecule (row) in each sample
(column). This can be useful for examining the level of swapping across samples on a molecule-
by-molecule basis.

Author(s)

Jonathan Griffiths, with modifications by Aaron Lun

References

Griffiths JA, Lun ATL, Richard AC, Bach K, Marioni JC (2017). Detection and removal of barcode
swapping in single-cell RNA-seq data. biorXiv 177048.

See Also

read10xMolInfo

Examples

Mocking up some 10x HDF5-formatted data, with swapping.
curfiles <- DropletUtils:::sim10xMolInfo(tempfile(), nsamples=3)

Obtaining count matrices with swapping removed.
out <- swappedDrops(curfiles)
lapply(out, dim)

16 write10xCounts

out <- swappedDrops(curfiles, get.swapped=TRUE, get.diagnostics=TRUE)
names(out)

write10xCounts Write count data in the 10x format

Description

Create a directory containing the count matrix and cell/gene annotation from a sparse matrix of
UMI counts, in the format produced by the CellRanger software suite.

Usage

write10xCounts(path, x, barcodes=colnames(x), gene.id=rownames(x),
gene.symbol=gene.id, overwrite=FALSE)

Arguments

x A sparse numeric matrix of UMI counts.

path A string containing the path to the output directory.

barcodes A character vector of cell barcodes, one per column of x.

gene.id A character vector of gene identifiers, one per row of x.

gene.symbol A character vector of gene symbols, one per row of x.

overwrite A logical scalar specifying whether path should be overwritten if it already
exists.

Value

A directory is produced at path containing the files "matrix.mtx", "barcodes.tsv" and "genes.tsv".
A TRUE value is invisibly returned.

Author(s)

Aaron Lun

References

10X Genomics (2017). Gene-Barcode Matrices. https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/output/matrices

See Also

read10xCounts

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/output/matrices

write10xCounts 17

Examples

Mocking up some count data.
library(Matrix)
my.counts <- matrix(rpois(1000, lambda=5), ncol=10, nrow=100)
my.counts <- as(my.counts, "dgCMatrix")
cell.ids <- paste0("BARCODE-", seq_len(ncol(my.counts)))

ngenes <- nrow(my.counts)
gene.ids <- paste0("ENSG0000", seq_len(ngenes))
gene.symb <- paste0("GENE", seq_len(ngenes))

Writing this to file:
tmpdir <- tempfile()
write10xCounts(tmpdir, my.counts, gene.id=gene.ids,

gene.symbol=gene.symb, barcodes=cell.ids)
list.files(tmpdir)

Index

barcodeRanks, 2, 8, 9

defaultDrops, 4, 9
downsampleMatrix, 5, 7
downsampleReads, 5, 6, 6

emptyDrops, 3–5, 7

goodTuringProportions, 8

HDF5Matrix, 12

makeCountMatrix, 10, 14

predict, 3

read10xCounts, 11, 13, 16
read10xMatrix, 11, 12
read10xMolInfo, 6, 7, 10, 13, 14, 15
readMM, 12, 13

smooth.spline, 2, 3
swappedDrops, 14

testEmptyDrops (emptyDrops), 7

write10xCounts, 12, 16

18

	barcodeRanks
	defaultDrops
	downsampleMatrix
	downsampleReads
	emptyDrops
	makeCountMatrix
	read10xCounts
	read10xMatrix
	read10xMolInfo
	swappedDrops
	write10xCounts
	Index

