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adjustScvForBias Adjust an SCV value for the bias arising when it is calculated from
unbiased estimates of mean and variance.

Description

Assume that a small sample of i.i.d. random variables from a negative binomial distribution is given,
and you have obtained unbiased estimates of mean and raw variance. Then, a new bias is introduced
when the squared coefficient of variation (SCV, a.k.a. dispersion) is calculated from these unbiased
estimates by dividing the raw variance by the square of the mean. This bias can be calculated by
numerical simulation and a pre-calculated adjustment table (or rather a fit through tabulated values)
is supplied with the package. The present function uses this to remove the bias from a raw SCV
estimate.

This function is used internally in nbinomTest. You will rarely need to call it directly.

Usage

adjustScvForBias(scv, nsamples)

Arguments

scv An estimate for the raw squared coefficient of variation (SCV) for negative bi-
nomially distributed data, which has been obtained by dividing an unbiased es-
timate of the raw variance by the square of an unbiased estimate of the mean.

nsamples The size of the sample used in the estimation.

Value

an unbiased estimate of the raw SCV
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Author(s)

Simon Anders

Examples

true_mean <- 100
true_scv <- .1
nsamples <- 3
res <- replicate( 1000, {

mySample <- rnbinom( nsamples, mu=true_mean, size=1/true_scv )
mu_est <- mean( mySample )
raw_var_est <- var( mySample ) - mean( mySample )
raw_scv_est <- raw_var_est / mu_est^2
unbiased_raw_scv_est <- adjustScvForBias( raw_scv_est, 4 )
c( raw_scv_est = raw_scv_est, unbiased_raw_scv_est = unbiased_raw_scv_est ) } )

rowMeans( res )

conditions Accessor functions for the ’conditions’ information in a CountDataSet
object.

Description

The conditions vector is a factor that assigns to each column of the count data a condition (or
treatment, or phenotype, or the like). This information is stored in the CountDataSet’s "phenoData"
slot as a row named "condition".

Usage

## S4 method for signature 'CountDataSet'
conditions(object, ...)
## S4 replacement method for signature 'CountDataSet'
conditions(object) <- value

Arguments

object a CountDataSet

value a vector of suitable length, i.e. with as many elements as object has samples.

... should not be used for this method.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
conditions( cds )
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CountDataSet-class Class "CountDataSet" – a container for count data from HTS experi-
ments

Description

This is the main class for the present package.

Objects from the Class

Objects should be created with calls to newCountDataSet (q.v.).

Extends

Class eSet (package ’Biobase’), directly. Class VersionedBiobase (package ’Biobase’), by class
"eSet", distance 2. Class Versioned (package ’Biobase’), by class "eSet", distance 3.

Note

Note: This is a summary for reference. For an explanation of the actual usage, see the vignette.

A CountDataSet object stores counts from an HTS data set and offers further slots which are popu-
lated during the analysis.

After creation with newCountDataSet, a CountDataSet typically contains a count table, i.e., a ma-
trix of integer data, that is accessible with the accessor function counts. Each row of the matrix
corresponds to a gene (or binding region, or the like), and each colum to an experimental sample.
The experimental conditions of the samples are stored in a factor (with one element for each row of
the counts matrix), which can be read with the accessor function conditions.

In the following analysis steps, further data slots are populated. First, the size factors can be esti-
mated with estimateSizeFactors, which are afterwards accessible via sizeFactors. Then, the
dispersions (variance fits) are estimated with estimateDispersions. The resulting estimates are
stored in phenoData columns, accessible via pData, with the column names staring with disp_. The
intermediate steps of the fit are stored in the environment-values slot fitInfo (see estimateDispersions
for details).

Internally, the mentioned data is stored in slots as follows:

As CountDataSet is derived from eSet, it has a phenoData slot which allows to store sample
annotation. This is used to store the factor with the conditions, as a data frame column named
condition, and to store the size factors, as an numeric data frame column named sizeFactor. If
the user creates an object with multivariate design, i.e., passes a data frame instead of a factor for
conditions, this data frame’s columns are placed in the phenoData slot instead of the condition
column. Furthermore, the function estimateDispersions adds columns with the dispersion values
to be used by nbinomTest and fitNbinomGLMs. These columns have names starting with disp_.

The user may add further columns to the phenoData AnnotatedDataFrame.

The counts table is stored in the eSet’s assayData locked environment with the name counts.

The slot dispInfo is an environment containing lists, one for each set of estimated dispersion values
and the slot dispTable (with accessor dispTable shows the assignment of conditions to dispersion
estimates. See estimateDispersions

Examples

# See the vignette
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counts Accessors for the ’counts’ slot of a CountDataSet object.

Description

The counts slot holds the count data as a matrix of non-negative integer count values, one row for
each observational unit (gene or the like), and one column for each sample.

Usage

## S4 method for signature 'CountDataSet'
counts(object, normalized=FALSE)
## S4 replacement method for signature 'CountDataSet,matrix'
counts(object) <- value

Arguments

object a CountDataSet object.

normalized logical indicating whether or not to divide the counts by the size factors before
returning.

value integer matrix.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
head( counts( cds ) )

dispTable Accessor function for the dispTable information in a CountDataSet

Description

The dispersion table ("dispTable") is a named vector that assigns to each condition (as name) a
dispersion column (as value). If nbinomTest is called to compare two conditions, say "A" and
"B", DESeq looks up in the dispTable, which dispersion columns to use. In the standard case (see
example), these are just the dispersions for "A" and "B", i.e., the columns disp_A and disp_B in
fData(object). If the "pooled" or "blind" variance estimation is used, all conditions are assigned
the same column.

Usage

dispTable(object,...)
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Arguments

object a CountDataSet

... further argumnts are ignored

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateDispersions, nbinomTest

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds )
dispTable( cds )

estimateDispersions Estimate and fit dispersions for a CountDataSet.

Description

This function obtains dispersion estimates for a count data set. For each condition (or collectively
for all conditions, see ’method’ argument below) it first computes for each gene an empirical dis-
persion value (a.k.a. a raw SCV value), then fits by regression a dispersion-mean relationship and
finally chooses for each gene a dispersion parameter that will be used in subsequent tests from the
empirical and the fitted value according to the ’sharingMode’ argument.

Usage

## S4 method for signature 'CountDataSet'
estimateDispersions( object,

method = c( "pooled", "pooled-CR", "per-condition", "blind" ),
sharingMode = c( "maximum", "fit-only", "gene-est-only" ),
fitType = c("parametric", "local"),
locfit_extra_args=list(), lp_extra_args=list(),
modelFrame = NULL, modelFormula = count ~ condition, ... )

Arguments

object a CountDataSet with size factors.

method There are three ways how the empirical dispersion can be computed:

• pooled - Use the samples from all conditions with replicates to estimate a
single pooled empirical dispersion value, called "pooled", and assign it to
all samples.
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• pooled-CR - Fit models according to modelFormula and estimate the dis-
persion by maximizing a Cox-Reid adjusted profile likelihood (CR-APL).
This method is much slower than method=="pooled" but works also with
crossed factors (as may occur, e.g., in designs with paired samples). Usu-
ally, you will need to specify the model formula, which should be the same
as the one used later in the call to nbinomFitGLMs for fitting the full model.
Note: The method of using CR-APL maximization for this application has
been developed by McCarthy, Chen and Smyth [Nucl. Acid Res., 2012 and
been first implemented in edgeR (in 2010). DESeq optimizes the expres-
sion for the CR-APL given in McCarthy et al.’s paper, but does not use the
weigthed maximum likelihood scheme proposed there.

• per-condition - For each condition with replicates, compute a gene’s em-
pirical dispersion value by considering the data from samples for this con-
dition. For samples of unreplicated conditions, the maximum of empirical
dispersion values from the other conditions is used. If object has a mul-
tivariate design (i.e., if a data frame was passed instead of a factor for the
condition argument in newCountDataSet), this method is not available.
(Note: This method was called “normal” in previous versions.)

• blind - Ignore the sample labels and compute a gene’s empirical dispersion
value as if all samples were replicates of a single condition. This can be
done even if there are no biological replicates. This method can lead to
loss of power; see the vignette for details. The single estimated dispersion
condition is called "blind" and used for all samples.

sharingMode After the empirical dispersion values have been computed for each gene, a
dispersion-mean relationship is fitted for sharing information across genes in
order to reduce variability of the dispersion estimates. After that, for each gene,
we have two values: the empirical value (derived only from this gene’s data),
and the fitted value (i.e., the dispersion value typical for genes with an average
expression similar to those of this gene). The sharingMode argument specifies
which of these two values will be written to the featureData’s disp_ columns
and hence will be used by the functions nbinomTest and fitNbinomGLMs.

• fit-only - use only the fitted value, i.e., the empirical value is used only as
input to the fitting, and then ignored. Use this only with very few replicates,
and when you are not too concerned about false positives from dispersion
outliers, i.e. genes with an unusually high variability.

• maximum - take the maximum of the two values. This is the conservative or
prudent choice, recommended once you have at least three or four replicates
and maybe even with only two replicates.

• gene-est-only - No fitting or sharing, use only the empirical value. This
method is preferable when the number of replicates is large and the empir-
ical dispersion values are sufficiently reliable. If the number of replicates
is small, this option may lead to many cases where the dispersion of a gene
is accidentally underestimated and a false positive arises in the subsequent
testing.

fitType • parametric - Fit a dispersion-mean relation of the form dispersion = asymptDisp + extraPois / mean
via a robust gamma-family GLM. The coefficients asymptDisp and extraPois
are given in the attribute coefficients of the dispFunc in the fitInfo
(see below).

• local - Use the locfit package to fit a dispersion-mean relation, as described
in the DESeq paper.
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locfit_extra_args, lp_extra_args

(only for fitType=local) Options to be passed to the locfit and to the lp
function of the locfit package. Use this to adjust the local fitting. For example,
you may pass a value for nn different from the default (0.7) if the fit seems too
smooth or too rough by setting lp_extra_agrs=list(nn=0.9). As another ex-
ample, you can set locfit_extra_args=list(maxk=200) if you get the error
that locfit ran out of nodes. See the documentation of the locfit package for
details. In most cases, you will not need to provide these parameters, as the
defaults seem to work quite well.

modelFrame By default, the information in conditions(object) or pData(object) is used
to determine which samples are replicates (see newCountDataSet). For method="pooled",
a data frame can be passed here, and all rows that are identical in this data frame
are considered to indicate replicate samples in object. For method="pooled-CR",
the data frame is used in the fits. For the other methods, this argument is ignored.

modelFormula For method="pooled-CR", this is the formual used for the dispersion fits. For
all other methods, this argument is ignored.

... extra arguments are ignored

Details

Behaviour for method="per-condition": For each replicated condition, a list, named with the
condition’s name, is placed in the environment object@fitInfo. This list has five named elements:
The vector perGeneDispEsts contains the empirical dispersions. The function dispFunc is the
fitted function, i.e., it takes as its argument a normalized mean expression value and returns the
corresponding fitted dispersion. The values fitted according to this function are in the third element
fittedDispEst, a vector of the same length as perGeneDispEsts. The fourt element, df, is an
integer, indicating the number of degrees of freedom of the per-gene estimation. The fifth element,
sharingMode, stores the value of the sharingMode argument to esimateDispersions.

Behaviour for method="blind" and method="pooled": Only one list is produced, named "blind"
or "pooled" and placed in object@fitInfo.

For each list in the fitInfo environment, the dispersion values that are intended to be used in
subsequent testing are computed according to the value of sharingMode and are placed in the
featureData data frame, in a column named with the same name, prefixed with "disp_".

Then, the dispTable (see there) is filled to assign to each condition the appropriate dispersion
column in the phenoData frame.

Note: Up to DESeq version 1.4.x (Bioconductor release 2.8), this function was called estimateVarianceFunctions,
stored its result differently and did not have the arguments sharingMode and fitType. estimatevarianceFunction’s
behaviour corresponded to the settings sharingMode="fit-only" and fitType="local". Note
that these are not the default, because the new defaults sharingMode="maximum" and fitType="parametric"
are more robust and tend to give better results.

Value

The CountDataSet cds, with the slots fitInfo and featureData updated as described in Details.

Author(s)

Simon Anders, sanders@fs.tum.de
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Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds )
str( fitInfo( cds ) )
head( fData( cds ) )

estimateSizeFactors Estimate the size factors for a CountDataSet

Description

Estimate the size factors for a CountDataSet

Usage

## S4 method for signature 'CountDataSet'
estimateSizeFactors( object, locfunc=median, ... )

Arguments

object a CountDataSet

locfunc a function to compute a location for a sample. By default, the median is used.
However, especially for low counts, the shorth may give better results.

... extra arguments are ignored

Details

You need to call this function right after newCountDataSet unless you have manually specified size
factors.

Typically, the function is called with the idiom

cds <- estimateSizeFactors( cds )

This estimates the size factors and stores the information in the object.

Internally, the function calls estimateSizeFactorsForMatrix. See there for more details on the
calculation.

Value

The CountDataSet passed as parameters, with the size factors filled in.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactorsForMatrix
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Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
sizeFactors( cds )

estimateSizeFactorsForMatrix

Low-level function to estimate size factors with robust regression.

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows:
Each column is divided by the geometric means of the rows. The median (or, ir requested, another
location estimator) of these ratios (skipping the genes with a geometric mean of zero) is used as the
size factor for this column.

Typically, you will not call this function directly, but use estimateSizeFactors.

Usage

estimateSizeFactorsForMatrix( counts, locfunc=median)

Arguments

counts a matrix or data frame of counts, i.e., non-negative integer values
locfunc a function to compute a location for a sample. By default, the median is used.

However, especially for low counts, the shorth may give better results.

Value

a vector with the estimates size factors, one element per column

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactors

Examples

cds <- makeExampleCountDataSet()
estimateSizeFactorsForMatrix( counts(cds) )

estimateVarianceFunctions

REMOVED

Description

This function has been removed. Instead, use estimateDispersions.
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fitInfo Accessor function for the fitInfo objects in a CountDataSet

Description

After calling estimateDispersions, a CountDataSet object is populated with one or (in case of a
“per-condition” estimation) several fitInfo objects, which can be accessed with this function.

Usage

fitInfo( cds, name=NULL )

Arguments

cds a CountDataSet

name if estimateDispersion was called with method="per-condition" a name
hasd to specified. Try ls(cds@fitInfo.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateDispersions

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds )
str( fitInfo( cds ) )

fitNbinomGLMs Fit a generalized linear model (GLM) for each gene.

Description

Use this function to estimate coefficients and calculate deviance from a GLM for each gene. The
GLM uses the nbkd.sf family, with the dispersion estimate according to getVarianceFunction(cds).
Note that this requires that the variance functions were estimated with method "pooled" or "blind".

Usage

fitNbinomGLMs( cds, modelFormula, glmControl=list() )
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Arguments

cds a CountDataSet

modelFormula a formula. The left hand side must be ’count’ (not ’counts’!), the right hand side
can involve any column of pData(cds), i.e., pData(cds) is used as the model
frame. If you have passed just a single factor to the ’conditions’ argument of
newCountDataSet, it can be referred to as ’condition’ in the formula. If you
have passed a data frame to ’conditions’, all columns of this data frame will be
available.

glmControl list of additional parameters to be passed to glm.control

Value

A data frame with one row for each gene and columns as follows:

• one column for each estimated coefficient, on a log2 scale (i.e., the natural log reported by
glm is rescaled to base 2)

• a column ’deviance’, with the deviance of the fit

• a boolean column ’converged’, indicating whether the fit converged

Furthermore, the data frame has a scalar attribute ’df.residual’ that contains the number of residual
degrees of freedom.

Author(s)

Simon Anders (sanders@fs.tum.de)

See Also

newCountDataSet,nbinomGLMTest, nbkd.sf

Examples

# see nbinomGLMTest for an example

fitNbinomGLMsForMatrix

Fit negative binomial GLMs to a count matrix.

Description

This is a low-level function that is wrapped by nbinomGLMTest.

Usage

fitNbinomGLMsForMatrix(counts, sizeFactors, rawScv, modelFormula,
modelFrame, quiet = FALSE, reportLog2 = TRUE, glmControl = list() )
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Arguments

counts a matrix of integer counts. Rows for genes, Columns for samples.

sizeFactors a vector with a size factor for each column in ’counts’.

rawScv a vector with a raw SCV (i.e., a dispersion) for each row in ’counts’.

modelFormula a model formula. The left hand side should read ’count ~’.

modelFrame a model frame (with one row for each column in ’counts’)

quiet whether to not print dots

reportLog2 whether to convert reported coefficients from natural log to log2 scale

glmControl list of additional parameters to be passed to glm.control

Value

A data frame with one row for each gene and columns as follows:

• one column for each estimated coefficient, on a log2 scale (i.e., the natural log reported by
glm is rescaled to base 2)

• a column ’deviance’, with the deviance of the fit

• a boolean column ’converged’, indicating whether the fit converged

Furthermore, the data frame has a scalar attribute ’df.residual’ that contains the number of residual
degrees of freedom.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

# See the code of fitNbinomGLMs for an example.

getBaseMeansAndVariances

Perform row-wise estimates of base-level means and variances for
count data.

Description

This function is called internally by a number of other functions. You will need to call it directly
only in very special cases.

Usage

getBaseMeansAndVariances(counts, sizeFactors)

Arguments

counts a matrix of data frame of count data. All the columns of this matrix will be
considered as replicates of the same condition.

sizeFactors the size factors of the columns, as estimated e.g. with estimateSizeFactorsForMatrix
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Details

This function is kept for backwards compatibility. See the example below for an alternative and
more self-explanatory way to get the same data.

Value

A data frame with one row for each row in ’counts’ and two columns:

baseMean The base mean for each row. This is the mean of the counts after they have been
divided by the size factors

comp2 The base variance for each row. This is the variance of the counts after they have
been divided by the size factors

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
head( getBaseMeansAndVariances( counts(cds), sizeFactors(cds) ) )

# You can get the same as follows
head( rowMeans( counts( cds, normalized=TRUE ) ) )
head( genefilter::rowVars( counts( cds, normalized=TRUE ) ) )

getVarianceStabilizedData

Apply a variance stabilizing transformation (VST) to the count data

Description

This function calculates a variance stabilizing transformation (VST) from the fitted dispersion-mean
relation(s) and then transforms the count data (normalized by division by the size factor), yielding a
matrix of values which are now approximately homoskedastic. This is useful as input to statistical
analyses requiring homoskedasticity.

Usage

varianceStabilizingTransformation(cds)
getVarianceStabilizedData(cds)

Arguments

cds a CountDataSet which also contains the fitted dispersion-mean relation
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Details

For each sample (i.e., column of counts(cds)), the full variance function is calculated from the raw
variance (by scaling according to the size factor and adding the shot noise). The function requires
a blind estimate of the variance function, i.e., one ignoring conditions. Usually, this is achieved
by calling estimateDispersions with method="blind" before calling it. A typical workflow is
shown in Section Variance stabilizing transformation in the package vignette.

If estimateDispersions was called with fitType="parametric", a closed-form expression for
the variance stabilizing transformation is used on the normalized count data. The expression can be
found in the file ‘vst.pdf’ which is distributed with the vignette.

If estimateDispersions was called with fitType="locfit", the reciprocal of the square root
of the variance of the normalized counts, as derived from the dispersion fit, is then numerically
integrated, and the integral (approximated by a spline function) is evaluated for each count value in
the column, yielding a transformed value.

In both cases, the transformation is scaled such that for large counts, it becomes asymptotically (for
large values) equal to the logarithm to base 2.

Limitations: In order to preserve normalization, the same transformation has to be used for all
samples. This results in the variance stabilizition to be only approximate. The more the size factors
differ, the more residual dependence of the variance on the mean you will find in the transformed
data. As shown in the vignette, you can use the function meanSdPlot from the package vsn to see
whether this is a problem for your data.

Value

For varianceStabilizingTransformation, an ExpressionSet.

For getVarianceStabilizedData, a matrix of the same dimension as the count data, containing
the transformed values.

Author(s)

Simon Anders <sanders@fs.tum.de>

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds, method="blind" )
vsd <- getVarianceStabilizedData( cds )
colsA <- conditions(cds) == "A"
plot( rank( rowMeans( vsd[,colsA] ) ), genefilter::rowVars( vsd[,colsA] ) )

makeExampleCountDataSet

make a simple example CountDataSet with random data

Description

This function returns an example CountDataSet. It is used for the examples in the package help
pages.
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Usage

makeExampleCountDataSet()

Value

a CountDataSet that has been constructed as follows: First, true base mean values for 10,000 genes
are drawn from an exponential distribution with rate 1/250. Then, certain genes are declared (with
probability 0.3 per gene) as truly differentially expressed (tDE). For these genes, the true base mean
is split into two values, one for condition "A" and one for condition "B", such that the log2 fold
change from "A" to "B" follows a zero-centred normal distribution with standard deviation 2. Then,
counts are drawn for each gene for 5 samples, the first three corresponding to condition "A" and the
remaining two for condition "B". The counts are drawn from a negative binomial with the specified
mean, multiplied by the size factor for the sample, with a constant raw SCV (dispersion) of 0.2 (i.e.,
a ’size’ parameter of 1/0.2). The true size factors are fixed to c( 1., 1.3, .7, .9, 1.6 ).

All these values were chosen to give data that at least somewhat resembles what one might encounter
in an actual experiment. Note that this function is not meant to verify the package by simulation.
For this purpose the parameters and distribution choices should be more varied.

Author(s)

Simon Anders, anders@embl.de

Examples

cds <- makeExampleCountDataSet()

nbinomGLMTest Perform chi-squared tests comparing two sets of GLM fits

Description

For each gene, the function calculates a chi-square p value by simply calculating: 1 - pchisq(resReduced$deviance - resFull$deviance, attr(resReduced, "df.residual") - attr(resFull, "df.residual"))

Usage

nbinomGLMTest(resFull, resReduced)

Arguments

resFull, resReduced

GLM fit data frames, as returned by fitNbinomGLMs, first the full, then the
reduced model.

Value

a vector of p values

Author(s)

Simon Anders, anders@embl.de
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See Also

fitNbinomGLMs

Examples

cds <- makeExampleCountDataSet()[ 1:100, ]
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds, method="pooled" )
fit1 <- fitNbinomGLMs( cds, count ~ condition )
fit0 <- fitNbinomGLMs( cds, count ~ 1 )
nbinomGLMTest( fit1, fit0 )

nbinomTest Test for differences between the base means for two conditions

Description

This function tests for differences between the base means of two conditions (i.e., for differential
expression in the case of RNA-Seq).

Usage

nbinomTest(cds, condA, condB, pvals_only = FALSE, eps=NULL )

Arguments

cds a CountDataSet with size factors and raw variance functions
condA one of the conditions in ’cds’
condB another one of the conditions in ’cds’
pvals_only return only a vector of (unadjusted) p values instead of the data frame described

below.
eps This argument is no longer used. Do not use it.

Details

See nbinomTestForMatrices for more technical informations

Value

A data frame with the following columns:

id The ID of the observable, taken from the row names of the counts slots.
baseMean The base mean (i.e., mean of the counts divided by the size factors) for the

counts for both conditions
baseMeanA The base mean (i.e., mean of the counts divided by the size factors) for the

counts for condition A
baseMeanB The base mean for condition B
foldChange The ratio meanB/meanA
log2FoldChange The log2 of the fold change
pval The p value for rejecting the null hypothesis ’meanA==meanB’
padj The adjusted p values (adjusted with ’p.adjust( pval, method="BH")’)
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Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds )
head( nbinomTest( cds, "A", "B" ) )

nbinomTestForMatrices Perform row-wise tests for differences between the base means of two
count matrices.

Description

This function is called by nbinomTest. Call it directly only if the S4 interface is unsuitable for your
task.

Usage

nbinomTestForMatrices(countsA, countsB, sizeFactorsA, sizeFactorsB, dispsA, dispsB )

Arguments

countsA A matrix of counts, where each column is a replicate

countsB Another matrix of counts, where each column is a replicate

sizeFactorsA Size factors for the columns of the matrix ’countsA’

sizeFactorsB Size factors for the columns of the matrix ’countsB’

dispsA The dispersions for ’countsA’, a vector with one value per gene

dispsB The same for ’countsB’

Details

See the vignette for an exact description of the null hypothesis tested.

Value

A vector of unadjusted p values, one for each row in the counts matrices.

Author(s)

Simon Anders, sanders@fs.tum.de
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Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds, method="per-condition" )
colsA <- conditions(cds) == "A"
colsB <- conditions(cds) == "B"
bmvA <- getBaseMeansAndVariances( counts(cds)[,colsA], sizeFactors(cds)[colsA] )
bmvB <- getBaseMeansAndVariances( counts(cds)[,colsB], sizeFactors(cds)[colsB] )
pvals <- nbinomTestForMatrices(

counts(cds)[,colsA],
counts(cds)[,colsB],
sizeFactors(cds)[colsA],
sizeFactors(cds)[colsB],
fitInfo(cds,"A")$dispFunc( rowMeans( counts( cds, normalized=TRUE ) ) ),
fitInfo(cds,"B")$dispFunc( rowMeans( counts( cds, normalized=TRUE ) ) ) )

names( pvals ) <- row.names( counts(cds) )
head( pvals )

# This here should give the same results:
head( nbinomTest( cds, "A", "B" )$pval )

nbkd.sf GLM family for a negative binomial with known dispersion and log
link with size factors

Description

A distribution family for use with glm. It describes a negative binomial (as negative.binomial
in the MASS package), but with a special link function, namely eta[i] = log( mu[i] / sf[i] ), i.e.,
each count value is divided by its size factor before the log is taken. This is used internally by
fitNbinomGLMs.

Usage

nbkd.sf(r, sf)

Arguments

r The ’size’ argument (see dnbinom), i.e., the reciprocal of the dispersion.

sf A vector of size factors.

Value

A GLM family object.

Author(s)

Simon Anders, anders@embl.de
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newCountDataSet Create a CountDataSet object

Description

This function creates a CountDataSet object from a matrix or data frame of count data.

Usage

newCountDataSet(countData, conditions, sizeFactors = NULL, phenoData = NULL, featureData = NULL)

Arguments

countData A matrix or data frame of count data, i.e., of non-negative integer values. The
rows correspond to observations (e.g., number of reads that were assigned to a
gene), the columns correspond to samples (or experiments). Note that biolog-
ical replicates should each get their own column, while the counts of technical
replicates (i.e., several sequencing ruins/lanes from the same sample) have to be
summed up into a single column.

conditions A factor of experimental conditions (or treatments, or tissue types, or pheno-
types, or the like). The length of the factor has to be equal to the number of
columns of the countData matrix, assigning a condition to each sample. If ’con-
ditions’ is not a factor, it will be converted to one.
Alternatively, you may pass a data frame, that will be placed in pData(cds) as is
and can then be used with the modes "pooled" and "blind" in estimateVarianceFunctions
and its columns can be refered top in a model formula provided to fitNbinomGLMs.

sizeFactors This argument is deprecated. Do not use it. (Size factors should always be
estimated from the data with estimateSizeFactors. If you need to set size
factors manually for some reasons, change the pData(cds)$sizeFactor.

phenoData You may pass an AnnotatedDataFrame here to describe the columns of the count
matrix. Note that the package always adds two rows (or creates a new Anno-
tatedDataFrame with only these two rows in case you do not supply one) with
names "condition" and "sizeFactor" to store this information.

featureData You may pass an AnnotatedDataFrame here to describe the rows of the count
matrix. The package will just pass through this information without using it.
Note that further columns will be added to feature data later, when estimating
dispersions.

Details

See also CountDataSet-class and the documentation of eSet (package Biobase) for the meaning
of the other slots, which CountDataSet inherits from eSet (but which the present package does not
use).

Value

an object of class CountDataSet

Author(s)

Simon Anders, sanders@fs.tum.de
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Examples

countsTable <- counts( makeExampleCountDataSet() )
cds <- newCountDataSet( countsTable, c( "A", "A", "A", "B", "B" ) )

newCountDataSetFromHTSeqCount

Create a new CountDataSet from count files generated with htseq-
count

Description

Use this function to start a DESeq analysis if you used htseq-count to count your reads.

Usage

newCountDataSetFromHTSeqCount(sampleTable, directory = ".")

Arguments

sampleTable A data frame with three or more columns. Each row describes one sample. The
first column is the sample name, the seond column the file name of the count file
generated by htseq-count, and the remaining columns are sample meta data. If
the meta data consists of only a single column (i.e., three columns in total), this
is used as ’condition’ factor.

directory The directory relative to which the filenames are specified.

Value

A CountDataSet object.

Author(s)

Simon Anders

References

See http://www-huber.embl.de/users/anders/HTSeq/ for htseq-count.

See Also

newCountDataSet
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plotDispEsts Plot dispersion estimates and fitted values

Description

A simple helper function that plots the per-gene dispersion estimates together with the fitted mean-
dispersion relationship.

Usage

plotDispEsts(cds, name=NULL, ymin, linecol="#ff000080",
xlab = "mean of normalized counts", ylab = "dispersion",
log = "xy", cex = 0.45, ... )

Arguments

cds a CountDataSet.

name this argument, together with cds, is passed on to fitInfo.

ymin a scalar numeric, indicating the lower limit of the y-axis. The y-axis is plotted on
the logarithmic scale. For the purpose of this plot, per-gene dispersion estimates
that are below this value (in particular, those that happen to be zero) are shifted
up to this value. If missing, the function attempts to guess a reasonable default.

linecol colour used for the regression line

xlab, ylab, log, cex, ...

arguments that are passed on to plot.default.

Details

This is a trivial helper function. Do not be afraid to edit and modify it to your needs.

Value

The function is called for its side effect.

Author(s)

Simon Anders, sanders@fs.tum.de

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds )
plotDispEsts(cds)
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plotMA Makes a so-called "MA-plot"

Description

A simple helper function that makes a so-called "MA-plot", i.e. a scatter plot of logarithmic fold
changes (on the y-axis) versus the mean of normalized counts (on the x-axis).

Usage

plotMA(x, ylim,
col = ifelse(x$padj>=0.1, "gray32", "red3"),
linecol = "#ff000080",
xlab = "mean of normalized counts", ylab = expression(log[2]~fold~change),
log = "x", cex=0.45, ...)

Arguments

x a data.frame with columns baseMean, and log2FoldChange. In addition, if
the argument col is left at its default, this data.frame also needs to have a
column named padj.

linecol colour used for the horizontal line at y=0.

ylim, col, xlab, ylab, log, cex, ...

arguments that are passed on to plot.default.

Details

This is a trivial helper function. Do not be afraid to edit and modify it to your needs.

Value

The function is called for its side effect.

Author(s)

Wolfgang Huber

Examples

## see vignette
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plotPCA Sample PCA plot from variance-stabilized data

Description

This plot helps to check for batch effects and the like.

Usage

plotPCA(x, intgroup = "condition", ntop = 500)

Arguments

x an ExpressionSet, as obtained from varianceStabilizingTransformation

intgroup

ntop how many of the most variable genes should be used in calculating the PCA

Value

a plot is produced

Author(s)

Wolfgang Huber

See Also

varianceStabilizingTransformation

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds, method="blind" )
vsd <- varianceStabilizingTransformation( cds )
plotPCA( vsd )

residualsEcdfPlot REMOVED

Description

This function has been removed. Please see the vignette for our newer suggestions on how to check
fit quality.

Usage

residualsEcdfPlot(...)

Arguments

... dummy argument
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scvPlot REMOVED

Description

This function has been removed. Please see the vignette for our newer suggestions on how to check
fit quality.

Usage

scvPlot( ... )

Arguments

... dummy argument

sizeFactors Accessor functions for the ’sizeFactors’ information in a Count-
DataSet object.

Description

The sizeFactors vector assigns to each column of the count data a value, the size factor, such that
count values in the columns can be brought to a common scale by dividing by the corresponding
size factor.

Usage

## S4 method for signature 'CountDataSet'
sizeFactors(object)
## S4 replacement method for signature 'CountDataSet,numeric'
sizeFactors(object) <- value

Arguments

object a CountDataSet object.
value a numeric vector, one size factor for each column in the count data.

Author(s)

Simon Anders, sanders@fs.tum.de

See Also

estimateSizeFactors

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
sizeFactors(cds)
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varianceFitDiagnostics

REMOVED

Description

This function has been removed. Please see the vignette for our newer suggestions on how to check
fit quality.

Usage

varianceFitDiagnostics( ... )

Arguments

... dummy argument
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