
The DaMiRseq package - Data Mining for RNA-
Seq data: normalization, feature selection
and classification

Mattia Chiesa 1 and Luca Piacentini 1

1Immunology and Functional Genomics Unit, Centro Cardiologico Monzino, IRCCS, Milan,
Italy;

October 30, 2017

Abstract

RNA-Seq is increasingly the method of choice for researchers studying the transcriptome. The
strategies to analyze such complex high-dimensional data rely on data mining and statistical
learning techniques. The DaMiRseq package offers a tidy pipeline that includes data mining
procedures for data handling and implementation of prediction learning methods to build
classification models. The package accepts any kind of data presented as a table of raw
counts and allows the inclusion of variables that occur with the experimental setting. A
series of functions enables data cleaning by filtering genomic features and samples, data
adjustment by identifying and removing the unwanted source of variation (i.e. batches and
confounding factors) and to select the best predictors for modeling. Finally, a “Stacking”
ensemble learning technique is applied to build a robust classification model. Every step
includes a checkpoint for assessing the effects of data management using diagnostic plots,
such as clustering and heatmaps, RLE boxplots, MDS or correlation plots.

Package

DaMiRseq 1.2.0

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

Contents

1 Introduction . 3

2 Workflow . 4

2.1 Input data . 4

2.2 Import Data . 4

2.3 Preprocessing and Normalization 5
2.3.1 Filtering by Expression 6
2.3.2 Filtering By Coefficient of Variation (CV). 6
2.3.3 Normalization . 7
2.3.4 Sample Filtering . 7

2.4 Adjusting Data . 8
2.4.1 Identification of Surrogate Variables 8
2.4.2 Correlation between sv and known covariates 9
2.4.3 Cleaning expression data 10

2.5 Exploring Data . 11

2.6 Feature Selection . 19
2.6.1 Variable selection in Partial Least Squares (PLS). 19
2.6.2 Removing highly correlated features 19
2.6.3 Ranking and selecting most relevant features 20

2.7 Classification . 24

2.8 Exporting output data . 25

3 Adjusting the data: a necessary step? 26

4 Session Info . 28

2

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

1 Introduction

RNA-Seq is a powerful high-throughput assay that uses next-generation sequencing (NGS)
technologies to profile, discover and quantify RNAs. The whole collection of RNAs defines
the transcriptome, whose plasticity, allows the researcher to capture important biological
information: the transcriptome, in fact, is sensitive to changes occurring in response to
environmental challenges, different healthy/disease state or specific genetic/epigenetic con-
text. The high-dimensional nature of NGS makes the analysis of RNA-Seq data a demanding
task that the researcher may tackle by using data mining and statistical learning procedures.
Data mining usually exploits iterative and interactive processes that include, preprocessing,
transforming and selecting data so that only relevant features are efficiently used by learning
methods to build classification models.
Many software packages have been developed to assess differential expression of genomic
features (i.e. genes, transcripts, exons etc.) of RNA-seq data. (see Bioconductor_RNASeq-
packages). Here, we propose the DaMiRseq package that offers a systematic and organized
analysis workflow to face classification problems.
Briefly, we summarize the philosophy of DaMiRseq as follows. The pipeline has been
thought to direct the user, through a step-by-step data evaluation, to properly select the best
strategy for each specific classification setting. It is structured into three main parts: (1)
normalization, (2) feature selection, and (3) classification. The package can be used with
any technology that produces read counts of genomic features.
The normalization step integrates conventional preprocessing and normalization procedures
with data adjustment based on the estimation of the effect of “unwanted variation”. Several
factors of interest such as environments, phenotypes, demographic or clinical outcomes may
influence the expression of the genomic features. Besides, an additional unknown source
of variation may also affect the expression of any particular genomic feature and lead to
confounding results and inaccurate data interpretation. The estimation of these unmeasured
factors, also known as surrogate variables (sv), is crucial to fine-tune expression data in order
to gain accurate prediction models [1, 2].
RNA-Seq usually consists of many features that are either irrelevant or redundant for classifi-
cation purposes. Once an expression matrix of n features x m observations is normalized and
corrected for confounding factors, the pipeline provides methods to help the user to reduce
and select a subset of n that will be subsequently used to build the prediction models. This
approach, which exploits the so-called “Feature Selection” techniques, presents clear benefits
since: it (1) limits overfitting, (2) improves classification performance of predictors, (3) re-
duces time training processing, and (4) allows the production of more cost-effective models
[3, 4].
The reduced expression matrix, consisting of the most informative variables with respect to
class, is than used to draw a “meta-learner” by combining the outputs of 6 different classifiers:
Random Forest (RF), Naïve Bayes (NB), 3-Nearest Neighbours (3kNN), Logistic Regression
(LR), Linear Discriminant Analysis (LDA) and Support Vectors Machines (SVM); this method
may be referred to as a “Stack Generalization” or, simply, “Stacking” ensemble learning
technique [5]. The idea behind this method is that “weaker” classifiers may have different
generalization performances, leading to future misclassifications; by contrast, combining and
weighting the prediction of several classifiers may reduce the risk of classification errors [6, 7].
Moreover, the weighted voting, used to assess the goodness of each weak classifiers, allows
meta-learner to reach consistently high classification accuracies, better than or comparable
with best weak classifiers [8].

3

https://www.bioconductor.org/packages/release/BiocViews.html#___RNASeq
https://www.bioconductor.org/packages/release/BiocViews.html#___RNASeq

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

2 Workflow

2.1 Input data

DaMiRseq expects as input two kind of data:
• Raw counts Data - They have to be in the classical form of a n x m expression

table of integer values coming from a RNA-Seq experiment: each row represents a
genomic feature (n) while each column represents a sample (m). The expression values
must be un-normalized raw read counts, since DaMiRseq implements normalization
and transformation procedures of raw counts; the RNA-seq workflow in Bioconductor
describes several techniques for preparing count matrices. Unique identifiers are needed
for both genomic features and samples.

• Class and variables Information - This file contains the information related to classes/conditions
(mandatory) and to known variables (optional), such as demographic or clinical data,
biological context/variables and any sequencing or technical details. The column
containing the class/condition information must be labelled ’class’. In this table,
each row represents a sample and each column represents a variable (class/condition
and factorial and/or continuous variables). Rows and identifiers must correspond to
columns in ’Raw Counts Data’ table.

In this vignette we describe the DaMiRseq pipeline, using as sample data a subset of
Genotype-Tissue Expression (GTEx) RNA-Seq database (dbGap Study Accession: phs000424.v6.p1)
[9]. Briefly, GTEx project includes the mRNA sequencing data of 53 tissues from 544 post-
mortem donors, using 76 bp paired-end technique on Illumina HiSeq 2000: overall, 8555
samples were analyzed. Here, we extracted data and some additional sample information
(i.e. sex, age, collection center and death classification based on the Hardy scale) for two
similar brain subregions: Anterior Cingulate Cortex (Bromann Area 24) and Frontal Cortex
(Brodmann Area 9). These areas are close to each other and are deemed to be involved in
decision making as well as in learning. This dataset is composed of 192 samples: 84 Anterior
Cingulate Cortex (ACC) and 108 Frontal Cortex (FC) samples for 56318 genes.
We, also, provide a data frame with classes and variables included.

2.2 Import Data

DaMiRseq package uses data extracted from SummarizedExperiment class object. This ob-
ject is usually employed to store either expression data produced by high-troughput technology
and other information occuring with the experimental setting. The SummarizedExperiment

object may be considered a matrix-like holder where rows and colums represent, respec-
tively, features and samples. If data are not stored in a SummarizedExperiment object, the
DaMiR.makeSE function helps the user to build a SummarizedExperiment object starting from
expression and variable data table. The function tests if expression data are in the form of
raw counts, i.e. positive integer numbers, if ’class’ variable is included in the data frame and
if “NAs” are present in either the counts and the variables table. The DaMiR.makeSE function
needs two files as input data: 1) a raw counts table and 2) a class and (if present) variable
information table. In this vignette, we will use the dataset described in Section 2.1 but the
user could import other count and variable table files into R environment as follows:

4

http://www.bioconductor.org/help/workflows/rnaseqGene/
http://www.gtexportal.org/static/datasets/gtex_analysis_v6/rna_seq_data/GTEx_Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_reads.gct.gz
http://bioconductor.org/packages/SummarizedExperiment

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

1See SummarizedEx-
periment [10], for more
details.

library(DaMiRseq)

only for example:

rawdata.path <- system.file(package = "DaMiRseq","extdata")

setwd(rawdata.path)

filecounts <- list.files(rawdata.path, full.names = TRUE)[1]

filecovariates <- list.files(rawdata.path, full.names = TRUE)[2]

count_data <- read.delim(filecounts)

covariate_data <- read.delim(filecovariates)

SE<-DaMiR.makeSE(count_data, covariate_data)

Here, we load by the data() function a prefiltered sample expression data of the GTEx
RNA-Seq database made of 21363 genes and 40 samples (20 ACC and 20 FC):
data(SE)

assay(SE)[1:5, c(1:5, 21:25)]

ACC_1 ACC_2 ACC_3 ACC_4 ACC_5 FC_1 FC_2 FC_3 FC_4 FC_5

ENSG00000227232 327 491 226 285 1011 465 385 395 219 398

ENSG00000237683 184 57 35 57 138 290 293 93 84 145

ENSG00000268903 29 15 7 26 33 84 39 22 31 39

ENSG00000241860 25 12 6 5 26 6 17 13 4 12

ENSG00000228463 248 126 99 76 172 170 173 157 95 150

colData(SE)

DataFrame with 40 rows and 5 columns

center sex age death class

<factor> <factor> <factor> <integer> <factor>

ACC_1 B1, A1 M 60-69 2 ACC

ACC_2 B1, A1 F 40-49 3 ACC

ACC_3 B1, A1 F 60-69 2 ACC

ACC_4 B1, A1 F 50-59 2 ACC

ACC_5 C1, A1 M 50-59 2 ACC

...

FC_16 C1, A1 M 60-69 2 FC

FC_17 B1, A1 M 60-69 2 FC

FC_18 C1, A1 F 50-59 2 FC

FC_19 B1, A1 M 50-59 2 FC

FC_20 C1, A1 F 50-59 4 FC

Data are stored in the SE object of class SummarizedExperiment. Expression and variable
information data may be retrieved, respectively, by the assay() and colData() accessor func-
tions 1. The “colData(SE)” data frame, containing the variables information, includes also
the ’class’ column (mandatory) as reported in the Reference Manual.

2.3 Preprocessing and Normalization

After importing the counts data, we ought to filter out non-expressed and/or highly variant,
inconsistent genes and, then, perform normalization. Furthermore, the user can also decide to
exclude from the dataset samples that show a low correlation among biological replicates and,

5

http://bioconductor.org/packages/SummarizedExperiment
http://bioconductor.org/packages/SummarizedExperiment

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

thus, may be suspected to hold some technical artifact. The DaMiR.normalization function
helps solving the first issues, while DaMiR.sampleFilt allows the removal of inconsistent
samples.

2.3.1 Filtering by Expression

Users can remove genes, setting up the minimum number of read counts permitted across
samples:
data_norm <- DaMiR.normalization(SE, minCounts=10, fSample=0.7,

hyper = "no")

2297 Features have been filtered out by espression. 19066 Features remained.

Performing Normalization by 'vst'

In this case, 19066 genes with read counts greater than 10 (minCounts = 10) in at least
70% of samples (fSample = 0.7), have been selected, while 2297 have been filtered out.
The dataset, consisting now of 19066 genes, is then normalized by the varianceStabilizing

Transformation function of the DESeq2 package [11]. Using assay() function, we can see
that “VST” transformation produces data on the log2 scale normalized with respect to the
library size.

2.3.2 Filtering By Coefficient of Variation (CV)

We named “hypervariants” those genes that present anomalous read counts, by comparing
to the mean value across the samples. We identify them by calculating two distinct CV on
sample sets that belong, respectively, to the first and the second ’class’. Genes with both
’class’ CV greater than th.cv are discarded.
Note. Computing a ’class’ restricted CV may prevent the removal of features that may be
specifically associated with a certain class. This could be important in some biological con-
texts, such as immune genes whose expression under definite conditions may unveil peculiar
class-gene associations.
This time, we run again the DaMiR.normalization function by enabling the “hypervariant”
gene detection by setting hyper = "yes" and th.cv=3 (default):
data_norm <- DaMiR.normalization(SE, minCounts=10, fSample=0.7,

hyper = "yes", th.cv=3)

2297 Features have been filtered out by espression. 19066 Features remained.

14 'Hypervariant' Features have been filtered out. 19052 Features remained.

Performing Normalization by 'vst'

print(data_norm)

class: SummarizedExperiment

dim: 19052 40

metadata(0):

assays(1): ''

rownames(19052): ENSG00000227232 ENSG00000237683 ... ENSG00000198695

ENSG00000198727

rowData names(0):

colnames(40): ACC_1 ACC_2 ... FC_19 FC_20

6

http://bioconductor.org/packages/DESeq2

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

colData names(5): center sex age death class

assay(data_norm)[c(1:5), c(1:5, 21:25)]

ACC_1 ACC_2 ACC_3 ACC_4 ACC_5 FC_1

ENSG00000227232 8.204621 9.355828 8.764190 8.459111 9.145884 8.890036

ENSG00000237683 7.466063 6.607132 6.452431 6.484135 6.618185 8.254552

ENSG00000268903 5.535636 5.366677 5.078253 5.719672 5.303605 6.722529

ENSG00000228463 7.843989 7.545048 7.676069 6.802804 6.866569 7.564442

ENSG00000241670 5.449117 5.711407 6.107432 5.651054 5.258857 5.666543

FC_2 FC_3 FC_4 FC_5

ENSG00000227232 8.382266 8.949717 8.426013 8.803330

ENSG00000237683 8.021946 7.079558 7.200588 7.480514

ENSG00000268903 5.760979 5.608107 6.103205 6.017778

ENSG00000228463 7.353488 7.725484 7.350439 7.522831

ENSG00000241670 4.700110 4.831544 5.295067 5.775880

The th.cv = 3 allows the removal of a further 14 “hypervariant” genes from the gene ex-
pression data matrix. The number of genes is now reduced to 19052.

2.3.3 Normalization

After filtering, a normalization step is performed; two normalization methods are embedded
in DaMiRseq: the Variance Stabilizing Transformation (VST) and the Regularized Log Trans-
formation (rlog). As described in the DESeq2 vignette, VST and rlog have similar effects
on data but the VST is faster than rlog, expecially when the number of samples increases;
for these reasons, varianceStabilizingTransformation is the default normalization method,
while rlog can be, alternatively, chosen by user.
Time Difference, using VST or rlog for normalization:

#

#data_norm <- DaMiR.normalization(dds, minCounts=10, fSample=0.7, th.cv=3)

VST: about 80 seconds

#

#data_norm <- DaMiR.normalization(dds, minCounts=10, fSample=0.7, th.cv=3,

type="rlog")

rlog: about 8890 seconds (i.e. 2 hours and 28 minutes!)

In this example, we run DaMiR.normalization function twice, just modifying type arguments
in order to test the processing time; with type = "vst" (default - the same parameters
used in Section 2.3.2) DaMiR.normalization needed 80 seconds to complete filtering and
normalization, while with type = "rlog" required more than 2 hours. Data were obtained on
a workstation with an esa core CPU (2.40 GHz, 16 GB RAM) and 64-bit Operating System.

2.3.4 Sample Filtering

This step introduces a sample quality checkpoint. The assumption is that global gene ex-
pression should exhibit high correlation among biological replicates; conversely, low correlated
samples may be suspected to hold some technical artifacts (e.g. poor RNA quality or library
preparation), despite pass sequencing quality controls. If not identified and removed, these
samples may negatively affect the entire downstream analysis. DaMiR.sampleFilt assesses

7

http://bioconductor.org/packages/DESeq2

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

2See sva package

the mean absolute correlation of each sample and removes those samples with a correlation
lower than the value set in th.corr argument. This threshold may be specific for different
experimental settings but should be as high as possible.
data_filt <- DaMiR.sampleFilt(data_norm, th.corr=0.9)

0 Samples have been excluded by averaged Sample-per-Sample correlation.

40 Samples remained.

dim(data_filt)

[1] 19052 40

In this study case, zero samples were discarded because their mean absolute correlation is
higher than 0.9. Data were stored in a SummarizedExperiment object, which contains a
normalized and filtered expression matrix and an updated DataFrame with the variables of
interest.

2.4 Adjusting Data

After data normalization, we propose to test for the presence of surrogate variables (sv) in
order to remove the effect of putative confounding factors from the expression data. The
algorithm cannot distinguish among real technical batches and important biological effects
(such as environmental, genetic or demographic variables) whose correction is not desirable.
Therefore, we enable the user to evaluate whether any of the retrieved sv is correlated or not
with one or more known variables. Thus, this step gives the user the opportunity to choose
the most appropriate number of sv to be used for expression data adjustment [1, 2].

2.4.1 Identification of Surrogate Variables

Surrogate variables identification, basically, relies on the SVA algorithm by Leek et al. [12]
2. A novel method, which allows the identification of the the maximum number of sv to
be used for data adjustment, has been introduced in our package. Specifically, we compute
eigenvalues of data and calculate the squares of each eigenvalues. The ratio of each “squared
eigenvalue” to the sum of them were then calculated. These values represent a surrogate
measure of the “Fraction of Explained Variance” (fve) that we would obtain by principal
component analysis (PCA). Their cumulative sum can be, finally, used to select sv. The
method to be applied can be selected in the method argument of the DaMiR.SV function. The
option "fve", "be" and "leek" selects, respectively, our implementation or one of the two
methods proposed in the sva package.
sv <- DaMiR.SV(data_filt)

The number of SVs identified, which explain 95 % of Variance, is: 4

Using default values ("fve" method and th.fve = 0.95), we obtained a matrix with 4 sv
that is the number of sv which returns 95% of variance explained. Figure 1 shows all the sv
computed by the algorithm with respect to the corresponding fraction of variance explained.

8

http://bioconductor.org/packages/sva
http://bioconductor.org/packages/sva

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

●

●

●

●

●

●

●
●

●
● ●

1

2

3

4

5

6

7
8

9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

●

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40

SV

F
ra

ct
io

n
of

 V
ar

ia
nc

e
E

xp
la

in
ed

Fraction of Variance Explained

Figure 1: Fraction of Variance Explained
This plot shows the relationship between each identified sv and the corresponding fraction of variance ex-
plained. A specific blue dot represents the proportion of variance, explained by a sv together with the prior
ones. The red dot marks the upper limit of sv that should be used to adjust the data. Here, 4 is the maxi-
mum number of sv obtained as it corresponds to ≤ 95% of variance explained.

2.4.2 Correlation between sv and known covariates

Once the sv have been calculated, we may inquire whether these sv capture an unwanted
source of variation or may be associated with known variables that the user does not wish
to correct. For this purpose, we correlate the sv with the known variables stored in the
“data_filt” object, to decide if all of these sv or only a subset of them should be used to
adjust the data.
DaMiR.corrplot(sv, colData(data_filt), sig.level = 0.01)

The DaMiR.corrplot function produces a correlation plot where significant correlations (in
the example the threshold is set to sig.level = 0.01) are shown within colored circles (blue
or red gradient). In Figure 2, we can see that the first three sv do not significantly correlate
with any of the used variables and, presumably, recovers the effect of unmeasured variables.
The fourth sv presents, instead, a significant correlation with the “center” variable. The
effect of “center” might be considered a batch effect and we are interested in adjusting the
data for a such confounding factor.
Note. The correlation with “class” should always be non significant. In fact, the algorithm for
sv identification (embedded into the DaMiR.SV function) decomposes the expression variation
with respect to the variable of interest (e.g. class), that is what we want to preserve by
correction [1]. Conversely, the user should consider the possibility that hidden factors may
present a certain association with the ’class’ variable. In this case, we suggest not to remove
the effect of these sv so that any overcorrection of the expression data is avoided.

9

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

●

●

● ●

●

●

● ●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 ce
nt

er

se
x

ag
e

de
at

h

cl
as

s

1

2

3

4

center

sex

age

death

class

1 0

1

0

0

1

0

0

0

1

0.06

0

0.03

0.51

1

0.2

0.32

−0.06

0.11

−0.22

1

−0.16

−0.22

−0.09

0.39

−0.23

0.05

1

−0.39

−0.15

−0.33

0.33

0.26

0.14

0.4

1

0.15

0.02

0.03

0

0.2

0.11

−0.23

−0.03

1

Figure 2: Correlation Plot between sv and known variables
This plot highligths the correlation between sv and known covariates, using both color gradient and circle
size. The color ranges from dark red (correlation = -1) to dark blue (correlation = 1) and the circle size is
maximum for a correlation equal to 1 or -1 and decreases up to zero. Black crosses help to identify non-
significant correlations. This plot shows that the first to the third sv do not significantly correlate with any
variable, while the fourth is significantly correlated with the “center” variable.

2.4.3 Cleaning expression data

After sv identification, we need to adjust our expression data. To do this, we exploited the
removeBatchEffect function of the limma package which is useful for removing unwanted
effects from the expression data matrix [13]. Thus, for the case study, we adjusted our
expression data by setting n.sv = 4 which instructs the algorithm to use the 4 surrogate
variables taken from the sv matrix, produced by DaMiR.SV function (see Section 2.4.1).
data_adjust<-DaMiR.SVadjust(data_filt, sv, n.sv=4)

assay(data_adjust[c(1:5), c(1:5, 21:25)])

ACC_1 ACC_2 ACC_3 ACC_4 ACC_5 FC_1

ENSG00000227232 8.297099 9.518620 8.866718 8.353466 9.021665 8.709330

ENSG00000237683 7.408854 7.389343 6.604386 6.866093 6.561728 7.815737

ENSG00000268903 5.679019 5.841366 5.101815 5.698543 5.349141 6.267084

ENSG00000228463 7.770046 7.484282 7.611028 6.925974 6.912977 7.491365

ENSG00000241670 5.591719 5.677665 6.069783 5.423661 5.304437 5.595310

FC_2 FC_3 FC_4 FC_5

10

http://bioconductor.org/packages/limma

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

ENSG00000227232 8.496465 8.942017 8.544238 9.127007

ENSG00000237683 7.913538 7.039206 7.031835 7.096342

ENSG00000268903 5.795415 5.606092 5.746577 5.504510

ENSG00000228463 7.246634 7.601860 7.516979 7.719087

ENSG00000241670 4.803654 4.887677 5.081107 5.543058

Now, ’data_adjust’ object contains a numeric matrix of log2-expression values with sv effects
removed.

2.5 Exploring Data

Quality Control (QC) is an essential part of any data analysis workflow, because it allows
checking the effects of each action, such as filtering, normalization, and data cleaning. In
this context, the function DaMiR.Allplot helps identifying how different arguments or spe-
cific tasks, such as filtering or normalization, affect the data. Several diagnostic plots are
generated:
Heatmap - A distance matrix, based on sample-by-sample correlation, is represented by

heatmap and dendrogram using pheatmap package. In addition to ’class’, all covariates
are shown, using color codes; this helps to simultaneously identify outlier samples and
specific clusters, related with class or other variables;

MultiDimensional Scaling (MDS) plots - MDS plot, drawn by ggplot2 package [14], pro-
vides a visual representation of pattern of proximities (e.g. similarities or distances)
among a set of samples, and allows the identification of natural clusters. For the ’class’
and for each variable a MDS plot is drawn.

Relative Log Expression (RLE) boxplot - This plot, drawn by EDASeq package [15], helps
to visualize the differences between the distributions across samples: medians of each
RLE boxplot should be ideally centered around zero and a large shift from zero suggests
that samples could have quality problems. Here, different colors means different classes.

In this vignette, DaMiR.Allplot is used to appreciate the effect of data adjusting (see Sec-
tion 2.4). First, we check how data appear just after normalization: the heatmap and RLE
plot in Figure 3 (upper and lower panel, respectively) and MDS plots in Figures 4 and 5 do
not highlight the presence of specific clusters.
Note. If a variable contains missing data (i.e. “NA” values), the function cannot draw the
plot showing variable information. The user is, however, encouraged to impute missing data
if s/he considers it meaningful to plot the covariate of interest for “diagnosis” purposes.
After gene filtering and normalization

DaMiR.Allplot(data_filt, colData(data_filt))

The df argument has been supplied using colData() function that returns the data frame
of covariates stored into the “data_filt” object. Here, we used all the variables included into
the data frame (e.g. center, sex, age, death and class), although it is possible to use only a
subset of them to be plotted.

11

https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=ggplot2
http://bioconductor.org/packages/EDASeq

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

A
C

C
_15

A
C

C
_1

A
C

C
_8

F
C

_11
F

C
_12

A
C

C
_13

F
C

_18
F

C
_17

A
C

C
_5

F
C

_8
F

C
_10

F
C

_6
A

C
C

_14
F

C
_19

F
C

_13
F

C
_15

A
C

C
_17

F
C

_16
A

C
C

_7
A

C
C

_12
A

C
C

_18
A

C
C

_10
A

C
C

_11
F

C
_2

A
C

C
_20

F
C

_3
F

C
_14

F
C

_5
A

C
C

_19
F

C
_4

F
C

_9
A

C
C

_16
F

C
_7

A
C

C
_4

A
C

C
_2

A
C

C
_3

F
C

_20
A

C
C

_9
A

C
C

_6
F

C
_1

ACC_15
ACC_1
ACC_8
FC_11
FC_12
ACC_13
FC_18
FC_17
ACC_5
FC_8
FC_10
FC_6
ACC_14
FC_19
FC_13
FC_15
ACC_17
FC_16
ACC_7
ACC_12
ACC_18
ACC_10
ACC_11
FC_2
ACC_20
FC_3
FC_14
FC_5
ACC_19
FC_4
FC_9
ACC_16
FC_7
ACC_4
ACC_2
ACC_3
FC_20
ACC_9
ACC_6
FC_1

center
sex
age
death
class class

ACC
FC

death
4

1

age
20−29
30−39
40−49
50−59
60−69
70−79

sex
F
M

center
B1, A1
C1, A1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ACC_1 ACC_5 ACC_9 ACC_13 ACC_17 FC_1 FC_4 FC_7 FC_10 FC_14 FC_18

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Relative Log Expression

Figure 3: Heatmap and RLE
Heatmap (upper panel): colors in heatmap highlight the distance matrix, obtained by Spearman’s corre-
lation metric: color gradient ranges from dark green, meaning ’minimum distance’ (i.e. dissimilarity = 0,
correlation = 1), to light green green. On the top of heatmap, horizontal bars represent class and covari-
ates. Each variable is differently colored (see legend). On the top and on the left side of the heatmap the
dendrograms are drawn. Clusters can be easily identified.
RLE (lower panel): a boxplot of the distribution of expression values computed as the difference between
the expression of each gene and the median expression of that gene accross all samples. Here, since all
medians are very close to zero, it appears that all the samples are well-normalized and do not present any
quality problems.

12

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
ACC_1

ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11

ACC_12

ACC_13

ACC_14
ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20
FC_1

FC_2

FC_3

FC_4

FC_5

FC_6

FC_7

FC_8

FC_9

FC_10

FC_11

FC_12

FC_13

FC_14

FC_15
FC_16

FC_17
FC_18

FC_19

FC_20

−0.050

−0.025

0.000

0.025

−0.04 0.00 0.04 0.08

X1

X
2

cov_list$Vars

●a

●a

B1, A1

C1, A1

mds$class

● ACC

FC

Variable: center

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
ACC_1

ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11

ACC_12

ACC_13

ACC_14
ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20
FC_1

FC_2

FC_3

FC_4

FC_5

FC_6

FC_7

FC_8

FC_9

FC_10

FC_11

FC_12

FC_13

FC_14

FC_15
FC_16

FC_17
FC_18

FC_19

FC_20

−0.050

−0.025

0.000

0.025

−0.04 0.00 0.04 0.08

X1

X
2

1

2

3

4
cov_list$Vars

mds$class

● ACC

FC

Variable: death

Figure 4: MultiDimentional Scaling plot
An unsupervised MDS plot is drawn. Samples are colored according to the ’Hardy death scale’ (upper
panel) and the ’center’ variable (lower panel).

13

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
ACC_1

ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11

ACC_12

ACC_13

ACC_14
ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20
FC_1

FC_2

FC_3

FC_4

FC_5

FC_6

FC_7

FC_8

FC_9

FC_10

FC_11

FC_12

FC_13

FC_14

FC_15
FC_16

FC_17
FC_18

FC_19

FC_20

−0.050

−0.025

0.000

0.025

−0.04 0.00 0.04 0.08

X1

X
2

cov_list$Vars

●a

●a

F

M

mds$class

● ACC

FC

Variable: sex

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
ACC_1

ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11

ACC_12

ACC_13

ACC_14
ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20
FC_1

FC_2

FC_3

FC_4

FC_5

FC_6

FC_7

FC_8

FC_9

FC_10

FC_11

FC_12

FC_13

FC_14

FC_15
FC_16

FC_17
FC_18

FC_19

FC_20

−0.050

−0.025

0.000

0.025

−0.04 0.00 0.04 0.08

X1

X
2

cov_list$Vars

●a

●a

ACC

FC

mds$class

● ACC

FC

Variable: class

Figure 5: MultiDimentional Scaling plot
An unsupervised MDS plot is drawn. Samples are colored according to ’sex’ variable (upper panel) and
’class’ (lower panel).

14

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

After removing the effect of “noise” from our expression data, as presented in Section 2.4,
we may appreciate the result of data adjustiment for sv: now, the heatmap in Figure 6 and
MDS plots in Figures 7 and 8 exhibit specific clusters related to ’class’ variable. Moreover,
the effect on data distribution is irrelevant: both RLE in Figures 3 and 6 show minimal shifts
from the zero line, whereas RLE of adjusted data displays lower dispersion.
After sample filtering and sv adjusting

DaMiR.Allplot(data_adjust, colData(data_adjust))

15

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

F
C

_5
F

C
_20

F
C

_2
F

C
_10

A
C

C
_9

F
C

_14
F

C
_7

F
C

_9
A

C
C

_14
F

C
_19

F
C

_1
F

C
_11

F
C

_13
F

C
_15

F
C

_12
F

C
_3

F
C

_16
F

C
_6

F
C

_8
F

C
_17

A
C

C
_16

A
C

C
_6

A
C

C
_10

A
C

C
_4

A
C

C
_2

A
C

C
_13

F
C

_18
F

C
_4

A
C

C
_19

A
C

C
_17

A
C

C
_20

A
C

C
_7

A
C

C
_11

A
C

C
_5

A
C

C
_8

A
C

C
_12

A
C

C
_18

A
C

C
_1

A
C

C
_3

A
C

C
_15

FC_5
FC_20
FC_2
FC_10
ACC_9
FC_14
FC_7
FC_9
ACC_14
FC_19
FC_1
FC_11
FC_13
FC_15
FC_12
FC_3
FC_16
FC_6
FC_8
FC_17
ACC_16
ACC_6
ACC_10
ACC_4
ACC_2
ACC_13
FC_18
FC_4
ACC_19
ACC_17
ACC_20
ACC_7
ACC_11
ACC_5
ACC_8
ACC_12
ACC_18
ACC_1
ACC_3
ACC_15

center
sex
age
death
class class

ACC
FC

death
4

1

age
20−29
30−39
40−49
50−59
60−69
70−79

sex
F
M

center
B1, A1
C1, A1

0

0.01

0.02

0.03

0.04

ACC_1 ACC_5 ACC_9 ACC_13 ACC_17 FC_1 FC_4 FC_7 FC_10 FC_14 FC_18

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Relative Log Expression

Figure 6: Heatmap and RLE
Heatmap (upper panel): colors in heatmap highlight the distance matrix, obtained by Spearman’s corre-
lation metric: color gradient ranges from dark green, meaning ’minimum distance’ (i.e. dissimilarity = 0,
correlation = 1), to light green green. On the top of heatmap, horizontal bars represent class and variables.
Each variable is differently colored (see legend). The two dendrograms help to quickly identify clusters.
RLE (lower panel): Relative Log Expression boxplot. A boxplot of the distribution of expression values
computed as the difference between the expression of each gene and the median expression of that gene
accross all samples is shown. Here, all medians are very close to zero, meaning that samples are well-
normalized.

16

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ACC_1
ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11
ACC_12

ACC_13

ACC_14

ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20

FC_1

FC_2

FC_3

FC_4
FC_5

FC_6

FC_7

FC_8

FC_9
FC_10

FC_11FC_12
FC_13

FC_14

FC_15

FC_16
FC_17

FC_18

FC_19

FC_20

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01

X1

X
2

cov_list$Vars

●a

●a

B1, A1

C1, A1

mds$class

● ACC

FC

Variable: center

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ACC_1
ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11
ACC_12

ACC_13

ACC_14

ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20

FC_1

FC_2

FC_3

FC_4
FC_5

FC_6

FC_7

FC_8

FC_9
FC_10

FC_11FC_12
FC_13

FC_14

FC_15

FC_16
FC_17

FC_18

FC_19

FC_20

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01

X1

X
2

1

2

3

4
cov_list$Vars

mds$class

● ACC

FC

Variable: death

Figure 7: MultiDimentional Scaling plot
An unsupervised MDS plot is drawn. Samples are colored according to the ’Hardy death scale’ (upper
panel) and the ’center’ variable (lower panel).

17

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ACC_1
ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11
ACC_12

ACC_13

ACC_14

ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20

FC_1

FC_2

FC_3

FC_4
FC_5

FC_6

FC_7

FC_8

FC_9
FC_10

FC_11FC_12
FC_13

FC_14

FC_15

FC_16
FC_17

FC_18

FC_19

FC_20

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01

X1

X
2

cov_list$Vars

●a

●a

F

M

mds$class

● ACC

FC

Variable: sex

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ACC_1
ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11
ACC_12

ACC_13

ACC_14

ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20

FC_1

FC_2

FC_3

FC_4
FC_5

FC_6

FC_7

FC_8

FC_9
FC_10

FC_11FC_12
FC_13

FC_14

FC_15

FC_16
FC_17

FC_18

FC_19

FC_20

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01

X1

X
2

cov_list$Vars

●a

●a

ACC

FC

mds$class

● ACC

FC

Variable: class

Figure 8: MultiDimentional Scaling plot
An unsupervised MDS plot is drawn. Samples are colored according to ’sex’ variable (upper panel) and
’class’ (lower panel).

18

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

2.6 Feature Selection

The previous step(s) returned a fully filtered, normalized, adjusted expression matrix with the
effect of sv removed. However, the number of features in the dataset is still high and greatly
exceeds the number of observations. We have to deal, here, with the well-known issue for
high-dimensional data known as the “curse of dimensionality”. Adding noise features that are
not truly associated with the response (i.e. class) may lead, in fact, to a worsening model
accuracy. In this situation, the user needs to remove those features that bear irrelevant or
redundant information. The feature selection technique implemented here does not alter the
original representation of the variables, but simply selects a subset of them. It includes three
different steps briefly described in the following paragraphs.

2.6.1 Variable selection in Partial Least Squares (PLS)

The first step allows the user to exclude all non-informative class-related features using a
backward variable elimination procedure [16]. The DaMiR.FSelect function embeds a prin-
cipal component analysis (PCA) to identify principal components (PCs) that correlate with
“class”. The correlation coefficient is defined by the user through the th.corr argument.
The higher the correlation, the lower the number of PCs returned. Importantly, users should
pay attention to appropriately set the th.corr argument since the total number of retrieved
features depends, indeed, on the number of the selected PCs.
The number of class-correlated PCs is then internally used by the function to perform a
backward variable elimination-PLS and remove those variables that are less informative with
respect to class [17].
Note. Before running the DaMiR.FSelect function, we need to transpose our normalized
expression data. It can be done by the base R function t(). However, we implemented the
helper function DaMiR.transpose that transposes the data but also tries to prevent the use
of tricky feature labels. The “-” and “.” characters within variable labels (commonly found,
for example, in gene symbols) may, in fact, cause errors if included in the model design as
it is required to execute part of the code of the DaMiR.FSelect function. Thus, we, firstly,
search and, eventually, replace them with non causing error characters.
We used the set.seed(12345) function that allows the user to make the results of the whole
pipeline reproducible.
set.seed(12345)

data_clean<-DaMiR.transpose(assay(data_adjust))

df<-colData(data_adjust)

data_reduced <- DaMiR.FSelect(data_clean, df, th.corr=0.4)

18778 Genes have been discarded for classification 274 Genes remained.

The “data_reduced” object returns an expression matrix with potentially informative features.
In our case study, the initial number of 19052 features has been reduced to 274.

2.6.2 Removing highly correlated features

Some of the returned informative features may, however, be highly correlated. To prevent the
inclusion of redundant features that may decrease the model performance during the classifi-
cation step, we apply a function that produces a pair-wise absolute correlation matrix. When

19

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

two features present a correlation higher than th.corr argument, the algorithm calculates
the mean absolute correlation of each feature and, then, removes the feature with the largest
mean absolute correlation.
data_reduced <- DaMiR.FReduct(data_reduced$data)

54 Highly correlated features have been discarded for classification.

220 Features remained.

DaMiR.MDSplot(data_reduced, df)

In our example, we used a Spearman’s correlation metric and a correletion threshold of 0.85
(default). This reduction step filters out 54 highly correlated genes from the 274 returned by
the DaMiR.FSelect. The figure below shows the MDS plot drawn by the use of the expression
matrix of the remaining 220 genes.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ACC_1

ACC_2

ACC_3

ACC_4

ACC_5

ACC_6

ACC_7

ACC_8

ACC_9

ACC_10

ACC_11

ACC_12

ACC_13

ACC_14

ACC_15

ACC_16

ACC_17

ACC_18

ACC_19

ACC_20

FC_1

FC_2

FC_3

FC_4

FC_5

FC_6

FC_7

FC_8

FC_9

FC_10

FC_11

FC_12

FC_13

FC_14

FC_15

FC_16

FC_17

FC_18

FC_19

FC_20

−0.08

−0.04

0.00

0.04

−0.1 0.0 0.1

X1

X
2

df$class

●a

a

ACC

FC

Figure 9: MultiDimentional Scaling plot
A MDS plot is drawn, considering only most informative genes, obtained after feature selection: color code
is referred to ’class’.

2.6.3 Ranking and selecting most relevant features

The above functions produced a reduced matrix of variables. Nonetheless, the number of
reduced variables might be too high to provide faster and cost-effective classification mod-
els. Accordingly, we should properly select a subset of the most informative features. The
DaMiR.FSort function implements a procedure to rank features by their importance. The
method implements a multivariate filter technique (i.e. RReliefF) that assessess the rele-
vance of features (for details see the relief function of the FSelector package) [18, 19].

20

http://bioconductor.org/packages/FSelector

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

The function produced a data frame with two columns, which reports features ranked by
importance scores: a RReliefF score and scaled.RReliefF value; the latter is computed in this
package to implement a “z-score” standardization procedure on RReliefF values.
Note. This step may be time-consuming if a data matrix with a high number of features is
used as input. We observed, in fact, that there is a quadratic relationship between execution
time of the algorithm and the number of features. The user is advised with a message about
the estimated time needed to compute the score and rank the features. Thus, we strongly
suggest to filter out non informative features by the DaMiR.FSelect and DaMiR.FReduct func-
tions before performing this step.
Rank genes by importance:

df.importance <- DaMiR.FSort(data_reduced, df)

Please wait. This operation will take about 40 seconds (i.e. about 1 minutes).

head(df.importance)

RReliefF scaled.RReliefF

ENSG00000164326 0.3047593 3.077965

ENSG00000132386 0.3026049 3.046458

ENSG00000137699 0.2830921 2.761098

ENSG00000140015 0.2780874 2.687907

ENSG00000131378 0.2731858 2.616224

ENSG00000258754 0.2497815 2.273952

After the importance score is calculated, a subset of features can be selected and used as
predictors for classification purpose. The function DaMiR.FBest is used to select a small
subset of predictors:
Select Best Predictors:

selected_features <- DaMiR.FBest(data_reduced, ranking=df.importance,

n.pred = 5)

5 Predictors have been selected for classification

selected_features$predictors

[1] "ENSG00000164326" "ENSG00000132386" "ENSG00000137699" "ENSG00000140015"

[5] "ENSG00000131378"

Dendrogram and heatmap:

DaMiR.Clustplot(selected_features$data, df)

Here, we selected the first 5 genes (default) ranked by importance.
Note. The user may also wish to select “automatically” (i.e. not defined by the user) the
number of important genes. This is possible by setting autoselect="yes" and a threshold
for the scaled.RReliefF, i.e. th.zscore argument. These normalized values (rescaled to have
a mean of 0 and standard deviation of 1) make it possible to compare predictors ranking
obtained by running the pipeline with different parameters.

21

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

ENSG00000101180
ENSG00000150394
ENSG00000197747
ENSG00000115194
ENSG00000133665
ENSG00000250685
ENSG00000119411
ENSG00000134207
ENSG00000250584
ENSG00000062524
ENSG00000179520
ENSG00000172346
ENSG00000149305
ENSG00000160781
ENSG00000170231
ENSG00000182366
ENSG00000165606
ENSG00000173546
ENSG00000143473
ENSG00000151892
ENSG00000153820
ENSG00000143119
ENSG00000178342
ENSG00000130720
ENSG00000260432
ENSG00000156219
ENSG00000172554
ENSG00000170786
ENSG00000152208
ENSG00000186212
ENSG00000243742
ENSG00000152527
ENSG00000176887
ENSG00000134595
ENSG00000232973
ENSG00000150275
ENSG00000131885
ENSG00000105976
ENSG00000108960
ENSG00000077327
ENSG00000106852
ENSG00000118898
ENSG00000122375
ENSG00000273036
ENSG00000258754
ENSG00000131378
ENSG00000140015
ENSG00000137699
ENSG00000132386
ENSG00000164326

●
●
●
●

●
●
●
●
●
●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●
●
●

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

Top50 features

0.15 0.20 0.25 0.30

Attributes importance by RReliefF

RReliefF importance

Figure 10: Feature Importance Plot
The dotchart shows the list of top 50 genes, sorted by RReliefF importance score. This plot may be used to
select the most important predictors to be used for classification.

22

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

A
C

C
_14

A
C

C
_8

A
C

C
_18

A
C

C
_10

A
C

C
_16

A
C

C
_17

A
C

C
_20

A
C

C
_12

A
C

C
_3

A
C

C
_5

A
C

C
_15

A
C

C
_4

A
C

C
_7

A
C

C
_11

A
C

C
_1

A
C

C
_19

A
C

C
_6

A
C

C
_2

A
C

C
_13

F
C

_10
F

C
_19

F
C

_1
F

C
_7

F
C

_12
F

C
_3

F
C

_16
F

C
_11

F
C

_13
F

C
_15

F
C

_6
F

C
_17

F
C

_8
F

C
_18

A
C

C
_9

F
C

_14
F

C
_2

F
C

_4
F

C
_20

F
C

_5
F

C
_9

ENSG00000137699

ENSG00000164326

ENSG00000132386

ENSG00000131378

ENSG00000140015

center
sex
age
death
class class

ACC
FC

death
4

1

age
20−29
30−39
40−49
50−59
60−69
70−79

sex
F
M

center
B1, A1
C1, A1

−2

−1

0

1

2

Figure 11: Clustergram
The clustergram is generated by using the expression values of the 5 predictors selected by DaMiR.FBest

function. As for the heatmap generated by DaMiR.Allplot, ’class’ and covariates are drawn as horizontal
and color coded bars.

23

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

2.7 Classification

All the steps executed so far allowed the normalization, cleaning and reduction of the original
expression matrix; the objective is to capture a subset of original data as informative as
possible, in order to carry out a classification analysis. In this paragraph, we describe the
statistical learning strategy we implemented to tackle binary classification problems.
A meta-learner is built, combining the outputs of 6 different classifiers through a “Stacking”
strategy. Currently, there is no gold standard for creating the best rule to combine predictions
[6]. We decided to implement a framework that relies on the “weighted majority voting”
approach [20]. In particular, our method estimates a weight for each classifier, based on its
own accuracy, and then use these weights, together with predictions, to fine-tune a decision
rule (i.e. meta-learner). Briefly, first a training set (TR1) and a test set (TS1) are generated
by “Bootstrap” sampling. Then, sampling again from subset TR1, another pair of training
(TR2) and test set (TS2) were obtained. TR2 is used to train RF, NB, SVM, 3kNN, LDA
and LR classifiers, whereas TS2 is used to test their accuracy and to calculate weights (w)
by formula:

wclassifieri =
Accuracyclassifieri

N∑
j=1

Accuracyclassifierj

1

where i is a specific classifiers and N is the total number of them (here, N = 6). Using this
approach:

N∑
i=1

wi = 1 2

The higher the value of wi, the more accurate is the classifier.
The performance of the meta-learner (labelled as “Ensemble”) is evaluated by using TS1.
The decision rule of the meta-learner is made by a linear combination of the products between
weigths (w) and binary (0 or 1) predictions (Pr) of each classifier; for each sample k, the
prediction is computed by:

Pr(k,Ensemble) = wRF ∗ Pr(k,RF) + wNB ∗ Pr(k,NB) + wSVM ∗ Pr(k,SVM)+

+w3kNN ∗ Pr(k,3kNN) + wLDA ∗ Pr(k,LDA) + wLR ∗ Pr(k,LR)

3

Pr(k,Ensemble) ranges from 0 (high probability to belong to one class) to 1 (high probability
to belong to the other class); predictions close to 0.5 have to be considered as made by
chance. This process is repeated several times to assess the robustness of the set of predic-
tors used.

This procedure is implemented in the DaMiR.EnsembleLearning function, where fSample.tr,
fSample.tr.w and iter arguments allow the algorithm tuning.
To speed up the execution time of the function, we set iter = 30 (default is 100) but we
suggest to use an higher number of iterations to obtain more accurate results.
Classification_res <- DaMiR.EnsembleLearning(selected_features$data,

classes=df$class, fSample.tr = 0.5,

fSample.tr.w = 0.5, iter = 30)

24

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

Ensemble classification is running. 30 iterations were chosen:

Accuracy:

Ensemble RF SVM NB LDA LR 3kNN

Mean: 99 99.5 99.33 94 92.83 88.83 96.67

St.Dev. 2.42 2.01 1.73 8.45 8.48 10.64 3.56

The function returns a list containing: a matrix of accuracies of each classifier in each
iteration, a matrix of weights used for each classifier in each iteration and a list of all models
generated in each iteration. These objects can be accessed using the $ accessor.

●

● ● ● ●

● ●

●

●

● ●

● ● ● ●

● ●

●

●

●

●

● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ● ●

● ● ●

● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●

●

●

●

70

80

90

100

Ensemble RF SVM NB LDA LR 3kNN

Classifiers

A
cc

ur
ac

y

factor(Classifiers)

Ensemble

RF

SVM

NB

LDA

LR

3kNN

Figure 12: Accuracies Comparison
The violin plot highlights the classification accuracy of each classifier, computed at each iteration; a black
dot represents a specific accuracy value while the shape of each “violin” is drawn by a Gaussian kernel den-
sity estimation. Averaged accuracies and standard deviations are represented by white dots and lines.

As shown in Figure 12, almost all single, weak classifiers show high or very high classification
accuracy (RF: 99.5 ± 2.01, SVM: 99.33 ± 1.73, NB: 94 ± 8.45, LDA: 92.83 ± 8.48, LR:
88.83 ± 10.64, 3kNN: 96.67 ± 3.56). As discussed in Section 1, the meta-learner is more
influenced by better weak classifiers than inferior ones, which ensures “Ensemble” to reach a
classification accuracy equal to 99± 2.42.

2.8 Exporting output data

DaMiRseq has been designed to allow users to export the outputs of each function, which
consist substantially in matrix or data.frame objects. Export can be done, using the base R
functions, such as write.table or write.csv. For example, we could be interested in saving
normalized data matrix, stored in “data_norm” in a tab-delimited file:

25

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

outputfile <- "DataNormalized.txt"

write.table(data_norm, file = outputfile_norm, quote = FALSE, sep = "\t")

3 Adjusting the data: a necessary step?

In this section, we highlight how the early step of data correction could impact on the final
classification results. Data transformation and global scaling approaches are traditionally
applied to expression data but they could not be always effective to capture unwanted source
of variation. High-dimensional data are, in fact, known to be deeply influenced by noises
and biases of high-throughput experiments. For this reason, we strongly suggest to check
the presence of any confounding factor and assess their possible effect since they could
dramatically alter the result. However, the step described in Section 2.4 could be skipped if
we assume that the data are not affected by any batches (known or unknown), or if we do
not want to take them into account. Thus, we performed, here, the same feature selection
and classification procedure as applied before but without removing the putative noise effects
from our expression data. In this case, VST normalized data will be used. Since the functions
embedded into these steps require a random sampling to be executed, we set the same seed
as in Section 2 (i.e. set.seed(12345)) to ensure a right comparison between results.
Note. For simplicity, here we do not produce all plots, except for the violin plot gener-
ated by DaMiR.EnsembleLearning, used to compare the performances, although the usage of
DaMiR.Allplot, DaMiR.corrplot, DaMiR.Clustplot and DaMiR.MDSplot is crucial to check
the effect of each process.
Feature Selection

set.seed(12345)

data_clean_2<-DaMiR.transpose(assay(data_filt))

df_2<-colData(data_filt)

data_reduced_2 <- DaMiR.FSelect(data_clean_2, df_2, th.corr=0.4)

18938 Genes have been discarded for classification 114 Genes remained.

data_reduced_2 <- DaMiR.FReduct(data_reduced_2$data)

16 Highly correlated features have been discarded for classification.

98 Features remained.

df.importance_2 <- DaMiR.FSort(data_reduced_2, df_2)

Please wait. This operation will take about 20 seconds (i.e. about 0 minutes).

head(df.importance_2)

RReliefF scaled.RReliefF

ENSG00000164326 0.3389790 4.453264

ENSG00000144407 0.2146377 2.654297

ENSG00000105976 0.2012688 2.460875

ENSG00000094796 0.1913882 2.317923

ENSG00000130720 0.1822256 2.185358

ENSG00000170290 0.1791553 2.140937

selected_features_2 <- DaMiR.FBest(data_reduced_2, ranking=df.importance_2,

26

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

n.pred=5)

5 Predictors have been selected for classification

selected_features_2$predictors

[1] "ENSG00000164326" "ENSG00000144407" "ENSG00000105976" "ENSG00000094796"

[5] "ENSG00000130720"

Classification

Classification_res_2 <- DaMiR.EnsembleLearning(selected_features_2$data,

classes=df_2$class,

fSample.tr = 0.5,

fSample.tr.w = 0.5,

iter = 30)

Ensemble classification is running. 30 iterations were chosen:

Accuracy:

Ensemble RF SVM NB LDA LR 3kNN

Mean: 88.67 87.33 89 87.83 79.17 76.67 78.67

St.Dev. 5.24 5.68 6.35 8.38 8.72 10.45 9.82

The consequence of data adjustment is already remarkable after the feature selection and
reduction steps. The number of selected genes, indeed, decreased from 220 to 98 when data
adjustment was not performed, suggesting that hidden factors may influence gene expression
and likely mask class-related features. Furthermore, the ranking of the important features
also differs if data correction is not applied. The two sets of 5 genes that are used to build
the classification models shares, in fact, only 1 gene. This suggests that data adjustment
affects both the number and the quality of the features that can be selected for classification.
Therefore, the overall classification performances, without the appropriate data correction,
hugely felt down below 90% of accuracy for all the classifiers.
Figure 13 shows the results of the variation to standard workflow of DaMiRseq, proposed in
this Section. Taking as reference the “Standard Workflow”, described in Section 2, we can
observe that the performances, in terms of classification accuracy, drastically decrease: RF:
87.33±5.68, SVM: 89±6.35, NB: 87.83±8.38, LDA: 79.17±8.72, LR: 76.67±10.45, 3kNN:
78.67 ± 9.82. These results affect obviously the performances of “Ensemble” meta-learner
that reaches a classification accuracy equal to 88.67± 5.24.

27

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ●

● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ●

●

●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ●

●

● ●

● ● ● ● ●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

● ●

● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

● ●

● ●

● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

60

80

100

Ensemble RF SVM NB LDA LR 3kNN

Classifiers

A
cc

ur
ac

y

factor(Classifiers)

Ensemble

RF

SVM

NB

LDA

LR

3kNN

Figure 13: Accuracies Comparison
The violin plot shows the effect of the modification to DaMiRseq standard workflow, described in Sec-
tion 3: without adjusting data (following the steps described in Section 2.4), performances usually de-
crease; this could be explained by the fact that some noise, probably coming from unknown source of vari-
ation, is present in the dataset. In this example, overall accuracies drastically decrease below 90% for all
classifiers.

4 Session Info

• R version 3.4.2 (2017-09-28), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=en_US.UTF-8, LC_ADDRESS=en_US.UTF-8, LC_TELEPHONE=en_US.UTF-8,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=en_US.UTF-8

• Running under: Ubuntu 16.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, DaMiRseq 1.2.0,

DelayedArray 0.4.0, GenomeInfoDb 1.14.0, GenomicRanges 1.30.0, IRanges 2.12.0,
S4Vectors 0.16.0, SummarizedExperiment 1.8.0, ggplot2 2.2.1, knitr 1.17,
matrixStats 0.52.2

28

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

• Loaded via a namespace (and not attached): AnnotationDbi 1.40.0,
BiocParallel 1.12.0, BiocStyle 2.6.0, Biostrings 2.46.0, CVST 0.2-1, DBI 0.7,
DESeq 1.30.0, DESeq2 1.18.0, DEoptimR 1.0-8, DRR 0.0.2, EDASeq 2.12.0,
FSelector 0.21, FactoMineR 1.38, Formula 1.2-2, GenomeInfoDbData 0.99.1,
GenomicAlignments 1.14.0, GenomicFeatures 1.30.0, Hmisc 4.0-3, MASS 7.3-47,
Matrix 1.2-11, ModelMetrics 1.1.0, R.methodsS3 1.7.1, R.oo 1.21.0, R.utils 2.5.0,
R6 2.2.2, RColorBrewer 1.1-2, RCurl 1.95-4.8, RMySQL 0.10.13, RSQLite 2.0,
RWeka 0.4-35, RWekajars 3.9.1-4, Rcpp 0.12.13, RcppRoll 0.2.2, Rsamtools 1.30.0,
ShortRead 1.36.0, XML 3.98-1.9, XVector 0.18.0, acepack 1.4.1, annotate 1.56.0,
aroma.light 3.8.0, assertthat 0.2.0, backports 1.1.1, base64enc 0.1-3, bdsmatrix 1.3-2,
bindr 0.1, bindrcpp 0.2, biomaRt 2.34.0, bit 1.1-12, bit64 0.9-7, bitops 1.0-6,
blob 1.1.0, caret 6.0-77, checkmate 1.8.5, class 7.3-14, cluster 2.0.6,
codetools 0.2-15, colorspace 1.3-2, compiler 3.4.2, corrplot 0.84, data.table 1.10.4-3,
ddalpha 1.3.1, digest 0.6.12, dimRed 0.1.0, dplyr 0.7.4, e1071 1.6-8, entropy 1.2.1,
evaluate 0.10.1, flashClust 1.01-2, foreach 1.4.3, foreign 0.8-69, genalg 0.2.0,
genefilter 1.60.0, geneplotter 1.56.0, glue 1.2.0, gower 0.1.2, grid 3.4.2, gridExtra 2.3,
gtable 0.2.0, highr 0.6, htmlTable 1.9, htmltools 0.3.6, htmlwidgets 0.9, hwriter 1.3.2,
igraph 1.1.2, ipred 0.9-6, iterators 1.0.8, kernlab 0.9-25, kknn 1.3.1, labeling 0.3,
lattice 0.20-35, latticeExtra 0.6-28, lava 1.5.1, lazyeval 0.2.1, leaps 3.0, limma 3.34.0,
locfit 1.5-9.1, lubridate 1.7.0, magrittr 1.5, memoise 1.1.0, mgcv 1.8-22,
munsell 0.4.3, mvtnorm 1.0-6, nlme 3.1-131, nnet 7.3-12, pheatmap 1.0.8,
pkgconfig 2.0.1, pls 2.6-0, plsVarSel 0.9.1, plyr 1.8.4, prettyunits 1.0.2, prodlim 1.6.1,
progress 1.1.2, purrr 0.2.4, rJava 0.9-9, randomForest 4.6-12, recipes 0.1.0,
reshape2 1.4.2, rlang 0.1.2, rmarkdown 1.6, robustbase 0.92-7, rpart 4.1-11,
rprojroot 1.2, rtracklayer 1.38.0, scales 0.5.0, scatterplot3d 0.3-40, sfsmisc 1.1-1,
splines 3.4.2, stringi 1.1.5, stringr 1.2.0, survival 2.41-3, sva 3.26.0, tibble 1.3.4,
timeDate 3012.100, tools 3.4.2, withr 2.0.0, xtable 1.8-2, yaml 2.1.14, zlibbioc 1.24.0

References

[1] Jeffrey T Leek and John D Storey. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genet, 3(9):e161, 2007.

[2] Andrew E Jaffe, Thomas Hyde, Joel Kleinman, Daniel R Weinbergern, Joshua G
Chenoweth, Ronald D McKay, Jeffrey T Leek, and Carlo Colantuoni. Practical impacts
of genomic data "cleaning" on biological discovery using surrogate variable analysis.
BMC bioinformatics, 16(1):1, 2015.

[3] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182, 2003.

[4] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques
in bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[5] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[6] Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and systems
magazine, 6(3):21–45, 2006.

[7] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

29

The DaMiRseq package - Data Mining for RNA-Seq data: normalization, feature selection and classification

[8] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39,
2010.

[9] GTEx Consortium et al. The genotype-tissue expression (gtex) pilot analysis:
Multitissue gene regulation in humans. Science, 348(6235):648–660, 2015.

[10] Martin Morgan, Valerie Obenchain, Jim Hester, and Hervé Pagès.
SummarizedExperiment: SummarizedExperiment container, 2016. R package version
1.4.0.

[11] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for rna-seq data with deseq2. Genome biology, 15(12):1, 2014.

[12] Jeffrey T Leek, W Evan Johnson, Hilary S Parker, Andrew E Jaffe, and John D Storey.
The sva package for removing batch effects and other unwanted variation in
high-throughput experiments. Bioinformatics, 28(6):882–883, 2012.

[13] Matthew E Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W Law, Wei Shi, and
Gordon K Smyth. limma powers differential expression analyses for rna-sequencing and
microarray studies. Nucleic acids research, page gkv007, 2015.

[14] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer, 2016.
[15] Davide Risso, Katja Schwartz, Gavin Sherlock, and Sandrine Dudoit. Gc-content

normalization for rna-seq data. BMC bioinformatics, 12(1):480, 2011.
[16] Tahir Mehmood, Kristian Hovde Liland, Lars Snipen, and Solve Sæbø. A review of

variable selection methods in partial least squares regression. Chemometrics and
Intelligent Laboratory Systems, 118:62–69, 2012.

[17] Ildiko E Frank. Intermediate least squares regression method. Chemometrics and
Intelligent Laboratory Systems, 1(3):233–242, 1987.

[18] Igor Kononenko. Estimating attributes: analysis and extensions of relief. In European
conference on machine learning, pages 171–182. Springer, 1994.

[19] Marko Robnik-Šikonja and Igor Kononenko. An adaptation of relief for attribute
estimation in regression. In Machine Learning: Proceedings of the Fourteenth
International Conference (ICML’97), pages 296–304, 1997.

[20] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212 – 261, 1994. URL:
http://www.sciencedirect.com/science/article/pii/S0890540184710091,
doi:http://dx.doi.org/10.1006/inco.1994.1009.

30

http://www.sciencedirect.com/science/article/pii/S0890540184710091
http://dx.doi.org/http://dx.doi.org/10.1006/inco.1994.1009

	1 Introduction
	2 Workflow
	2.1 Input data
	2.2 Import Data
	2.3 Preprocessing and Normalization
	2.3.1 Filtering by Expression
	2.3.2 Filtering By Coefficient of Variation (CV)
	2.3.3 Normalization
	2.3.4 Sample Filtering

	2.4 Adjusting Data
	2.4.1 Identification of Surrogate Variables
	2.4.2 Correlation between sv and known covariates
	2.4.3 Cleaning expression data

	2.5 Exploring Data
	2.6 Feature Selection
	2.6.1 Variable selection in Partial Least Squares (PLS)
	2.6.2 Removing highly correlated features
	2.6.3 Ranking and selecting most relevant features

	2.7 Classification
	2.8 Exporting output data

	3 Adjusting the data: a necessary step?
	4 Session Info

