Clustering miRNAs-genes pairs
isoNetwork(mirna_rse, gene_rse, target, org, summarize = "group", genename = "ENSEMBL", min_cor = -0.6)
mirna_rse | SummarizedExperiment::SummarizedExperiment with miRNA information. See details. |
---|---|
gene_rse | SummarizedExperiment::SummarizedExperiment with gene information. See details. |
target | Matrix with miRNAs (columns) and genes (rows) target prediction (1 if it is a target, 0 if not). |
org | AnnotationDbi::AnnotationDb obejct. For example:(org.Mm.eg.db). |
summarize | Character column name in |
genename | Character keytype of the gene names in gene_rse object. |
min_cor | Numeric cutoff to consider a miRNA to regulate a target. |
list with network information
This function will correlate miRNA and gene expression data using
a specific metadata variable to group samples and detect pattern
of expression that will be annotated with GO terms.
mirna_rse and gene_rse can be created using the following code:
mi_rse = SummarizedExperiment(assays=SimpleList(norm=mirna_matrix), colData, metadata=list(sign=mirna_keep))
where, mirna_matrix
is the normalized counts expression,
colData
is the metadata information and mirna_keep
the list of miRNAs to be used by this function.
library(org.Mm.eg.db) library(clusterProfiler) data(isoExample) # ego <- enrichGO(row.names(assay(gene_ex_rse, "norm")), # org.Mm.eg.db, "ENSEMBL", ont = "BP") # data = isoNetwork(mirna_ex_rse, gene_ex_rse, ma_ex, org = slot(ego, "result")) # isoPlotNet(data)#> Error: <text>:7:46: unexpected ')' #> 6: # data = isoNetwork(mirna_ex_rse, gene_ex_rse, ma_ex, #> 7: org = slot(ego, "result")) #> ^