
Package ‘scsR’
April 12, 2018

Type Package

Title SiRNA correction for seed mediated off-target effect

Version 1.14.0

Date 2014-10-28

Author Andrea Franceschini

Maintainer Andrea Frances-
chini <andrea.franceschini@isb-sib.ch>, Roger Meier <roger.meier@lmsc.ethz.ch>, Chris-
tian von Mering <mering@imls.uzh.ch>

Description Corrects genome-wide siRNA screens for seed mediated off-target effect. Suitable func-
tions to identify the effective seeds/miRNAs and to visualize their effect are also pro-
vided in the package.

License GPL-2

Depends R (>= 2.14.0), STRINGdb, methods, BiocGenerics, Biostrings,
IRanges, plyr, tcltk

Imports sqldf, hash, ggplot2, graphics,grDevices, RColorBrewer

Suggests RUnit

biocViews Preprocessing

NeedsCompilation no

R topics documented:
add_rank_col . 2
add_seed . 3
benchmark_shared_hits . 4
bydf . 5
check_consistency . 6
compare_sorted_geneSets . 7
create_sd_matrix . 8
delColDf . 9
delete_undefined_rows . 9
enrichment_geneSet . 10
enrichment_heatmap . 11
get_sd_quant . 12
get_seed_oligos_df . 13
intersectAll . 14
launch_RSA . 15

1

2 add_rank_col

median_replicates . 16
miRBase_20 . 16
OPIrsa . 17
OPIrsaScore . 17
plot_screen_hits . 18
plot_seeds_methods . 19
randomizeInner . 21
randomSortOnVal . 21
removeSharedOffTargets . 22
renameColDf . 23
replace_non_null_elements . 24
seeds_analysis . 24
seed_correction . 26
seed_correction_pooled . 27
seed_removal . 29
sortInner . 30
split_df . 31
transcribe_seqs . 32
uuk_screen . 33
uuk_screen_dh . 33

Index 34

add_rank_col add_rank_col

Description

This method takes in input a dataframe containing the results of an siRNA screen. Then it adds
a set of column that are useful for sorting to the dataframe. At the moment the following sorting
columns are provided: - column with the median value of the siRNA score for each gene - columns
that comes out from the execution of the RSA sorting method (Renate Konig et al.)

Usage

add_rank_col(screen, reverse=FALSE, scoreColName="score", geneColName="GeneID")

Arguments

screen data frame containing the results of the siRNA experiment.

reverse boolean specifying the direction of the sorting (from the lowest scores to the
highest score or vice versa)

scoreColName character vector with the name of the column that contains the score of the
screen

geneColName character vector withname of the column that contains the names of the genes
in the screen

Value

screen data frame with sorting columns added.

add_seed 3

Author(s)

Andrea Franceschini

References

A probability-based approach for the analysis of large-scale RNAi screens. Renate Konig et al.
Nature Methods 2007

Examples

data(uuk_screen)
uuk_screen_ranked = add_rank_col(uuk_screen[1:100,])

add_seed add_seed

Description

This method takes in input a dataframe containing the results of an siRNA screen. This screen
must contain the siRNA sequences in a dedicated column (the sequences have to be provided in the
guide/antisense orientation). Then it adds a column with the seed of the siRNA sequences.

Usage

add_seed(df, seqColName="siRNA_seq", seedLength=7, startPosition=2)

Arguments

df Dataframe containing the results of the siRNA screen.

seqColName character vector with the name of the column that contains the siRNA sequences
(the sequences have to be provided in the guide/antisense orientation).

seedLength length of the seed in nucleotides (by default 7 bases) (integer)

startPosition position in the siRNA sequence where the seed starts (by default position 2)
(integer))

Value

screen data frame with the seed column added.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
seed_uuk_screen = add_seed(uuk_screen[1:100,])

4 benchmark_shared_hits

benchmark_shared_hits benchmark_shared_hits

Description

This method can be used to benchmark sorted gene vectors (A) that comes out from a siRNA screen.
The benchmark is done against other sorted gene vectors (B) that we know to contain high density
of real hits (e.g. the results of a second siRNA screen performed with a different library). The
benchmark is performed simply comparing the top n hits of the two lists. If the two lists contain
many shared best hits than we have a strong statistical signal. Then we display the number of shared
best hits for different n, in a graph (if visualize_pval variable is set to true the pvalue of the t-test is
plotted instead of the number of shared hits).

Usage

benchmark_shared_hits(glA, glB, col, avoidIntersectL=FALSE,
output_file=NULL, npoints=400, title="", scaleAXPoint = 1,
scaleBXPoint = NULL, fixedBXPoint=400, displayRandomMultipleLines=TRUE,
nrandom=20, intersectGenes=TRUE, visualize_pval=FALSE, max_ylim=NULL, xlab=NULL, ylab="shared hits")

Arguments

glA sorted list containing one or more sorted vectors of genes (i.e. hits of a genome
wide screen sorted by significance). Each element i of glA will be benchmarked
against element i of glB. In case glB contains only one element, each glA vector
will be benchmarked against glB[1].

glB sorted list containing one or more sorted vectors of genes (i.e. hits of a genome
wide screen sorted by significance).

col sorted vector of booleans (a boolean i in the vector corresponds to the shared
hits of glA[i] with glB[i])

avoidIntersectL

sorted vector of colors (a color i in the vector corresponds to the shared hits line
obtain intersecting glA[i] with glB[i]) To perform the benchmark we construct
a background to be used (this background is given by the intersection of all the
glA and glB vectors) When an element i of the vector is set to TRUE, we don’t
use the elements of glA[i] to compute the vector. This allows to benchmark also
methods that do output only few putative good genes (instead of a sorted list of
all the genes tested).

npoints number of points on the x-axis of the graph (integer)

nrandom number of random lines to compute (in order to infer the variation of the noise)
(integer)

output_file path to the output file where to store the graph (character vector)

title title of the graph (character vector)

scaleAXPoint for position x in the graph we compare the best x * scaleAXPoint best hits of
the genesA vector (integer)

scaleBXPoint for position x in the graph we compare the best x * scaleBXPoint best hits of the
genesB vector (integer)

bydf 5

fixedBXPoint for position x in the graph we compare the best fixedBXPoint best hits of the
genesB vector (integer)

intersectGenes specify whether to intersect the genes from the various input vectors to form a
suitable background to be used for the benchmark. (boolean)

visualize_pval specify whether a p-value (derived by an hypergeometric test) should be visual-
ized instead of the number of shared hits. (boolean)

displayRandomMultipleLines

specify whether to display several random lines in the graph (instead of only one
line that is the average of all the random lines) (boolean)

max_ylim y upper limit (integer)

xlab xlab (character vector)

ylab ylab (character vector)

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
data(uuk_screen_dh)

benchmark_shared_hits(
glA=list(

uuk_screen[1:1000,]$GeneID,
arrange(add_rank_col(uuk_screen[1:1000,]), log_pval_rsa)$GeneID

),
glB=list(uuk_screen_dh$GeneID),
col=c("black", "blue"),
title="UUKUNIEMI Hela Cell Killers"

)

bydf bydf

Description

apply a function to a group of rows in the input data frame (similar to the sql group by statememnt).

Usage

bydf(df, groupColName, valColName, fun, newColName="temp_by_col_name")

bydfa(df, groupColName, valColName, fun, newColName="temp_by_col_name")

6 check_consistency

Arguments

df input data frame

groupColName name of the column to be used for grouping the rows (character vector)

valColName name of the column containing the values to be inserted in the function (charac-
ter vector)

fun function to be applied (function)

newColName name of the colum that contains the result of the function (character vector)

Details

The methods currently depend on the type of to:

bydf apply a function to a group of rows in the input data frame (similar to the sql group by
statememnt). Put the results of this function in a new data frame that is returned as output.

bydfa apply a function to a group of rows in the input data frame (similar to the sql group by
statememnt). return the same data frame with an additional column with the results of the
function.

Value

bydf: data frame with the function applied to the grouping bydfa: input data frame with an addi-
tional column with the results of the function applied to the grouping.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
screen=add_seed(uuk_screen[1:1000,])
screen_sd = bydf(screen, groupColName="seed7", "score", sd, "sd")

check_consistency check_consistency

Description

This method takes an siRNA screen as input and check its consistency (i.e. check that the format of
the data is suitable for the usage with our scsR package). The method prints meaningful warnings
for every inconsistency that can be detected

Usage

check_consistency(screen, scoreColName = "score", geneColName = "GeneID",
seqColName="siRNA_seq")

compare_sorted_geneSets 7

Arguments

screen Dataframe containing the results of the siRNA scree

scoreColName name of the column that contains the score of the screen (character vector)

geneColName name of the column that contains the gene identifier of the screen (character
vector)

seqColName name of the column that contains the siRNA sequences in the screen. (the
sequences have to be provided in the guide/antisense orientation and each se-
quence must be in the format of a character vector, i.e. a simple string). (char-
acter vector)

Value

return the data frame passed in input with possible consistency corrections.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
uuk_screen <- check_consistency(uuk_screen)

compare_sorted_geneSets

compare_sorted_geneSets

Description

This method can be used to compare the performances of two different sorted gene vectors (A1 and
A2) relative to a reference vector (B). To perform the comparison we use n best hits from genesetA1
and genesetA2. n is defined as the number of elements of the smallest of the two vectors(after
intersecting it with the background). For the comparison see also the enrichment_geneSet method.

Usage

compare_sorted_geneSets(genesetA1, genesetA2, genesetB, background, limA=NULL, limB=NULL)

Arguments

genesetA1 vector of sorted genes (character vector)

genesetA2 vector of sorted genes (character vector)

genesetB vector of genes to be used as reference (character vector)

background vector of genes to be used as background (character vector)

limA limit the number of genes of the vector genesetA1 to the first limA genes (inte-
ger)

limB limit the number of genes of the vector genesetB1 to the first limB genes (inte-
ger)

8 create_sd_matrix

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
data(uuk_screen_dh)
compare_sorted_geneSets(unique(uuk_screen$GeneID)[1:200],

unique(arrange(add_rank_col(uuk_screen), log_pval_rsa)$GeneID)[1:200],
unique(uuk_screen_dh$GeneID)[1:400],
intersect(uuk_screen$GeneID, uuk_screen_dh$GeneID)
)

create_sd_matrix create_sd_matrix

Description

We observed that the standard deviation of the oligos that share the same seed do change relative
to their average score. In principle we could plot this information on a graph (x-axis = average of
the oligos that share the same seed, y-axes = standard deviation of the oligos). We do provide this
utility method to condense this information in a matrix (that reports the quantiles of the standard
deviation for every score interval).

Usage

create_sd_matrix(screen, seedColName="seed7", scoreColName="score")

Arguments

screen data frame containing the results of the siRNA experiment.
seedColName name of the column that contains the seeds sequences of the screen (character

vector)
scoreColName name of the column that contains the score of the screen (character vector)

Value

matrix that reports the quantiles of the standard deviation for every score interval.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 100 rows
uuk_screen_reduced = uuk_screen[1:100,]

screen = add_seed(uuk_screen_reduced)
sd_matrix = create_sd_matrix(screen)

delColDf 9

delColDf delColDf

Description

Delete a specific column in the data frame.

Usage

delColDf(df, colName)

Arguments

df data frame

colName name of the column to be deleted (character vector)

Value

input data frame with the column deleted.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
uuk_screen2 = delColDf(uuk_screen, "score")

delete_undefined_rows delete_undefined_rows

Description

method to delete the rows that contain undefined values in some specific columns.

Usage

delete_undefined_rows(df, colNames, quiet=FALSE)

Arguments

df data frame

colNames vector with the names of the column that must be defined (i.e. their values
cannot be NULL, NA, NaN or zero-length strings) (vector of strings)

quiet specify whether to avoid printing warnings. (boolean)

Value

data frame without the rows that contain at least one undefined value in the column list

10 enrichment_geneSet

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
screen <- delete_undefined_rows(uuk_screen, colNames=c("score", "GeneID"))

enrichment_geneSet enrichment_geneSet

Description

Computes the hypergeometric p-value that represents the enrichment of genesetA with genes of the
genesetB.

Usage

enrichment_geneSet(genesetA, genesetB, background=NULL, quiet=FALSE)

Arguments

genesetA vector of sorted genes (vector of strings)

genesetB vector of sorted genes (vector of strings)

background vector of genes to be used as background (vector of strings)

quiet avoid print any message/warning (boolean)

Value

the hypergeometric p-value that represents the enrichment of genesetA with genes of the genesetB.
(integer)

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
data(uuk_screen_dh)
enrichment_geneSet(unique(uuk_screen$GeneID)[1:200],

unique(uuk_screen_dh$GeneID)[1:400],
intersect(uuk_screen$GeneID, uuk_screen_dh$GeneID))

enrichment_heatmap 11

enrichment_heatmap enrichment_heatmap

Description

Produces an heatmap showing the enriched annotations that are found in the input vectors of gene
identifiers.

Usage

enrichment_heatmap(genesVectors, vectorsNames, output_file=NULL, title="", limit=400, species_ncbi_taxonomy_id=9606,
enrichmentType="Process", limitMultiPicture=NULL, fdr_threshold=0.05, pvalue_threshold=NULL,
cexRow=NULL, cexCol=1, STRINGversion="9_05", selectTermsVector=NULL, iea = TRUE, sortingMethod="rowMeans", avoidIntersect = FALSE)

Arguments

genesVectors list containing several sorted vectors of genes (i.e. columns of the heatmap) for
which to compute the enrichment in pathways (list)

vectorsNames names of the vectors (to be displayed as column labels on the heatmap) (vector
of strings)

output_file path to an output file where to store the heatmap (this file should have the pdf
extension) (character vector)

title title of the heatmap graph (character vector)
limit considers only the top genes in the vector (integer)
species_ncbi_taxonomy_id

ncbi taxonomy id of the organism (e.g. 9606 for Human) (integer)
enrichmentType type of Enrichment of the heatmap (either Process or KEGG. The first tests for

enrichment in GO biological processes, while the second tests for the enrichment
in KEGG pathways) (character vector)

limitMultiPicture

number of rows of the heatmap before to start a new page in the pdf (integer)
fdr_threshold considers only the rows with at least one element below this threshold (number)
pvalue_threshold

considers only the rows with at least one element below this threshold (number)
cexRow size of the row labels (number)
cexCol size of the columns’ labels (number)
STRINGversion specify the version of STRING to use for the enrichment annotations (by default

9_05) (character vector)
selectTermsVector

specify the terms to select. Each term must fully contain at least one string of
this vector. This parameter can be used when we want to limit the output of the
method, for example to fit the output image in one page of an article (vector of
strings).

iea specify whether to use Electronic Inferred Association annotations (to be used
in case you are querying the GeneOntology). (boolean)

sortingMethod specify whether a sorting method should be applied. For the moment, the only
available method is rowMeans. (character vector)

avoidIntersect specify whether a sorting method should be applied. For the moment, the only
available method is rowMeans. (character vector)

12 get_sd_quant

Value

matrix that is used to generate the heat map

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
data(uuk_screen_dh)
Not run:

heatmapMatrix = enrichment_heatmap(list(uuk_screen$GeneID,
arrange(add_rank_col(uuk_screen), log_pval_rsa)$GeneID,
uuk_screen_dh$GeneID

),
list("Qiagen", "Qiagen (RSA)", "Dharmacon"),
limit=400,
enrichmentType = "Process",
output_file=NULL,
title="Uuk Cell Killers",

selectTermsVector=c("cycle")
)

End(Not run)

get_sd_quant get_sd_quant

Description

This method scan the quantile standard deviation matrix (produced by create-sd-matrix function)
and finds the quantile of the given standard deviation and average score

Usage

get_sd_quant(sdval, score, sd_matrix)

Arguments

sdval standard deviation (number)

score average score (number)

sd_matrix standard deviation quantile matrix (matrix)

Value

number from 1 to 20 that represents the quantile of the standard deviation in the given score range
(1 corresponds to 0.05 percent). (integer)

Author(s)

Andrea Franceschini

get_seed_oligos_df 13

Examples

data(uuk_screen)

to speed up the example we use only the first 2500 rows
uuk_screen_reduced = uuk_screen[1:2500,]

screen = add_seed(uuk_screen_reduced)
sd_matrix = create_sd_matrix(screen)
quant <- get_sd_quant(0.3, 0.9, sd_matrix)

get_seed_oligos_df get_seed_oligos_df

Description

This function returns the screen, that is given in input, with additional columns about the possible
off-targets/seed effect of each oligos. The seed effect is computed excluding the current oligo.

Usage

get_seed_oligos_df(screen, seedColName="seed7", scoreColName="score", geneColName="GeneID", gene_interval = c(1,100),
min_oligos_x_gene=4, min_oligos_x_statistics=4, random=FALSE, kolmogorovSampleSize=5000, progress_bar=FALSE)

Arguments

screen data frame containing the results of the siRNA experiment (sorted by signifi-
cance).

seedColName specify the direction of the sorting (from the lowest scores to the highest score
or vice versa) (character vector)

scoreColName name of the column that contains the score of the screen (character vector)

geneColName name of the column that contains the names of the genes in the screen (character
vector)

gene_interval apply the analysis only to the genes that are included in this interval (the screen
must be sorted by significance and the interval has to be intended from the best
hits to the worst hits). (vector of integer)

min_oligos_x_gene

minimum number of oligos that a gene must have in order to be included in the
analysis (integer)

min_oligos_x_statistics

minimum number of oligos with the same seed that is required in order to apply
a statistics (otherwise 0 is returned). (integer)

random randomize the genes of the screen (boolean)

progress_bar print progress bar (boolean)
kolmogorovSampleSize

sample size to be used for the Kolmogorov Smirnov statistics (i.e. the number of
genes that we consider to be enough in order to infer the correct distribution of
the genome-wide screen. The higher this number, the slower the computation).
If this variable is left to NULL the Kolmogorov statistics is disabled (integer)

14 intersectAll

Value

screen, that is given in input, with additional columns about the possible off-targets/seed effect of
each oligos. (data frame)

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 100 rows
uuk_screen_reduced = uuk_screen[1:1000,]

uuk_screen <- add_seed(uuk_screen_reduced)
sodf = get_seed_oligos_df(uuk_screen)

intersectAll intersectAll

Description

intersect several vectors that can be passed as arguments of the functino

Usage

intersectAll(...)

Arguments

... vectors to intersect

Value

vector that results from the intersection of the input vectors

Author(s)

Andrea Franceschini

Examples

intersectAll(c(1,2,3,4), c(1,2), c(2,3,4))

launch_RSA 15

launch_RSA launch_RSA

Description

launch RSA sorting method

Usage

launch_RSA(df, LB=-100, UB=100, reverse=FALSE, strScoreCol="", strGeneCol="Gene_ID", keepAllRSAReturnFields=FALSE)

Arguments

df data frame containing the results of the siRNA experiment.

LB RSA lower bound (look KONIG paper). (number)

UB RSA upper bound (look KONIG paper). (number)

reverse whether to sort in ascending or descending order. (boolean)

strScoreCol name of the column that contains the score of the screen (character vector)

strGeneCol name of the column that contains the names of the genes in the screen (character
vector)

keepAllRSAReturnFields

specify whether you want to keep all RSA columns in the output file. (boolean)

Value

screen data frame with RSA sorting columns added.

Author(s)

Andrea Franceschini

References

A probability-based approach for the analysis of large-scale RNAi screens. Renate Konig et al.
Nature Methods 2007

Examples

data(uuk_screen)

#extract the first 1000 lines in order to speed up the example
screen = uuk_screen[1:1000,]

screen_ranked <- launch_RSA(screen, strGeneCol="GeneID", strScoreCol="score")

16 miRBase_20

median_replicates median_replicates

Description

perform the median of the replicates (i.e. group by oligo sequence and takes the median of the score
value).

Usage

median_replicates(screen, seedColName = "seed7", scoreColName = "score",
geneColName = "GeneID", seqColName="siRNA_seq", spAvgColName = NULL)

Arguments

screen data frame containing the results of the siRNA experiment.
seedColName name of the column that contains the seed of the sequence (character vector)
scoreColName name of the column that contains the score of the screen (character vector)
geneColName name of the column that contains the names of the genes in the screen (character

vector)
seqColName name of the column that contains the names of the sequences in the screen
spAvgColName name of the column that contains the names of the genes in the screen (character

vector)

Value

input data frame after having performed the median of the replicates

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
mr <- median_replicates(uuk_screen)

miRBase_20 miRBase version 20 mature sequences (homo sapiens)

Description

Mature miRNA sequences of Homo Sapiens from miRBase version .

Usage

data(miRBase_20)

Source

The microRNA Registry. Griffiths-Jones S. NAR 2004 32(Database Issue):D109-D111

OPIrsa 17

OPIrsa OPIrsa

Description

look Konig paper/code for explanation about this method

Usage

OPIrsa(Groups,Scores,opts,Data=NULL)

Arguments

Groups look Konig paper/code for explanation about this parameter

Scores look Konig paper/code for explanation about this parameter

opts look Konig paper/code for explanation about this parameter

Data look Konig paper/code for explanation about this parameter

Value

look Konig paper/code for explanation about this return value

Author(s)

Andrea Franceschini

References

A probability-based approach for the analysis of large-scale RNAi screens. Renate Konig et al.
Nature Methods 2007

OPIrsaScore OPIrsaScore

Description

look Konig paper in order to have information about this function

Usage

OPIrsaScore(I_rank, N, i_min=1, i_max=-1)

Arguments

I_rank look Konig paper in order to have information about this parameter

N look Konig paper in order to have information about this parameter

i_min look Konig paper in order to have information about this parameter

i_max look Konig paper in order to have information about this parameter

18 plot_screen_hits

Value

look Konig paper in order to have information about this return value

Author(s)

Andrea Franceschini

References

A probability-based approach for the analysis of large-scale RNAi screens. Renate Konig et al.
Nature Methods 2007

plot_screen_hits plot_screen_hits

Description

Gene-seed plot: plot the genes of the siRNA screen (x-axis) together with a representation of the
effect of the seed of their oligos (circles). The position on the y-axis of the circles refers to the
average score of the oligos of the gene that share the same seed. The dimension of the circles refers
to the number of oligos that share the same seed in the screen (the higher the number of oligos with
the same seed, the bigger is the circle). This graph can be used to look by eyes at the effect of the
seeds on the genes.

Usage

plot_screen_hits(screen, output_file=NULL, geneScoreColName="median", seedColName="seed7",
scoreColName="score", geneColName="GeneID", gene_interval = c(1,100),
min_oligos_x_gene=4, min_oligos_x_statistics=4, random=FALSE, kolmogorovSampleSize=5000,
ylab="score", xlab="gene", ylim=c(-4,4), graph_highest_count_thr=16, progress_bar=FALSE)

Arguments

screen data frame containing the results of the siRNA experiment.

output_file specify the direction of the sorting (from the lowest scores to the highest score
or vice versa) (character vector)

scoreColName name of the column that contains the score of the screen (character vector)

geneColName name of the column that contains the names of the genes in the screen (character
vector)

seedColName name of the column that contains the seeds of the siRNA sequences in the screen
(character vector). (the sequences have to be provided in the guide/antisense
orientation and each sequence must be in the format of a character vector, i.e. a
simple string)

geneScoreColName

name of the column that contains the global scores of the genes (i.e. the column
that contains the median or the average value of the oligos) (character vector)

gene_interval display in the graph only the genes that are included in this interval (the screen
must be sorted by significance and the interval has to be intended from the best
hits to the worst hits). (vector)

plot_seeds_methods 19

min_oligos_x_gene

minimum number of oligos that a gene must have in order to be included in the
analysis (integer)

min_oligos_x_statistics

minimum number of oligos with the same seed that is required in order to apply
a statistics (otherwise 0 is returned). (integer)

random randomize the genes of the screen (boolean)
kolmogorovSampleSize

sample size to be used for the Kolmogorov Smirnov statistics (i.e. the number of
genes that we consider to be enough in order to infer the correct distribution of
the genome-wide screen. The higher this number, the slower the computation).
If this variable is left to NULL the Kolmogorov statistics is disabled (integer)

ylab label of the graph y-axis (character vector)

xlab label of the graph x-axis (character vector)

ylim ylim of the graph (vector)
graph_highest_count_thr

maximum number of oligos to be used in order to display the largest circle in
the graph (number)

progress_bar whether to show a progress bar or not (Boolean)

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 100 rows
uuk_screen_reduced = uuk_screen[1:1000,]

screen = add_rank_col(add_seed(uuk_screen_reduced))
plot_screen_hits(screen)

The screen has to be sorted. In our case it is already sorted via median.
In order to sort the screen you can use our add_rank_col method
example: arrange(add_rank_col(screen), median)

plot_seeds_methods plot seeds utility methods

Description

Plots informations about the effect of the seed on the screen

Usage

plot_effective_seeds_head(screen, seedColName="seed7", scoreColName="score", enhancer_analysis=FALSE, min_oligos_x_seed=10, number_of_seeds=20, output_file=NULL, color="#CCCCCC33", colorBG="#0000CC11", xlim=c(-4,4), title="")

plot_seeds_oligo_count(screen, seedColName="seed7", scoreColName="score", output_file=NULL)

20 plot_seeds_methods

Arguments

screen data frame containing the results of the siRNA experiment.

seedColName name of the column that contains the seed of the siRNA oligo sequences of the
screen (character vector) (the sequences have to be provided in the guide/antisense
orientation and each sequence must be in the format of a character vector, i.e. a
simple string)

scoreColName name of the column that contains the score of the screen (character vector)
enhancer_analysis

if set to true plot the seeds that cause the oligos to have an higher score instead
of a lower score. (boolean)

min_oligos_x_seed

minimum number of oligos that seed must have in order to be considered (inte-
ger)

number_of_seeds

maximum number of seeds to represent in the graph (by default the top 20 seeds
are shown) (integer)

output_file name of the pdf file where to store the graph (character vector)

color color of the bars that represent the seeds (character vector)

colorBG color of the bars that represent the noise (i.e. analysis executed on randomized
data) (character vector)

xlim xlim of the graph (number)

title title of the graph (number)

Details

The methods currently depend on the type of to:

plot_effective_seeds_head barplot that represents the most effective seeds as bar (the length of the
bars corresponds to the average score of the oligos that contain that seed). A background bar
is shown under every seed. We obtain these bar simply randomizing the score column of the
screen (and they well represent the noise level).

plot_seeds_oligo_count For each seed that is found in the siRNA screen, plots the number of
oligos that contain that seed.

plot_seed_score_sd For each seed plot its average score and its standard deviation.

plot_screen_seeds_count For each siRNA oligo, plot the number of the other oligos in the screen
that share the same seed.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 2500 rows
uuk_screen_reduced = uuk_screen[1:5000,]

plot_effective_seeds_head(add_seed(uuk_screen_reduced))

randomizeInner 21

randomizeInner randomizeInner

Description

randomize an inner field (e.g. the scores of the oligos of a gene), keeping unaltered the order of the
outer field (e.g. the genes)

Usage

randomizeInner(df, baseColStr, sortColStr, reverse = FALSE)

Arguments

df input data frame

baseColStr name of the column that represents the outer field (e.g. the genes) (character
vector)

sortColStr name of the column that represents the inner field (e.g. the scores of the oligos
of a gene) (character vector)

reverse specify the direction of the sorting (boolean)

Value

data frame with the randomized rows.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 1000 rows
uuk_screen_reduced = uuk_screen[1:1000,]

screen <- randomizeInner(arrange(uuk_screen_reduced, GeneID), "GeneID", "score")

randomSortOnVal randomSortOnVal

Description

randomize the order of the rows, on the values of a column (e.g. randomized the rows, keeping
close the rows having the same GeneID... i.e. sort the Genes of the screen in a random way).

Usage

randomSortOnVal(screen, strColVal)

22 removeSharedOffTargets

Arguments

screen data frame containing the results of the siRNA experiment.

strColVal column of which the values have to be kept close to each other (character vector)

Value

screen data frame sorted randomly on the defined column.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 1000 rows
uuk_screen_reduced = uuk_screen[1:1000,]

screen = randomSortOnVal(uuk_screen_reduced, "GeneID")

removeSharedOffTargets

removeSharedOffTargets

Description

remove from an siRNA genome wide screen (screenA) all the oligos with a seed that is contained
also in a second screen (screenB) in oligos designed to target the same genes (i.e. if an oligo X that
target gene K in screenA is found to have the same seed as an oligo Y in screenB that targets gene
K, then oligo X is removed from screenA). In this way we can remove from a screen all the oligos
that have potentially the same type of off-targets as those in another screen. We suggest to perform
thie step before running a benchmark on the shared hits (because we don’t want the benchmark to
count shared hits that are generated by possible shared off-target effects)

Usage

removeSharedOffTargets(screenA, screenB, seedColName="seed7",
geneColName="GeneID",
seqColName="siRNA_seq",
removeGenes=FALSE)

Arguments

screenA screen to be filtered of the oligos that share the seed with oligos that target the
same gene in a screenB

screenB screenB

seedColName name of the column that contains the seeds (character vector)

geneColName name of the column that contains the gene identifiers (character vector)

seqColName name of the column that contains the oligo sequences (character vector)

renameColDf 23

removeGenes specify whether to remove just the oligos or the entire gene, as you would prob-
ably like to do when screenA is a pooled library (i.e. remove all the oligos that
refer to a gene, even if only one oligos contains a seed that is common to oligos
of screenB that refer to the same gene) (boolean)

Value

return screenA filtered of the oligos that are similar in seed to those of screenB. (data frame)

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
data(uuk_screen_dh)

reduce the size of the input datasets in order to make the example faster
(you should not perform this operation in a real case)
uuk_screen=head(uuk_screen, n=2500)
uuk_screen_dh=head(uuk_screen_dh, n=2500)

uuk_qi = removeSharedOffTargets(add_seed(uuk_screen), add_seed(uuk_screen_dh))

renameColDf renameColDf

Description

rename the column of a data frame

Usage

renameColDf(df, colOldName, colNewName)

Arguments

df input data frame
colOldName name of the column that has to be changed (character vector)
colNewName new column name (character vector)

Value

input data frame with the name of the column changed

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
screen <- renameColDf(uuk_screen, "score", "my_z_score")

24 seeds_analysis

replace_non_null_elements

replace_non_null_elements

Description

replace the element of the input vector with the element of the replacementVector (whenever these
elements are not empy/null)

Usage

replace_non_null_elements(inputVect, replacementVect)

Arguments

inputVect data frame containing the results of the siRNA experiment.
replacementVect

replacement vector (vector)

Value

input vector with the replaced values.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 1000 rows
uuk_screen_reduced = uuk_screen[1:1000,]

replace all the scores with 1, except the first 100 scores of the vector
nv <- replace_non_null_elements(uuk_screen_reduced$score, c(rep(NA, 100), rep(1, nrow(uuk_screen_reduced)-100)))

seeds_analysis seeds_analysis

Description

Create a data frame with several information on the effect of each seed in the genome-wide siRNA
screen. The average score of that seed is reported, together with the number of oligos that contain
that seed. Besides, suitable statistics are performed in order to estimate the p-value that the seed
has an effect on the phenotype: - Hypergeometric test (i.e. the probability that the seeds has more
hits than expected by chance) - Kolmogorov Smirnov test (i.e. the probability that you can obtain
such high oligo scores by chance sampling from the entire score vector in the screen). In addition
we also report the human miRNAs that have the same seeds as the oligos (given that you could be
interested to test them in the lab).

seeds_analysis 25

Usage

seeds_analysis(screen, seedColName="seed7", scoreColName="score", hit_th_val=NULL,
enhancer_analysis=FALSE, spAvgColName=NULL,
minCount=NULL, ks_enabled=FALSE, miRBase=NULL)

Arguments

screen data frame containing the results of the siRNA experiment.

seedColName name of the column that contains the seeds of the siRNA oligo sequences. (char-
acter vector) (the sequences have to be provided in the guide/antisense orienta-
tion and each sequence must be in the format of a character vector, i.e. a simple
string)

scoreColName name of the column that contains the score of the screen (character vector)

hit_th_val if the score of an oligo is below this threshold we define it as an hit. This is
then used to compute a p-value with an hypergeometric test for the seed. If this
value is left to NULL, the best 10 percent of the oligos are considered as hits.
(number)

enhancer_analysis

specify the direction of the analysis. When this variable is set to FALSE it means
that we are looking at the seeds that decrease the score of the oligos (when it is
set to TRUE, it means we are looking at the seeds that increase the score of the
oligos). (booleam)

spAvgColName it is possible to specify the name of one column on which we want to perform
the average, when we group for the seeds (for example, other than looking at the
phenotype we may want to know the effect on the seed also on the cell number
and display it on the same table). (vector of strings)

minCount minimum number of oligos in which a seed must be present in order to be re-
ported in the output table (integer)

ks_enabled specify whether you want to compute also a Kolmogorov Smirnov test on the
score of the seed. (boolean)

miRBase data frame object containing the human miRNAs and their sequences. The
names of the columns must be "miRNA" and "seq" (data frame)

Value

return a data frame with several information on the effect of each seed in the genome-wide siRNA
screen.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)
data(miRBase_20)

to speed up the example we use only the first 1000 rows
uuk_screen_reduced = uuk_screen[1:1000,]

seeds = seeds_analysis(add_seed(uuk_screen_reduced), miRBase = miRBase_20)

26 seed_correction

seed_correction seed_correction

Description

This method assumes that the seed effect acts in an "additive" way to the on-target signal. For
example if we have an oligo X that has score -2, the method computes the average score of the
other oligos in the libraries that contain the same seed as the oligo X. If for example this average
score turns out to be -1.5, we can just subtract this score to the original oligo score to obtain the
new "corrected" score ((-2) - (-1.5) = -0.5). However, the method assumes also that the correction
factor (-1.5 in the previous example) should be multiplied by a coefficient c that reflects "how
much" we suppose the effect is really additive ((-2) - c*(-1.5)). The coefficient c can be a constant
(e.g. 0.5) or it can vary depending on the behavior of the oligos that share the seed. In particular,
we observed the the last approach to be the most successful. Hence for our algorithm we set c = 0.4
+ s. s is a factor proportional to the distance of the standard deviation of the oligos that share the
same seed with respect to the standard deviation that is expected, given their average score. This
is because we observed that the expected standard deviation of the oligos that share a seed strictly
depends on the average score as it can be seen using our plot-seed-score-sd function. In particular
s = sd_correction_coeff * quantile_std (sd_correction_coeff is a constant, by default set to 0.6, and
quantile_std is the quantile of the standard deviation of the seeds that have an average score in the
same interval as that of the oligos having the seed of the oligo X).

Usage

seed_correction(screen, seedColName="seed7", scoreColName="score",
geneColName="GeneID", fixed_correction_coeff=0.4,

sd_correction_coeff=0.6, min_siRNAs_x_seed=3, progress_bar=FALSE)

Arguments

screen data frame containing the results of the siRNA experiment.

seedColName name of the column that contains the seed of the siRNA oligo sequences. (char-
acter vector) (the sequences have to be provided in the guide/antisense orienta-
tion and each sequence must be in the format of a character vector, i.e. a simple
string)

scoreColName name of the column that contains the scores of the screen. (character vector)

geneColName name of the column that contains the identifiers of the genes in the screen (char-
acter vector)

fixed_correction_coeff

This coefficient is summed to the sd_correction_coefficient to obtain the final
coefficient that is multiplyed to the correction factor (this final number must
always be between 0 and 1). (character vector)

sd_correction_coeff

correction coefficient that is calibrated using the standard deviation of the oligos
(i.e. oligos having a much lower standard deviation than expected are corrected
multiplying the correction factor exactly by this coefficient... while oligos that
have a normal or high standard deviation are corrected multiplying the correc-
tion factor by a number that is always lower than this variable, and that depends
to the quantile of the standard deviation). This coefficient (after calibration) is
summed to the fixed coefficient to obtain the final coefficient that is multiplyed

seed_correction_pooled 27

to the correction factor (this final number must always be between 0 and 1).
(number)

min_siRNAs_x_seed

This variable specify the minimum number of oligos that need to be present in
the screen with the same seed as the oligo that we are correcting (the oligo that
we are correcting is not included in the count). (number)

progress_bar set this parameter to TRUE to show a progress bar. (boolean)

Value

screen data frame with the score of the oligos corrected for the seed effect.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

To reduce the execution time in the example we trim the real dataset to contain only the first 500 rows
However in any real case the entire content of a genome-wide screen should be provided in as input.
screen=uuk_screen[1:500,]

screen_corrected = seed_correction(add_seed(screen))

seed_correction_pooled

seed_correction_pooled

Description

This method assumes that the seed effect acts in an "additive" way to the on-target signal. For
example if we have an oligo X that has score -2, the method computes the average score of the
other oligos in the libraries that contain the same seed as the oligo X. If for example this average
score turns out to be -1.5, we can just subtract this score to the original oligo score to obtain the
new "corrected" score ((-2) - (-1.5) = -0.5). However, the method assumes also that the correction
factor (-1.5 in the previous example) should be multiplied by a coefficient c that reflects "how
much" we suppose the effect is really additive ((-2) - c*(-1.5)). The coefficient c can be a constant
(e.g. 0.5) or it can vary depending on the behavior of the oligos that share the seed. In particular,
we observed the the last approach to be the most successful. Hence for our algorithm we set c = 0.4
+ s. s is a factor proportional to the distance of the standard deviation of the oligos that share the
same seed with respect to the standard deviation that is expected, given their average score. This
is because we observed that the expected standard deviation of the oligos that share a seed strictly
depends on the average score as it can be seen using our plot-seed-score-sd function. In particular
s = sd_correction_coeff * quantile_std (sd_correction_coeff is a constant, by default set to 0.6, and
quantile_std is the quantile of the standard deviation of the seeds that have an average score in the
same interval as that of the oligos having the seed of the oligo X).

28 seed_correction_pooled

Usage

seed_correction_pooled(screen, seedColName="seed7", scoreColName="score",
geneColName="GeneID", fixed_correction_coeff=0.4,

sd_correction_coeff=0.6, min_siRNAs_x_seed=4, poolSize=4, enhancer_analysis=NULL,
use_all_seeds=TRUE, progress_bar=FALSE)

Arguments

screen data frame containing the results of the siRNA experiment.

seedColName name of the column that contains the seed of the siRNA oligo sequences. (char-
acter vector) (the sequences have to be provided in the guide/antisense orienta-
tion and each sequence must be in the format of a character vector, i.e. a simple
string)

scoreColName name of the column that contains the scores of the screen. (character vector)

geneColName name of the column that contains the identifiers of the genes in the screen (char-
acter vector)

fixed_correction_coeff

This coefficient is summed to the sd_correction_coefficient to obtain the final
coefficient that is multiplyed to the correction factor (this final number must
always be between 0 and 1). (character vector)

sd_correction_coeff

correction coefficient that is calibrated using the standard deviation of the oligos
(i.e. oligos having a much lower standard deviation than expected are corrected
multiplying the correction factor exactly by this coefficient... while oligos that
have a normal or high standard deviation are corrected multiplying the correc-
tion factor by a number that is always lower than this variable, and that depends
to the quantile of the standard deviation). This coefficient (after calibration) is
summed to the fixed coefficient to obtain the final coefficient that is multiplyed
to the correction factor (this final number must always be between 0 and 1).
(number)

min_siRNAs_x_seed

This variable specify the minimum number of oligos that need to be present in
the screen with the same seed as the oligo that we are correcting (the oligo that
we are correcting is not included in the count). (number)

poolSize number of siRNAs in each pool/well (integer)
enhancer_analysis

whether you are looking to find the genes having an high z-score (true) or a low
z-score(false) (boolean)

use_all_seeds use all the seeds in the pool (and not only the seed having maximum score)
(boolean)

progress_bar set this parameter to TRUE to show a progress bar. (boolean)

Value

screen data frame with the score of the oligos corrected for the seed effect.

Author(s)

Andrea Franceschini

seed_removal 29

Examples

data(uuk_screen_dh)

To reduce the execution time in the example we trim the real dataset to contain only the first 500 rows
However in any real case the entire content of a genome-wide screen should be provided in as input.
screen=uuk_screen_dh[1:500,]

screen_corrected = seed_correction_pooled(add_seed(screen))

seed_removal seed_removal

Description

In certain cases we may want to select only the siRNA oligos that we are sure to NOT have strong
detectable seed effect. This is different than using our seed_correction method because we don’t
correct the scores based on an additivity assumption, but simply remove the oligos that shows
a detectable off-target effect. In principle such function should lead to the identification of few
very reliable hits, but we will loose several potential hits (that can probably be detected using our
seed_correction method). Hence we suggest the user to use first this seed_removal function, and
then also our seed_correction method.

Usage

seed_removal(screen,seedColName="seed7", scoreColName="score", geneColName="GeneID",
min_siRNAs_x_seed=4, remove_unrepresented_seeds=TRUE, lower_bound_threshold = -0.5,
higher_bound_threshold = 0.5, min_oligos_x_gene_threshold = 2, useMedian=FALSE, removeGenes=FALSE, include_current_gene=FALSE, progress_bar=FALSE)

Arguments

screen data frame containing the results of the siRNA experiment.

seedColName name of the column that contains the seed of the siRNA oligo sequences. (char-
acter vector) (the sequences have to be provided in the guide/antisense orienta-
tion and each sequence must be in the format of a character vector, i.e. a simple
string)

scoreColName name of the column that contains the score of the screen (character vector)

geneColName name of the column that contains the names of the genes in the screen (character
vector)

min_siRNAs_x_seed

minimum number of oligos x seed that are required in order to execute the anal-
ysis (i.e. compute their average score and remove them if the score is outside the
boundaries defined in the lower_bound_threshold and higher_bound_threshold
parameters) (integer)

remove_unrepresented_seeds

if set to TRUE, we remove all the seeds that are found in the screen in less
than the number of oligos specified in the min_siRNAs_x_seed parameter. You
should use this option if you think that it is not advisable to rely on siRNAs
having seeds that are present in only few oligos, because we are not able to
estimate precisely their seed effect and hence we cannot detect whether they
have strong off-target effect. (boolean)

30 sortInner

lower_bound_threshold

lower bound on the average(or median) score of the seed to be considered effec-
tive (number)

higher_bound_threshold

higher bound on the average(or median) score of the seed to be considered ef-
fective (number)

min_oligos_x_gene_threshold

minimum number of siRNAs that each gene must have in order to be reported.
Using this function we end up removing several seeds, and hence some genes
remain with few oligos (1 or 2). You could think that this low number is not
enough to be able to detect an effect on the gene, and hence you may like to
remove these genes setting this variable appropriately. (integer)

useMedian specify whether to use the mean or the median to compute the score of each seed
(boolean)

removeGenes specify whether to remove the genes for which at least one siRNA targeting
that gene has been found effective. This approach is suggested for the pooled
libraries. (boolean)

include_current_gene

lower bound on the average score of the seed to be considered effective (boolean)

progress_bar lower bound on the average score of the seed to be considered effective (boolean)

Value

screen data frame where we removed the siRNAs that show a detectable seed effect.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 1000 rows
uuk_screen_reduced = uuk_screen[1:1000,]

screen_corrected = seed_removal(add_seed(uuk_screen_reduced))

sortInner sortInner

Description

sorts an inner field (e.g. the scores of the oligos of a gene), keeping unaltered the order of the outer
field (e.g. the genes)

Usage

sortInner(df, baseColStr, sortColStr, reverse = FALSE)

split_df 31

Arguments

df input data frame.

baseColStr name of the column that represents the outer field (e.g. the genes) (character
vector)

sortColStr name of the column that represents the inner field (e.g. the scores of the oligos
of a gene) (character vector)

reverse specify the direction of the sorting (boolean)

Value

data frame with sorted rows.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

to speed up the example we use only the first 1000 rows
uuk_screen_reduced = uuk_screen[1:1000,]

uuk_screen_innerSorted <- sortInner(uuk_screen_reduced, "GeneID", "score")

split_df split_df

Description

You can use this function to extract only certain rows from the data frame. Give a value in the
strIdCol, we include in the output data frame only the rows specified in the linesToGet vector (e.g.
for every gene extract only the first two oligos)

Usage

split_df(df, strIdCol, linesToGet)

Arguments

df input data frame

strIdCol name of the column containing the identifiers of the groups (character vector)

linesToGet vector containing the numbers of the lines to retrieve (vector)

Value

subset of the input data frame (only the rows requested are included in the subset)

Author(s)

Andrea Franceschini

32 transcribe_seqs

Examples

data(uuk_screen)

to speed up the example we use only the first 1000 rows
uuk_screen_reduced = uuk_screen[1:1000,]

uuk_screen_firstOligo <- split_df(uuk_screen_reduced, "GeneID", c(1))

transcribe_seqs transcribe_seqs

Description

transcribe the sequences that are present in a specific column of the input data frame

Usage

transcribe_seqs(df, seqColName="siRNA_seq", toDNA=FALSE, progress_bar=FALSE)

Arguments

df input data frame.

seqColName name of the column that contains the sequences (character vector) (each se-
quence must be in the format of a character vector, i.e. a simple string)

toDNA choose whether to transcribe to DNA (i.e. put T instead of U) (boolean)

progress_bar choose whether disable printing warnings/messages. (boolean)

Value

data frame given in input, but with the sequences transcribed.

Author(s)

Andrea Franceschini

Examples

data(uuk_screen)

input_screen = head(uuk_screen, n=10)
uuk_screen_transcribed = transcribe_seqs(input_screen)

uuk_screen 33

uuk_screen cell number phenotype of the Uukuniemi QIAGEN siRNA genome wide
screen

Description

Cell Number phenotype of a genome wide siRNA screen that have been performed on Hela DC-
SIGN cells that have been infected with the Uukuniemi virus. The screen has been performed using
a QIAGEN unpooled library having 4 siRNA oligos x gene.

Usage

data(uuk_screen)

Format

Data frame with 72249 observations on the following 3 variables.

GeneID a numeric vector
siRNA_seq a character vector
score a numeric vector

Source

Roger Meier et al. 2014

uuk_screen_dh cell number phenotype of the Uukuniemi DHARMACON siRNA
genome wide screen

Description

Cell Number phenotype of a genome wide siRNA screen that have been performed on Hela DC-
SIGN cells that have been infected with the Uukuniemi virus. The screen has been performed using
a DHARMACON pooled library with pools of 4 siRNA oligos x gene.

Usage

data(uuk_screen_dh)

Format

Data frame with 70304 observations on the following 3 variables.

GeneID a numeric vector
siRNA_seq a character vector
score a numeric vector

Source

Roger Meier et al. 2014

Index

∗Topic datasets
miRBase_20, 16
uuk_screen, 33
uuk_screen_dh, 33

add_rank_col, 2
add_seed, 3

benchmark_shared_hits, 4
bydf, 5
bydfa (bydf), 5

check_consistency, 6
compare_sorted_geneSets, 7
create_sd_matrix, 8

delColDf, 9
delete_undefined_rows, 9

enrichment_geneSet, 10
enrichment_heatmap, 11

get_sd_quant, 12
get_seed_oligos_df, 13

intersectAll, 14

launch_RSA, 15

median_replicates, 16
miRBase_20, 16

OPIrsa, 17
OPIrsaScore, 17

plot_effective_seeds_head
(plot_seeds_methods), 19

plot_screen_hits, 18
plot_screen_seeds_count

(plot_seeds_methods), 19
plot_seed_score_sd

(plot_seeds_methods), 19
plot_seeds_methods, 19
plot_seeds_oligo_count

(plot_seeds_methods), 19

randomizeInner, 21
randomSortOnVal, 21
removeSharedOffTargets, 22
renameColDf, 23
replace_non_null_elements, 24

seed_correction, 26
seed_correction_pooled, 27
seed_removal, 29
seeds_analysis, 24
sortInner, 30
split_df, 31

transcribe_seqs, 32

uuk_screen, 33
uuk_screen_dh, 33

34

	add_rank_col
	add_seed
	benchmark_shared_hits
	bydf
	check_consistency
	compare_sorted_geneSets
	create_sd_matrix
	delColDf
	delete_undefined_rows
	enrichment_geneSet
	enrichment_heatmap
	get_sd_quant
	get_seed_oligos_df
	intersectAll
	launch_RSA
	median_replicates
	miRBase_20
	OPIrsa
	OPIrsaScore
	plot_screen_hits
	plot_seeds_methods
	randomizeInner
	randomSortOnVal
	removeSharedOffTargets
	renameColDf
	replace_non_null_elements
	seeds_analysis
	seed_correction
	seed_correction_pooled
	seed_removal
	sortInner
	split_df
	transcribe_seqs
	uuk_screen
	uuk_screen_dh
	Index

