
Package ‘cleanUpdTSeq’
April 11, 2018

Type Package
Title This package classifies putative polyadenylation sites as true

or false/internally oligodT primed
Version 1.16.0
Date 2015-10-02
Author Sarah Sheppard, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu
Maintainer Sarah Sheppard <Sarah.Sheppard@umassmed.edu>; Jianhong Ou

<Jianhong.Ou@umassmed.edu>; Lihua Julie Zhu
<Julie.Zhu@umassmed.edu>

Depends R (>= 2.15), BiocGenerics (>= 0.1.0), methods, BSgenome,
BSgenome.Drerio.UCSC.danRer7, GenomicRanges, seqinr, e1071

Suggests BiocStyle, knitr, RUnit
Description This package uses the Naive Bayes classifier (from e1071)

to assign probability values to putative polyadenylation sites
(pA sites) based on training data from zebrafish. This will
allow the user to separate true, biologically relevant pA sites
from false, oligodT primed pA sites.

License GPL-2
biocViews Sequencing, SequenceMatching, Genetics, GeneRegulation
VignetteBuilder knitr
NeedsCompilation no

R topics documented:
cleanUpdTSeq-package . 2
BED2GRangesSeq . 3
buildClassifier . 4
buildFeatureVector . 5
classifier . 6
data.NaiveBayes . 7
featureVector-class . 8
getDownstreamSequence . 8
getUpstreamSequence . 9
modelInfo-class . 9
naiveBayes-class . 10
PASclassifier-class . 10
predictTestSet . 11

1

2 cleanUpdTSeq-package

Index 13

cleanUpdTSeq-package This package classifies putative polyadenylation sites.

Description

3’ends of transcripts have generally been poorly annotated. With the advent of deep sequencing,
many methods have been developed to identify 3’ends. The majority of these methods use an
oligodT primer which can bind to internal adenine-rich sequences, and lead to artifactual identifica-
tion of polyadenylation sites. Heuristic filtering methods rely on a certain number of As downstream
of a putative polyadenylation site to classify the site as true or oligodT primed. This package pro-
vides a robust method to classify putative polyadenylation sites using a Naive Bayes classifier.

Details

Package: cleanUpdTSeq
Type: Package
Version: 1.0
Date: 2013-07-22
License: GPL-2

Author(s)

Sarah Sheppard, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu Maintainer: Sarah Sheppard <Sarah.Sheppard@umassmed.edu>,
Jianhong Ou <Jianhong.Ou@umassmed.edu>, Lihua Julie Zhu <Julie.Zhu@umassmed.edu>

References

1. Meyer, D., et al., e1071: Misc Functions of the Department of Statistics (e1071), TU Wien.
2012.

2. Pages, H., BSgenome: Infrastructure for Biostrings-based genome data packages.

3. Sarah Sheppard, Nathan D. Lawson, and Lihua Julie Zhu. 2013. Accurate identification of
polyadenylation sites from 3’ end deep sequencing using a na\"ive Bayes classifier. Bioinformatics.
Under revision

Examples

#read in a test set
first install the package using the following command
biocLite("cleanUpdTSeq")
if (interactive())
{
library(cleanUpdTSeq)
testFile = system.file("extdata", "test.bed", package="cleanUpdTSeq")
testSet = read.table(testFile, sep = "\t", header = TRUE)

#convert the test set to GRanges with upstream and downstream sequence information
peaks = BED2GRangesSeq(testSet,upstream.seq.ind = 7, downstream.seq.ind = 8, withSeq=TRUE)

BED2GRangesSeq 3

#build the feature vector for the test set with sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,BSgenomeName = Drerio, upstream = 40,
downstream = 30, wordSize = 6, alphabet=c("ACGT"),
sampleType = "unknown",replaceNAdistance = 30,

method = "NaiveBayes", ZeroBasedIndex = 1, fetchSeq = FALSE)

#convert the test set to GRanges without upstream and downstream sequence information
peaks = BED2GRangesSeq(testSet,withSeq=FALSE)

#build the feature vector for the test set without sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,BSgenomeName = Drerio, upstream = 40,

downstream = 30, wordSize = 6, alphabet=c("ACGT"),
sampleType = "unknown",replaceNAdistance = 30,
method = "NaiveBayes", ZeroBasedIndex = 1, fetchSeq = TRUE)

#predict the test set
data(data.NaiveBayes)
predictTestSet(data.NaiveBayes$Negative, data.NaiveBayes$Positive, testSet.NaiveBayes,
outputFile = "test-predNaiveBayes.tsv", assignmentCutoff = 0.5)
}

BED2GRangesSeq BED2GRangesSeq

Description

This function converts an object of data.frame from a bed file with sequence information to GRanges
with sequence information.

Usage

BED2GRangesSeq(data.BED, header = FALSE,
upstream.seq.ind = 7, downstream.seq.ind = 8,
withSeq)

Arguments

data.BED An object of data.frame from a bed file. The data.frame should at least contains
3 required fields: chrome, chromStart, chromend. The fourth field for "name" is
suggested for keeping track of the putative polyadenylation site from the input
to the output. The sixth field for "strand" is suggested, as this will affect the
classification. For this function, the bed data.frame may also contain two addi-
tional fields for the sequence upstream and downstream of the putative pA site.
If these are not supplied, the sequence may be obtained when the feature vector
is built. Please see http://genome.ucsc.edu/FAQ/FAQformat.html#format1 for
more information about the bed file format.

header header = Boolean TRUE if the first row is the header FALSE if the first row is
data

upstream.seq.ind

upstream.seq.ind = int, to delineate the column location containing the sequence
upstream of the putative pA site

4 buildClassifier

downstream.seq.ind

downstream.seq.ind = int, to delineate the column location containing the se-
quence downstream of the putative pA site

withSeq TRUE indicates that there are upstream and downstream sequences in the file,
FALSE indicates that there is no upstream or downstream sequences in the file

Value

Returns object of GRanges

Author(s)

Sarah Sheppard, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu

Examples

testFile <- system.file("extdata", "test.bed", package="cleanUpdTSeq")
testSet <- read.table(testFile, sep = "\t", header = TRUE)
peaks <- BED2GRangesSeq(testSet,withSeq=TRUE)

buildClassifier get Naive Bayes Classifier

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent
predictor variables using the Bayes rule.

Usage

buildClassifier(Ndata.NaiveBayes, Pdata.NaiveBayes,
upstream=40L, downstream=30L, wordSize=6L,
genome=Drerio, alphabet=c("ACGT"))

Arguments

Ndata.NaiveBayes

This is the negative training data, described further in data.NaiveBayes.
Pdata.NaiveBayes

This is the positive training data, described further in data.NaiveBayes.

upstream This is the length of upstream sequence to use in the analysis.

downstream This is the length of downstream sequence to use in the analysis.

wordSize This is the size of the word to use as a feature for the upstream sequence. word-
Size = 6 should always be used.

genome Name of the genome to use to get sequence. To find out a list of available
genomes, please type available.genomes() in R.

alphabet These are the bases to use, for example DNA bases ACTG.

Value

An object of class "naiveBayes".

buildFeatureVector 5

Author(s)

Jianhong Ou

See Also

naiveBayes

Examples

if (interactive()){
data(data.NaiveBayes)
classifier <- buildClassifier(data.NaiveBayes$Negative, data.NaiveBayes$Positive)

}

buildFeatureVector buildFeatureVector

Description

This function creates a data frame. Fields include peak name, upstream sequence, downstream
sequence, and features to be used in classifying the putative polyadenylation site.

Usage

buildFeatureVector(peaks, BSgenomeName = Drerio, upstream = 50L,
downstream = 40L, wordSize = 6L, alphabet = c("ACGT"),
sampleType = c("TP", "TN", "unknown"), replaceNAdistance = 40L,
method = c("NaiveBayes", "SVM"), ZeroBasedIndex = 1L, fetchSeq = FALSE)

Arguments

peaks An object of GRanges that may contain the upstream and downstream sequence
information. This item is created by the function BED2GRangesSeq.

BSgenomeName Name of the genome to use to get sequence. To find out a list of available
genomes, please type available.genomes() in R.

upstream This is the length of upstream sequence to use in the analysis.

downstream This is the length of downstream sequence to use in the analysis.

wordSize This is the size of the word to use as a feature for the upstream sequence. word-
Size = 6 should always be used.

alphabet These are the bases to use, for example DNA bases ACTG.

sampleType This is the type of sample. For example TP (true positive) or TN (true negative)
for training data or unknown for test data.

replaceNAdistance

If there is no A in the downstream sequence, then use this for the average dis-
tance of As to the putative polyadenylation site.

method This is which machine learning method to specify. For this release, method
should always be set to NaiveBayes.

ZeroBasedIndex If the coordinates are set using Zero Based indexing, set this = 1.

fetchSeq Boolean, for getting upstream and downstream sequence at this step or not.

6 classifier

Value

An object of "featureVector"

Author(s)

Sarah Sheppard, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu

Examples

testFile = system.file("extdata", "test.bed", package="cleanUpdTSeq")
testSet = read.table(testFile, sep = "\t", header = TRUE)

#convert the test set to GRanges with upstream and downstream sequence information
peaks = BED2GRangesSeq(testSet[1:10,], upstream.seq.ind = 7, downstream.seq.ind = 8, withSeq=TRUE)
#build the feature vector for the test set with sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,BSgenomeName = Drerio, upstream = 40,

downstream = 30, wordSize = 6, alphabet=c("ACGT"),
sampleType = "unknown",replaceNAdistance = 30,
method = "NaiveBayes", ZeroBasedIndex = 1, fetchSeq = FALSE)

#convert the test set to GRanges without upstream and downstream sequence information
peaks = BED2GRangesSeq(testSet[1:10,],withSeq=FALSE)

#build the feature vector for the test set without sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,BSgenomeName = Drerio, upstream = 40,

downstream = 30, wordSize = 6, alphabet=c("ACGT"),
sampleType = "unknown",replaceNAdistance = 30,
method = "NaiveBayes", ZeroBasedIndex = 1, fetchSeq = TRUE)

classifier An object of class "naiveBayes" generated from data.NaiveBayes

Description

An object of class "naiveBayes" generated from data.NaiveBayes

Usage

data("classifier")

Format

An object of class "PASclassifier" including components:

Details

classifier is generated by data(data.NaiveBayes) classifier <- getClassifier(data.NaiveBayes$Ndata.NaiveBayes,
data.NaiveBayes$Pdata.NaiveBayes)

Examples

data(classifier)
names(classifier)

data.NaiveBayes 7

data.NaiveBayes Training Data

Description

This is the negative and positive training data.

Usage

data(data.NaiveBayes)

Format

A list with 2 data frame, "Negative" and "Positive". Negative has 9219 observations on the follow-
ing 4120 variables. And Positive is a data frame with 22770 observations on the following 4120
variables. The format is:

Negative ’data.frame’: 9219 obs. of 4120 variables:

Positive ’data.frame’: 22770 obs. of 4120 variables:

Both of them have same structure.

y a numeric vector

n.A.Downstream a numeric vector

n.C.Downstream a numeric vector

n.T.Downstream a numeric vector

n.G.Downstream a numeric vector

avg.distanceA2PeakEnd a numeric vector

dimer: such as AA, AC, AG, AT, CA, ... etc. a numeric vector

heximer: such as AAAAAA, ACGTAC, ... etc. a factor with levels 0 1

upstream.seq a vector of sequence string

downstream.seq a vector of sequence string

Examples

data(data.NaiveBayes)
head(str(data.NaiveBayes$Negative))
head(str(data.NaiveBayes$Positive))

8 getDownstreamSequence

featureVector-class Class "featureVector"

Description

An object of class "featureVector" represents the output of buildFeatureVector

Objects from the Class

Objects can be created by calls of the form new("featureVector", data, info).

Slots

data An object of data frame. Fields include peak name, upstream sequence, downstream se-
quence, and features to be used in classifying the putative polyadenylation site

info Object of class modelInfo

Methods

$, $<- Get or set the slot of featureVector

getDownstreamSequence getDownstreamSequence

Description

This function gets the sequence upstream of a putative pA site (including the site)

Usage

getDownstreamSequence(peaks, downstream = 20, genome)

Arguments

peaks GRanges containing putative pA sites
downstream downstream = int. This is the length of the sequence to get.
genome BSgenomeName

Value

Returns an object of GRanges with downtream sequences.

Author(s)

Sarah Sheppard, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu

Examples

testFile <- system.file("extdata", "test.bed", package="cleanUpdTSeq")
testSet <- read.table(testFile, sep="\t", header=TRUE)
peaks <- BED2GRangesSeq(testSet[1:10,], withSeq=FALSE)
seq = getDownstreamSequence(peaks, downstream=30, genome=Drerio)

getUpstreamSequence 9

getUpstreamSequence Get upstream sequences of the putative pA site

Description

This function gets the sequence upstream of a putative pA site (including the site)

Usage

getUpstreamSequence(peaks, upstream = 40, genome)

Arguments

peaks GRanges containing putative pA sites
upstream upstream = int. This is the length of the sequence to get.
genome BSgenomeName

Value

Returns an object of GRanges with uptream sequences.

Author(s)

Sarah Sheppard, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu

Examples

testFile <- system.file("extdata", "test.bed", package="cleanUpdTSeq")
testSet <- read.table(testFile, sep="\t", header=TRUE)
peaks <- BED2GRangesSeq(testSet[1:10,], withSeq=FALSE)
seq = getUpstreamSequence(peaks, upstream=40, genome=Drerio)

modelInfo-class Class "modelInfo"

Description

An object of class "modelInfo" represents the information of sequence to use in the analysis

Objects from the Class

Objects can be created by calls of the form new("modelInfo", upstream, downstream, wordSize, alphabe, genome).

Slots

genome Name of the genome to use to get sequence. To find out a list of available genomes, please
type available.genomes() in R.

upstream This is the length of upstream sequence to use in the analysis.
downstream This is the length of downstream sequence to use in the analysis.
wordSize This is the size of the word to use as a feature for the upstream sequence. wordSize = 6

should always be used.
alphabet These are the bases to use, for example DNA bases ACTG.

10 PASclassifier-class

Methods

$, $<- Get or set the slot of modelInfo

naiveBayes-class Class "naiveBayes"

Description

An object of class "naiveBayes" represents the conditional a-posterior probabilities of a categorical
class variable given independent predictor variables using the Bayes rule.

Objects from the Class

Objects can be created by calls of the form new("naiveBayes", apriori, tables, levels, call).

Slots

apriori Class distribution for the dependent variable.

tables A list of tables, one for each predictor variable. For each categorical variable a table
giving, for each attribute level, the conditional probabilities given the target class. For each
numeric variable, a table giving, for each target class, mean and standard deviation of the
(sub-)variable.

Methods

$, $<- Get or set the slot of naiveBayes

PASclassifier-class Class "PASclassifier"

Description

An object of class "PASclassifier" represents the output of buildClassifier

Objects from the Class

Objects can be created by calls of the form new("PASclassifier", classifier, info).

Slots

classifier Object of class "naiveBayes" The output of naiveBayes. An object of class "naive-
Bayes" including components:

apriori Class distribution for the dependent variable.
tables A list of tables, one for each predictor variable. For each categorical variable a table

giving, for each attribute level, the conditional probabilities given the target class. For
each numeric variable, a table giving, for each target class, mean and standard deviation
of the (sub-)variable.

info Object of class modelInfo

predictTestSet 11

Methods

$, $<- Get or set the slot of PASclassifier

Examples

data(classifier)
classifier$info$upstream
classifier$info$wordSize
classifier$info$alphabet

predictTestSet predictTestSet

Description

This function can be used to predict the probabilities for a set of putative pA sites.

Usage

predictTestSet(Ndata.NaiveBayes, Pdata.NaiveBayes, testSet.NaiveBayes, classifier=NULL,
outputFile = "test-predNaiveBayes.tsv", assignmentCutoff = 0.5)

Arguments

Ndata.NaiveBayes

This is the negative training data, described further in data.NaiveBayes.
Pdata.NaiveBayes

This is the positive training data, described further in data.NaiveBayes.

classifier An object of class PASclassifier.
testSet.NaiveBayes

This is the test data, a feature vector that has been built for Naive Bayes analysis
using the function "buildFeatureVector".

outputFile This is the name of the file the output will be written to.
assignmentCutoff

This is the cutoff used to assign whether a putative pA is true or false. This can
be any floating point number between 0 and 1. For example, assignmentCutoff
= 0.5 will assign an putative pA site with prob.1 > 0.5 to the True class (1), and
any putative pA site with prob.1 <= 0.5 as False (0).

Value

The output is written to a tab separated file containing fields for peak name, the probability of the
putative pA site being false (prob.0), the probability of the putative pA site being true (prob.1),
the predicted class (0/False or 1/True) depending on the assignment cutoff, and the upstream and
downstream sequence used in assessing the putative pA site.

PeakName This is the name of the putative pA site (originally from the 4th field in the bed
file).

prob False/oligodT internally primed

This is the probability that the putative pA site is false. Values range from 0-1,
with 1 meaning the site is False/oligodT internally primed.

12 predictTestSet

prob True This is the probability that the putative pA site is true. Values range from 0-1,
with 1 meaning the site is True.

pred.class This is the predicted class of the putative pA site, based on the assignment cutoff.
0= Falsee/oligodT internally primed, 1 = True

UpstreamSeq This is the upstream sequence of the putative pA site used in the analysis.

DownstreamSeq This is the downstream sequence of the putative pA site used in the analysis.

The function also return an invisible matrix including all info as decribed above.

Author(s)

Sarah Sheppard, Jianhong Ou, Nathan Lawson, Lihua Julie Zhu

References

Sarah Sheppard, Nathan D. Lawson, and Lihua Julie Zhu. 2013. Accurate identification of polyadeny-
lation sites from 3’ end deep sequencing using a na\"ive Bayes classifier. Bioinformatics. Under
revision

Examples

testFile = system.file("extdata", "test.bed", package="cleanUpdTSeq")
testSet = read.table(testFile, sep = "\t", header = TRUE)

#convert the test set to GRanges without upstream and downstream sequence information
peaks = BED2GRangesSeq(testSet,withSeq=FALSE)

#build the feature vector for the test set without sequence information
testSet.NaiveBayes = buildFeatureVector(peaks,BSgenomeName = Drerio, upstream = 40,

downstream = 30, wordSize = 6, alphabet=c("ACGT"),
sampleType = "unknown",replaceNAdistance = 30,
method = "NaiveBayes", ZeroBasedIndex = 1, fetchSeq = TRUE)

data(data.NaiveBayes)

sample the test data for code testing, DO NOT do this for real data
START SAMPLING
samp <- c(1:22, sample(23:4119, 50), 4119, 4120)
Ndata.NaiveBayes <- data.NaiveBayes$Negative[,samp]
Pdata.NaiveBayes <- data.NaiveBayes$Positive[,samp]
testSet.NaiveBayes@data <- testSet.NaiveBayes@data[, samp-1]
END SAMPLING

predictTestSet(Ndata.NaiveBayes,
Pdata.NaiveBayes,
testSet.NaiveBayes,

outputFile="test-predNaiveBayes.xls",
assignmentCutoff = 0.5)

Index

∗Topic classes
featureVector-class, 8
modelInfo-class, 9
naiveBayes-class, 10
PASclassifier-class, 10

∗Topic datasets
classifier, 6
data.NaiveBayes, 7

∗Topic misc
BED2GRangesSeq, 3
buildClassifier, 4
buildFeatureVector, 5
getDownstreamSequence, 8
getUpstreamSequence, 9
predictTestSet, 11

∗Topic package
cleanUpdTSeq-package, 2

$,PASclassifier-method
(PASclassifier-class), 10

$,featureVector-method
(featureVector-class), 8

$,modelInfo-method (modelInfo-class), 9
$,naiveBayes-method (naiveBayes-class),

10
$<-,PASclassifier-method

(PASclassifier-class), 10
$<-,featureVector-method

(featureVector-class), 8
$<-,modelInfo-method (modelInfo-class),

9
$<-,naiveBayes-method

(naiveBayes-class), 10

BED2GRangesSeq, 3, 5
buildClassifier, 4, 10
buildFeatureVector, 5, 8

classifier, 6
cleanUpdTSeq (cleanUpdTSeq-package), 2
cleanUpdTSeq-package, 2

data.NaiveBayes, 4, 7, 11

featureVector, 6, 8

featureVector (featureVector-class), 8
featureVector-class, 8

getDownstreamSequence, 8
getUpstreamSequence, 9

modelInfo, 8, 10
modelInfo (modelInfo-class), 9
modelInfo-class, 9

naiveBayes, 5, 10
naiveBayes (naiveBayes-class), 10
naiveBayes-class, 10

PASclassifier, 6, 11
PASclassifier (PASclassifier-class), 10
PASclassifier-class, 10
predictTestSet, 11

13

	cleanUpdTSeq-package
	BED2GRangesSeq
	buildClassifier
	buildFeatureVector
	classifier
	data.NaiveBayes
	featureVector-class
	getDownstreamSequence
	getUpstreamSequence
	modelInfo-class
	naiveBayes-class
	PASclassifier-class
	predictTestSet
	Index

