Package 'biotmle'

April 11, 2018

Title Targeted Learning for Biomarker Discovery with Moderated Statistics

Version 1.2.1

Author Nima Hejazi [aut, cre, cph], Alan Hubbard [aut], Weixin Cai [ctb]

Maintainer Nima Hejazi <nhejazi@berkeley.edu>

Description This package facilitates the discovery of biomarkers from biological sequencing data (e.g., microarrays, RNA-seq) based on the associations of potential biomarkers with exposure and outcome variables by implementing an estimation procedure that combines a generalization of moderated statistics with asymptotically linear statistical parameters estimated via targeted minimum loss-based estimation (TMLE).

Depends R (>= 3.4)

License file LICENSE

URL https://github.com/nhejazi/biotmle

BugReports https://github.com/nhejazi/biotmle/issues

Encoding UTF-8

LazyData true

Imports dplyr, magrittr, ggplot2, superheat, wesanderson, doFuture, future, stats, Matrix, methods, DBI, limma, BiocParallel, SummarizedExperiment, biotmleData (>= 1.1.1), SuperLearner, tmle

Suggests testthat, knitr, rmarkdown, BiocStyle

VignetteBuilder knitr

RoxygenNote 6.0.1.9000

biocViews GeneExpression, DifferentialExpression, Sequencing, Microarray, RNASeq

NeedsCompilation no

R topics documented:

piomarkertmle	2
viomarkerTMLE_exposure	3
vioTMLE-class	4
lata.frame_OR_EList-class	5

biomarkertmle

 •
· · · · · · · · · · · · · · · · · · ·

Index

```
biomarkertmle
```

Biomarker Evaluation with Targeted Minimum Loss-Based Estimation (TMLE)

Description

Computes the causal target parameter defined as the difference between the biomarker expression values under treatment and those same values under no treatment, using Targeted Minimum Loss-Based Estimation.

Usage

```
biomarkertmle(se, varInt, ngscounts = FALSE, parallel = TRUE,
bppar_type = NULL, future_param = NULL, family = "gaussian",
subj_ids = NULL, g_lib = c("SL.glm", "SL.randomForest", "SL.nnet",
"SL.polymars", "SL.mean"), Q_lib = c("SL.glm", "SL.randomForest", "SL.nnet",
"SL.mean"))
```

Arguments

se	(SummarizedExperiment) - containing expression or next-generation sequenc- ing data in the "assays" slot and a matrix of phenotype-level data in the "colData" slot.
varInt	(numeric) - indicating the column of the design matrix corresponding to the treatment or outcome of interest (in the "colData" slot of the "se" argument above).
ngscounts	(logical) - whether the data are counts generated from a next-generation se- quencing (NGS) experiment (e.g., RNA-seq). The default setting assumes con- tinuous expression measures as generated by microarray-type platforms.
parallel	(logical) - whether or not to use parallelization in the estimation procedure. In- voking parallelization happens through a combination of calls to future and BiocParallel. If this argument is set to TRUE, future::multiprocess is used, and if FALSE, future::sequential is used, alongside BiocParallel::bplapply. Other options for evaluation through futures may be invoked by setting the ar- gument future_param.
bppar_type	(character) - specifies the type of backend to be used with the parallelization in- voked by BiocParallel. Consult the manual page for BiocParallel::BiocParallelParam for possible types and descriptions on their appropriate uses. The default for this argument is NULL, which silently uses BiocParallel::DoparParam.
future_param	(character) - specifies the type of parallelization to be invoked when using fu- tures for evaluation. For a list of the available types, please consult the docu- mentation for future::plan. The default setting (this argument set to NULL) silently invokes future::multiprocess. Be careful if changing this setting.

family	(character) - specification of error family: "binomial" or "gaussian".
subj_ids	(numeric vector) - subject IDs to be passed directly to the same subject should have the exact same numerical identifier; coerced to numeric if not provided in the appropriate form.
g_lib	(char vector) - library of learning algorithms to be used in fitting the "g" step of the standard TMLE procedure.
Q_lib	(char vector) - library of learning algorithms to be used in fitting the "Q" step of the standard TMLE procedure.

Value

S4 object of class biotmle, generated by sub-classing SummarizedExperiment, with additional slots containing tmleOut and call, among others, containing TMLE-based estimates of the relationship between a biomarker and exposure or outcome variable and the original call to this function (for user reference), respectively.

Examples

```
library(dplyr)
library(biotmleData)
data(illuminaData)
library(SummarizedExperiment)
"%ni%" = Negate("%in%")
colData(illuminaData) <- colData(illuminaData) %>%
     data.frame %>%
     dplyr::mutate(age = as.numeric(age > median(age))) %>%
     DataFrame
varInt_index <- which(names(colData(illuminaData)) %in% "benzene")</pre>
biomarkerTMLEout <- biomarkertmle(se = illuminaData[1:2, ],</pre>
                                   varInt = varInt_index,
                                   parallel = FALSE,
                                   family = "gaussian",
                                   g_lib = c("SL.mean", "SL.glm"),
                                   Q_lib = "SL.mean"
                                  )
```

biomarkerTMLE_exposure

TMLE procedure for Biomarker Identication from Exposure

Description

This function performs influence curve-based estimation of the effect of an exposure on biological expression values associated with a given biomarker, controlling for a user-specified set of baseline covariates

Usage

```
biomarkerTMLE_exposure(Y, W, A, a, subj_ids = NULL, family = "gaussian",
g_lib, Q_lib)
```

Arguments

Υ	(numeric vector) - a vector of expression values for a single biomarker.
W	(numeric matrix) - a matrix of baseline covariates to be controlled in the estimation process.
A	(numeric vector) - a discretized exposure vector (e.g., from a design matrix whose effect on expression values is of interest.
а	(numeric vector) - the levels of A against which comparisons are to be made.
subj_ids	(numeric vector) - subject IDs to be passed directly to the same subject should have the exact same numerical identifier. coerced to numeric if not provided in the appropriate form.
family	(character) - specification of error family: "binomial" or "gaussian"
g_lib	(char vector) - library of learning algorithms to be used in fitting the "g" step of the standard TMLE procedure.
Q_lib	(char vector) - library of learning algorithms to be used in fitting the "Q" step of the standard TMLE procedure.

Value

TMLE-based estimate of the relationship between biomarker expression and changes in an exposure variable, computed iteratively and saved in the tmleOut slot in a biotmle object.

bioTMLE-class	Constructor for class bioTMLE
---------------	-------------------------------

Description

Constructor for class bioTMLE

Value

class biotmle object, sub-classed from SummarizedExperiment.

Examples

```
library(SummarizedExperiment)
library(biotmleData)
data(illuminaData)
example_biotmle_class <- function(se) {
    call <- match.call(expand.dots = TRUE)
    biotmle <- .biotmle(
        SummarizedExperiment(
        assays = assay(se),
        rowData = rowData(se),</pre>
```

```
colData = colData(se)
),
call = call,
tmleOut = as.data.frame(matrix(NA, 10, 10)),
topTable = as.data.frame(matrix(NA, 10, 10))
)
return(biotmle)
}
example_class <- example_biotmle_class(se = illuminaData)</pre>
```

data.frame_OR_EList-class

S4 class union data.frame_OR_EList

Description

Class union contaning data.frame and limma::Elist, used internally to handle situations when a returned object has a type that cannot be guessed from the function call.

Value

fusion of classes data.frame and EList, used within .biotmle by class bioTMLE to handle uncertainty in the object passed to slot "tmleOut".

heatmap_ic Heatmap for class biotmle

Description

Heatmap of the contributions of a select subset of biomarkers to the variable importance measure changes as assessed by influence curve-based estimation, across all subjects.

Usage

heatmap_ic(x, ..., design, FDRcutoff = 0.05, top = 25)

Arguments

Х	object of class biotmle as produced by an appropriate call to biomarkertmle
	additional arguments passed to superheat::superheat as necessary
design	a vector providing the contrast to be displayed in the heatmap.
FDRcutoff	cutoff to be used in controlling the False Discovery Rate
top	number of identified biomarkers to plot in the heatmap

Value

heatmap (from the superheat package) using hierarchical clustering to plot the changes in the variable importance measure for all subjects across a specified top number of biomarkers.

Examples

```
library(dplyr)
library(biotmleData)
library(SummarizedExperiment)
data(illuminaData)
data(biomarkertmleOut)

colData(illuminaData) <- colData(illuminaData) %>%
    data.frame %>%
    dplyr::mutate(age = as.numeric(age > median(age))) %>%
    DataFrame

varInt_index <- which(names(colData(illuminaData)) %in% "benzene")
designVar <- as.data.frame(colData(illuminaData))[, varInt_index]
design <- as.numeric(designVar == max(designVar))

limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)
heatmap_ic(x = limmaTMLEout, design = design, FDRcutoff = 0.05, top = 15)</pre>
```

modtest_ic

Moderated Statistical Tests for Influence Curves

Description

Performs variance shrinkage via the empirical Bayes procedure of LIMMA on the observed data after a transformation moving the data to influence curve space, based on the average treatment effect parameter.

Usage

```
modtest_ic(biotmle, adjust = "BH")
```

Arguments

biotmle	biotmle object as generated by biomarkertmle	
adjust	the multiple testing correction to be applied to p-values that are generated from the moderated tests. The recommended (and default) method is that of Ben-	
	jamini and Hochberg. See topTable for a list of appropriate methods.	

Value

biotmle object containing output from limma::lmFit and limma::topTable

Examples

```
library(biotmleData)
library(SummarizedExperiment)
data(biomarkertmleOut)
```

limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)</pre>

6

plot.bioTMLE

Description

Histogram of raw or FDR-adjusted p-values from the moderated t-test.

Usage

```
## S3 method for class 'bioTMLE'
plot(x, ..., type = "pvals_adj")
```

Arguments

Х	object of class biotmle as produced by an appropriate call to biomarkertmle
	additional arguments passed plot as necessary
type	character describing whether to provide a plot of unadjusted or adjusted p-values
	(adjustment performed via Benjamini-Hochberg)

Value

object of class ggplot containing a histogram of the raw or Benjamini-Hochberg corrected p-values (depending on user input).

Examples

```
library(dplyr)
library(biotmleData)
library(SummarizedExperiment)
data(biomarkertmleOut)
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)
plot(x = limmaTMLEout, type = "pvals_adj")</pre>
```

rnaseq_ic	Transformation utility for using	"voom" with biomarker TMLE proce-
	dure	

Description

This function prepares next-generation sequencing data (counts) for use with the biomarker TMLE procedure by invoking the voom transform of limma.

Usage

```
rnaseq_ic(biotmle, weights = TRUE, ...)
```

Arguments

biotmle	(bioTMLE) - subclass of SummarizedExperiment containing next-generation sequencing (NGS) count data in the "assays" slot.
weights	(logical) - whether to return quality weights of samples in the output object.
	- other arguments to be passed to functions limma::voom or limma::voomWithQualityWeights as appropriate.

Value

EList object containing voom-transformed "expression" measures of count data (actually, the mean-variance trend) in the "E" slot, to be passed into the biomarker TMLE procedure.

volcano_ic Volcano plot for class biotmle

Description

Volcano plot of the log-changes in the target causal paramter against the log raw p-values from the moderated t-test.

Usage

volcano_ic(biotmle, fc_bound = 3, pval_bound = 0.2)

Arguments

biotmle	object of class biotmle as produced by an appropriate call to biomarkertmle
fc_bound	(numeric) - indicates the highest magnitude of the fold to be colored along the x-axis of the volcano plot; this limits the observations to be considered differen- tially expressed to those in a user-specified interval.
pval_bound	(numeric) - indicates the largest corrected p-value to be colored along the y- axis of the volcano plot; this limits observations considered as differentially expressed to those in a user-specified interval.

Value

object of class ggplot containing a standard volcano plot of the log-fold change in the causal target parameter against the raw log p-value computed from the moderated tests in modtest_ic.

Examples

```
library(dplyr)
library(biotmleData)
library(SummarizedExperiment)
data(biomarkertmleOut)
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)
volcano_ic(biotmle = limmaTMLEout)</pre>
```

Index

.biotmle(bioTMLE-class), 4

biomarkertmle, 2
biomarkerTMLE_exposure, 3
bioTMLE-class, 4

data.frame_OR_EList-class,5

heatmap_ic, 5

modtest_ic, 6

plot.bioTMLE,7

rnaseq_ic, 7

topTable, 6

volcano_ic,8