curatedOvarianData: Clinically Annotated Data for the Ovarian Cancer Transcriptome

Benjamin Frederick Ganzfried, Markus Riester, Benjamin
Haibe-Kains, Thomas Risch, Svitlana Tyekucheva, Ina Jazic, Victoria Xin Wang, Mahnaz Ahmadifar, Michael Birrer, Giovanni Parmigiani, Curtis Huttenhower, Levi Waldron

2014

Contents

1 curatedOvarianData: Clinically Annotated Data for the Ovarian Cancer Transcriptome 1
2 Load TCGA data 2
3 Load datasets based on rules 2
3.1 Cleaning of duplicate samples 3
4 Association of CXCL12 expression with overall survival 6
5 Batch correction with ComBat 10
6 Non-specific probe sets 13
7 FULLVcuratedOvarianData 14
8 Available Clinical Characteristics 14
9 Summarizing the List of ExpressionSets 14
10 For non- R users 15
11 Session Info 16

1 curatedOvarianData: Clinically Annotated Data for the Ovarian Cancer Transcriptome

This package represents a manually curated data collection for gene expression meta-analysis of patients with ovarian cancer. This resource provides uniformly prepared microarray data with curated and documented clinical metadata. It allows a computational user to efficiently identify studies and patient subgroups of interest for analysis and to run such analyses immediately without the challenges posed by harmonizing heterogeneous microarray technologies, study designs, expression data processing methods, and clinical data formats.
The curatedOvarianData package is published in the journal DATABASE [1]. Note the existence also of curatedCRCData and curatedBladderData.
Please see http://bcb.dfci.harvard.edu/ovariancancer for alterative versions of this package, differing in how redundant probe sets are dealt with.

In this vignette, we give a short tour of the package and will show how to use it efficiently.

2 Load TCGA data

Loading a single dataset is very easy. First we load the package:

```
> library(curatedOvarianData)
```

To get a listing of all the datasets, use the data function:

```
> data(package="curatedOvarianData")
```

Now to load the TCGA data, we use the data function again:

```
> data(TCGA_eset)
> TCGA_eset
```

ExpressionSet (storageMode: lockedEnvironment)
assayData: 13104 features, 578 samples
element names: exprs
protocolData: none
phenoData
sampleNames: TCGA.20.0987 TCGA.23.1031 ...
TCGA.13.1819 (578 total)
varLabels: alt_sample_name unique_patient_ID ...
uncurated_author_metadata (31 total)
varMetadata: labelDescription
featureData
featureNames: A1CF A2M ... ZZZ3 (13104 total)
fvarLabels: probeset gene
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
pubMedIds: 21720365
Annotation: hthgu133a

The datasets are provided as Bioconductor ExpressionSet objects and we refer to the Bioconductor documentation for users unfamiliar with this data structure.

3 Load datasets based on rules

For a meta-analysis, we typically want to filter datasets and patients to get a population of patients we are interested in. We provide a short but powerful R script that does the filtering and provides the data as a list of ExpressionSet objects. One can use this script within R by first sourcing a config file which specifies the filters, like the minimum numbers of patients in each dataset. It is also possible to filter samples by annotation, for example to remove early stage and normal samples.

```
> source(system.file("extdata",
+ "patientselection.config",package="curatedOvarianData"))
> ls()
    [1] "TCGA_eset"
    [2] "add.surv.y"
    [3] "duplicates"
    [4] "impute.missing"
    [5] "keep.common.only"
    [6] "meta.required"
    [7] "min.number.of.events"
    [8] "min.number.of.genes"
    [9] "min.sample.size"
[10] "probes.not.mapped.uniquely"
[11] "quantile.cutoff"
[12] "remove.retracted"
```

```
[13] "remove.samples"
[14] "remove.subsets"
[15] "rescale"
[16] "rule.1"
[17] "strict.checking"
[18] "tcga.lowcor.outliers"
```

See what the values of these variables we have loaded are. The variable names are fairly descriptive, but note that "rule.1" is a character vector of length 2, where the first entry is the name of a clinical data variable, and the second entry is a Regular Expression providing a requirement for that variable. Any number of rules can be added, with increasing identifiers, e.g. "rule.2", "rule.3", etc.

Here strict.checking is FALSE, meaning that samples not annotated for the variables in these rules are allowed to pass the filter. If strict.checking $==$ TRUE, samples missing this annotation will be removed.

3.1 Cleaning of duplicate samples

The patientselection.config file loaded above contains several objects indicating which samples were removed for QC and duplicate cleaning by Waldron et al. [2]:

- tcga.lowcor.outliers: two profiles identified in the TCGA dataset with anomolously low correlation to other ovc profiles
- duplicates: samples blacklisted because they contain duplicates. In the case of duplicates, generally betterannotated samples, and samples from more recent studies, were kept.
- remove.samples: the above to vectors of samples concatenated

```
> #remove.samples and duplicates are too voluminous:
> sapply(ls(), function(x) if(!x %in% c("remove.samples", "duplicates")) print(get(x)))
```

ExpressionSet (storageMode: lockedEnvironment)
assayData: 13104 features, 578 samples
element names: exprs
protocolData: none
phenoData
sampleNames: TCGA.20.0987 TCGA.23.1031 ...
TCGA.13.1819 (578 total)
varLabels: alt_sample_name unique_patient_ID ...
uncurated_author_metadata (31 total)
varMetadata: labelDescription
featureData
featureNames: A1CF A2M ... ZZZ3 (13104 total)
fvarLabels: probeset gene
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
pubMedIds: 21720365
Annotation: hthgu133a
function (X)
Surv(X\$days_to_death, X\$vital_status == "deceased")
[1] FALSE
[1] FALSE
[1] "days_to_death" "vital_status"
[1] 15
[1] 1000
[1] 40
[1] "drop"
[1] 0
[1] FALSE
[1] TRUE
[1] TRUE
[1] "sample_type" "^tumor\$"

```
[1] FALSE
[1] "TCGA_eset:TCGA.24.1927" "TCGA_eset:TCGA.31.1955"
$TCGA_eset
ExpressionSet (storageMode: lockedEnvironment)
assayData: 13104 features, 578 samples
    element names: exprs
protocolData: none
phenoData
    sampleNames: TCGA.20.0987 TCGA.23.1031 ...
                TCGA.13.1819 (578 total)
    varLabels: alt_sample_name unique_patient_ID ...
                uncurated_author_metadata (31 total)
    varMetadata: labelDescription
featureData
    featureNames: A1CF A2M ... ZZZ3 (13104 total)
    fvarLabels: probeset gene
    fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
    pubMedIds: 21720365
Annotation: hthgu133a
$add.surv.y
function (X)
Surv(X$days_to_death, X$vital_status == "deceased")
$duplicates
NULL
$impute.missing
[1] FALSE
$keep.common.only
[1] FALSE
\$meta.required
[1] "days_to_death" "vital_status"
\$min.number.of.events
[1] 15
\$min.number.of.genes
[1] 1000
\$min.sample.size
[1] 40
\$probes.not.mapped.uniquely
[1] "drop"
\$quantile.cutoff
[1] 0
\$remove.retracted
[1] FALSE
```

\$remove.samples
NULL

\$remove.subsets

[1] TRUE
\$rescale
[1] TRUE
\$rule. 1
[1] "sample_type" "~tumor\$"
\$strict.checking

[1] FALSE

\$tcga.lowcor.outliers

[1] "TCGA_eset:TCGA.24.1927" "TCGA_eset:TCGA.31.1955"

Now that we have defined the sample filter, we create a list of ExpressionSet objects by sourcing the 'createEsetList.R' file:

```
> source(system.file("extdata", "createEsetList.R", package =
+ "curatedOvarianData"))
```

2017-04-26 10:05:47 INFO::Inside script createEsetList.R - inputArgs =
2017-04-26 10:05:47 INFO::
2017-04-26 10:05:47 INFO::Loading curatedOvarianData 1.14.0
2017-04-26 10:06:27 INFO::Clean up the esets.
2017-04-26 10:06:28 INFO::including E.MTAB.386_eset
2017-04-26 10:06:28 INFO::excluding GSE12418_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:28 INFO::excluding GSE12470_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:29 INFO::including GSE13876_eset
2017-04-26 10:06:29 INFO::including GSE14764_eset
2017-04-26 10:06:29 INFO::including GSE17260_eset
2017-04-26 10:06:30 INFO::including GSE18520_eset
2017-04-26 10:06:30 INFO::excluding GSE19829.GPL570_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:30 INFO::including GSE19829.GPL8300_eset
2017-04-26 10:06:31 INFO::excluding GSE20565_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:31 INFO::excluding GSE2109_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:32 INFO::including GSE26193_eset
2017-04-26 10:06:32 INFO::including GSE26712_eset
2017-04-26 10:06:32 INFO::excluding GSE30009_eset (min.number.of.genes)
2017-04-26 10:06:32 INFO::including GSE30161_eset
2017-04-26 10:06:33 INFO::including GSE32062.GPL6480_eset
2017-04-26 10:06:33 INFO::excluding GSE32063_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:33 INFO::excluding GSE44104_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:34 INFO::including GSE49997_eset
2017-04-26 10:06:34 INFO::including GSE51088_eset
2017-04-26 10:06:35 INFO::excluding GSE6008_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:35 INFO: :excluding GSE6822_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:35 INFO::excluding GSE8842_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:36 INFO::including GSE9891_eset
2017-04-26 10:06:36 INFO::excluding PMID15897565_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:36 INFO::including PMID17290060_eset
2017-04-26 10:06:36 INFO::excluding PMID19318476_eset (min.number.of.events or min.sample.size)
2017-04-26 10:06:37 INFO::including TCGA.RNASeqV2_eset
2017-04-26 10:06:37 INFO::excluding TCGA.mirna.8x15kv2_eset (min.number.of.genes)
2017-04-26 10:06:39 INFO::including TCGA_eset
2017-04-26 10:06:39 INFO::Ids with missing data: GSE51088_eset, TCGA.RNASeqV2_eset

It is also possible to run the script from the command line and then load the R data file within R :
R --vanilla "--args patientselection.config ovarian.eset.rda tmp.log" < createEsetList.R

Now we have 16 datasets with samples that passed our filter in a list of ExpressionSet objects called esets:

```
> names(esets)
```

[1] "E.MTAB.386_eset"	"GSE13876_eset"
[3] "GSE14764_eset"	"GSE17260_eset"
[5] "GSE18520_eset"	"GSE19829.GPL8300_eset"
[7] "GSE26193_eset"	"GSE26712_eset"
[9] "GSE30161_eset"	"GSE32062.GPL6480_eset"
[11] "GSE499997_eset"	"GSE51088_eset"
[13] "GSE9891_eset"	"PMID17290060_eset"
[15] "TCGA.RNASeqV2_eset"	"TCGA_eset"

4 Association of CXCL12 expression with overall survival

Next we use the list of 16 datasets from the previous example and test if the expression of the CXCL12 gene is associated with overall survival. CXCL12/CXCR4 is a chemokine/chemokine receptor axis that has previously been shown to be directly involved in cancer pathogenesis.

We first define a function that will generate a forest plot for a given gene. It needs the overall survival information as Surv objects, which the 'createEsetList.R' function already added in the phenoData slots of the ExpressionSet objects, accessible at the y label. The resulting forest plot is shown for the CXCL12 gene in Figure 1.

```
> esets[[1]]$y
\begin{tabular}{lcccccc} 
[1] & \(840.9+\) & \(399.9+\) & \(524.1+\) & 1476.0 & 144.0 & 516.9 \\
[7] & 405.0 & 87.0 & \(45.9+\) & \(483.9+\) & 917.1 & \(1013.1+\) \\
[13] & 69.9 & 486.0 & 369.9 & \(2585.1+\) & 738.9 & 362.1 \\
[19] & \(2031.9+\) & 477.9 & \(1091.1+\) & \(1062.0+\) & 720.9 & \(1200.9+\) \\
[25] & 977.1 & 537.9 & 638.1 & 587.1 & 1509.0 & \(1619.1+\) \\
[31] & 1043.1 & 198.9 & 1520.1 & 696.9 & 1140.9 & \(1862.1+\) \\
[37] & \(1751.1+\) & \(1845.0+\) & 1197.0 & 1401.0 & 399.0 & 992.1 \\
[43] & \(927.9+\) & 1509.0 & \(1914.0+\) & 591.9 & 426.0 & \(1374.9+\) \\
[49] & 546.9 & \(809.1+\) & \(480.9+\) & \(486.0+\) & \(642.9+\) & \(540.9+\) \\
[55] & 962.1 & 2025.0 & 473.1 & 1140.0 & 512.1 & \(1002.9+\) \\
[61] & \(1731.9+\) & 690.0 & 930.0 & 1026.9 & \(1193.1+\) & 720.9 \\
[67] & 369.0 & \(1326.9+\) & \(501.9+\) & \(1677.0+\) & \(1773.9+\) & 251.1 \\
[73] & \(1338.9+\) & 35.1 & \(1467.9+\) & 165.9 & 981.9 & 1280.1 \\
[79] & \(1800.0+\) & 399.9 & 422.1 & 861.9 & \(2010.0+\) & 660.0 \\
[85] & \(2138.1+\) & \(516.0+\) & \(1001.1+\) & 693.9 & \(825.0+\) & \(815.1+\) \\
[91] & \(657.0+\) & \(1013.1+\) & 426.0 & 656.1 & 1356.0 & \(1610.1+\) \\
[97] & \(1068.9+\) & \(1221.9+\) & \(2388.0+\) & \(447.9+\) & \(602.1+\) & \(1875.0+\) \\
{\([103]\)} & \(920.1+\) & 959.1 & 708.0 & 546.0 & \(1254.9+\) & \(611.1+\) \\
[109] & 1317.9 & 1899.0 & 1886.1 & 642.0 & 1763.1 & \(1857.0+\) \\
[115] & 540.0 & 852.9 & \(498.0+\) & \(3.9+\) & 836.1 & 1452.0 \\
{\([121]\)} & 2721.0 & 450.9 & 1398.9 & 1481.1 & \(2724.0+\) & 2061.9 \\
{\([127]\)} & 651.9 & \(2349.0+\) & & & &
\end{tabular}
```

```
> forestplot <- function(esets, y="y", probeset, formula=y~probeset,
```

> forestplot <- function(esets, y="y", probeset, formula=y~probeset,

+ mlab="Overall", rma.method="FE", at=NULL,xlab="Hazard Ratio",...) {
+ mlab="Overall", rma.method="FE", at=NULL,xlab="Hazard Ratio",...) {
+ require(metafor)
+ require(metafor)
+ esets <- esets[sapply(esets, function(x) probeset %in% featureNames(x))]
+ esets <- esets[sapply(esets, function(x) probeset %in% featureNames(x))]
+ coefs <- sapply(1:length(esets), function(i) {
+ coefs <- sapply(1:length(esets), function(i) {
+ tmp <- as(phenoData(esets[[i]]), "data.frame")
+ tmp <- as(phenoData(esets[[i]]), "data.frame")
+ tmp\$y <- esets[[i]][[y]]
+ tmp\$y <- esets[[i]][[y]]
+ tmp\$probeset <- exprs(esets[[i]])[probeset,]
+ tmp\$probeset <- exprs(esets[[i]])[probeset,]
+
+
+ summary(coxph(formula,data=tmp))\$coefficients[1,c(1,3)]
+ summary(coxph(formula,data=tmp))\$coefficients[1,c(1,3)]
+ })

```
+ })
```

```
> res <- forestplot(esets=esets,probeset="CXCL12",at=log(c(0.5,1,2,4)))
```

E.MTAB. 386	$\longmapsto \sim$	1.12 [0.89, 1.41]
GSE13876	$\because \square$	1.14 [0.95, 1.36]
GSE14764	\longmapsto.	1.22 [0.84, 1.75]
GSE17260	$\longmapsto . \longrightarrow$	1.17 [0.85, 1.61]
GSE18520	\checkmark	1.00 [0.73, 1.38]
GSE19829.GPL8300	\square	1.08 [0.73, 1.58]
GSE26193	-	1.17 [0.92, 1.49]
GSE26712	\square	1.23 [1.01, 1.49]
GSE30161	\cdots	1.34 [0.96, 1.86]
GSE32062.GPL6480	\checkmark	1.15 [0.91, 1.46]
GSE49997	\square	1.47 [1.10, 1.96]
GSE51088	\checkmark	$1.32[1.08,1.61]$
GSE9891	$\longmapsto \sim$	1.29 [1.07, 1.56]
PMID17290060		1.20 [0.96, 1.49]
TCGA.RNASeqV2	$\stackrel{\square}{\square}$	1.12 [0.92, 1.35]
TCGA	\square	1.15 [1.01, 1.30]
Overall	-	1.19 [1.12, 1.26]
Γ	1 \|	7
0.5	12	4
	Hazard Ratio	

Figure 1: The database confirms CXCL12 as prognostic of overall survival in patients with ovarian cancer. Forest plot of the expression of the chemokine CXCL12 as a univariate predictor of overall survival, using all 16 datasets with applicable expression and survival information. A hazard ratio significantly larger than 1 indicates that patients with high CXCL12 levels had poor outcome. The p-value for the overall HR, found in res $\$$ pval, is $9 \mathrm{e}-10$. This plot is Figure 3 of the curatedOvarianData manuscript.

```
+
+ res.rma <- metafor::rma(yi = coefs[1,], sei = coefs[2,],
+ method=rma.method)
+
+ if (is.null(at)) at <- log(c(0.25,1,4,20))
+ forest.rma(res.rma, xlab=xlab, slab=gsub("_eset$","",names(esets)),
+ atransf=exp, at=at, mlab=mlab,...)
+ return(res.rma)
+ }
```

We now test whether CXCL12 is an independent predictor of survival in a multivariate model together with success of debulking surgery, defined as residual tumor smaller than 1 cm , and Federation of Gynecology and Obstetrics (FIGO) stage. We first filter the datasets without debulking and stage information:

```
> idx.tumorstage <- sapply(esets, function(X)
+ sum(!is.na(X$tumorstage)) > 0 & length(unique(X$tumorstage)) > 1)
> idx.debulking <- sapply(esets, function(X)
+ sum(X$debulking=="suboptimal",na.rm=TRUE)) > 0
```

```
> res <- forestplot(esets=esets[idx.debulking & idx.tumorstage],
+ probeset="CXCL12",formula=y ~probeset+debulking+tumorstage,
+ at=log(c(0.5,1,2,4)))
```

E.MTAB. 386	\cdots	1.18 [0.93, 1.50]
GSE17260	$\longmapsto \sim$	1.17 [0.84, 1.64]
GSE26712	-	1.21 [0.99, 1.47]
GSE30161		1.24 [0.82, 1.88]
GSE32062.GPL6480	-	1.15 [0.90, 1.47]
GSE49997	-	1.42 [1.06, 1.91]
GSE9891	-	1.18 [0.96, 1.46]
PMID17290060	\square	1.16 [0.94, 1.44]
TCGA.RNASeqV2	-	1.09 [0.90, 1.33]
TCGA	$\stackrel{\square}{\square}$	1.11 [0.97, 1.27]
Overall	-	1.16 [1.08, 1.24]
Γ	1	1
0.5	12	4
	Hazard Ratio	

Figure 2: Validation of CXCL12 as an independent predictor of survival. This figure shows a forest plot as in Figure 1, but the CXCL12 expression levels were adjusted for debulking status (optimal versus suboptimal) and tumor stage. The p -value for the overall HR, found in res\$pval, is $1.8 \mathrm{e}-05$.

In Figure 2, we see that CXCL12 stays significant after adjusting for debulking status and FIGO stage. We repeated this analysis for the CXCR4 receptor and found no significant association with overall survival (Figure 3).

```
> res <- forestplot(esets=esets,probeset="CXCR4",at=log(c(0.5,1,2,4)))
```


Figure 3: Up-regulation of CXCR4 is not associated with overall survival. This figure shows again a forest plot as in Figure 1, but here the association of mRNA expression levels of the CXCR4 receptor and overall survival is shown. The p-value for the overall $H R$, found in res $\$ p$ val, is 0.12 .

5 Batch correction with ComBat

If datasets are merged, it is typically recommended to remove a very likely batch effect. We will use the ComBat [3] method, implemented for example in the SVA Bioconductor package [4]. To combine two ExpressionSet objects, we can use the combine() function. This function will fail when the two ExpressionSets have conflicting annotation slots, for example annotation when the platforms differ. We write a simple combine2 function which only considers the exprs and phenoData slots:

```
> combine2 <- function(X1, X2) {
+ fids <- intersect(featureNames(X1), featureNames(X2))
+ X1 <- X1[fids,]
+ X2 <- X2[fids,]
+ ExpressionSet(cbind(exprs(X1),exprs(X2)),
+ AnnotatedDataFrame(rbind(as(phenoData(X1),"data.frame"),
+
+ )
+ }
```

In Figure 4, we combined two datasets from different platforms, resulting in a huge batch effect. Now we apply ComBat and adjust for the batch and show the boxplot after batch correction in Figure 5:

```
> mod <- model.matrix(~as.factor(tumorstage), data=X)
> batch <- as.factor(grepl("DFCI",sampleNames(X)))
> combat_edata <- ComBat(dat=exprs(X), batch=batch, mod=mod)
Found 2 batches
```

```
Adjusting for 2 covariate(s) or covariate level(s)
```

Adjusting for 2 covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data

```
```

> data(E.MTAB.386_eset)
> data(GSE30161_eset)
> X <- combine2(E.MTAB.386_eset, GSE30161_eset)
> boxplot(exprs(X))

```


DFCI. 1 DFCI. 34 DFCI. 69 DFCI. 108 GSM746872 GSM746918

Figure 4: Boxplot showing the expression range for all samples of two merged datasets arrayed on different platforms. This illlustrates a huge batch effect.
```

> boxplot(combat_edata)

```


Figure 5: Boxplot showing the expression range for all samples of two merged datasets arrayed on different platforms after batch correction with ComBat.

\section*{6 Non-specific probe sets}

In the standard version of curatedOvarianData (the version available on Bioconductor), we collapse manufacturer probesets to official HGNC symbols using the Biomart database. Some probesets are mapped to multiple HGNC symbols in this database. For these probesets, we provide all the symbols. For example 220159_at maps to \(A B C A 11 P\) and ZNF721 and we provide ABCA11P///ZNF721 as probeset name. If you have an array of gene symbols for which you want to access the expression data, "ABCA11P" would not be found in curatedOvarianData in this example.

The script createEsetList.R provides three methods to deal with non-specific probe sets by setting the variable probes.not.mapped.uniquely to:
- "keep": leave as-is, these have "///" in gene names,
- "drop": drop any non-uniquely mapped features, or
- "split": split non-uniquely mapped features to one per row. If this creates duplicate rows for a gene, those rows are averaged.

This feature uses the following function to create a new ExpressionSet, in which both ZNF721 and ABCA11P are features with identical expression data:
```

> expandProbesets <- function (eset, sep = "///")

+ {
+ x <- lapply(featureNames(eset), function(x) strsplit(x, sep)[[1]])
+ eset <- eset[order(sapply(x, length)),]
+ x <- lapply(featureNames(eset), function(x) strsplit(x, sep)[[1]])
+ idx <- unlist(sapply(1:length(x), function(i) rep(i, length(x[[i]]))))
+ xx <- !duplicated(unlist(x))
+ idx <- idx[xx]
+ x <- unlist(x)[xx]
+ eset <- eset[idx,]
+ featureNames(eset) <- x
+ eset
+ }
> X <- TCGA_eset[head(grep("///", featureNames(TCGA_eset))),]
> exprs(X)[,1:3]

```
\begin{tabular}{lr} 
& TCGA.20.0987 \\
ABCB4///ABCB1 & 2.993923 \\
ABCB6///ATG9A & 4.257024 \\
ABCC6P2///ABCC6P1///ABCC6 & 3.110547 \\
ABHD17AP3///ABHD17AP2///ABHD17AP1///ABHD17AP6///ABHD17A & 6.886997 \\
ACOT1///ACOT2 & 4.702057 \\
ACSM2A///ACSM2B & 2.980667 \\
& TCGA.23.1031 \\
ABCB4///ABCB1 & 3.600534 \\
ABCB6///ATG9A & 4.793526 \\
ABCC6P2///ABCC6P1///ABCC6 & 4.909549 \\
ABHD17AP3///ABHD17AP2///ABHD17AP1///ABHD17AP6///ABHD17A & 6.699198 \\
ACOT1///ACOT2 & 3.534889 \\
ACSM2A///ACSM2B & 3.085545 \\
& TCGA.24.0979 \\
ABCB4///ABCB1 & 3.539278 \\
ABCB6///ATG9A & 5.476369 \\
ABCC6P2///ABCC6P1///ABCC6 & 4.993433 \\
ABHD17AP3///ABHD17AP2///ABHD17AP1///ABHD17AP6///ABHD17A & 6.529303 \\
ACOT1///ACOT2 & 3.604559 \\
ACSM2A///ACSM2B & 2.890781
\end{tabular}
```

> exprs(expandProbesets(X))[,1:3]
TCGA.20.0987 TCGA.23.1031 TCGA.24.0979
ABCB4 2.993923 3.600534 3.539278

```
\begin{tabular}{llll} 
ABCB1 & 2.993923 & 3.600534 & 3.539278 \\
ABCB6 & 4.257024 & 4.793526 & 5.476369 \\
ATG9A & 4.257024 & 4.793526 & 5.476369 \\
ACOT1 & 4.702057 & 3.534889 & 3.604559 \\
ACOT2 & 4.702057 & 3.534889 & 3.604559 \\
ACSM2A & 2.980667 & 3.085545 & 2.890781 \\
ACSM2B & 2.980667 & 3.085545 & 2.890781 \\
ABCC6P2 & 3.110547 & 4.909549 & 4.993433 \\
ABCC6P1 & 3.110547 & 4.909549 & 4.993433 \\
ABCC6 & 3.110547 & 4.909549 & 4.993433 \\
ABHD17AP3 & 6.886997 & 6.699198 & 6.529303 \\
ABHD17AP2 & 6.886997 & 6.699198 & 6.529303 \\
ABHD17AP1 & 6.886997 & 6.699198 & 6.529303 \\
ABHD17AP6 & 6.886997 & 6.699198 & 6.529303 \\
ABHD17A & 6.886997 & 6.699198 & 6.529303
\end{tabular}

\section*{7 FULLVcuratedOvarianData}

In curatedOvarianData, probesets mapping to the same gene symbol are merge by selecting the probeset with maximum mean across all studies of a given platform. You can see which representative probeset was chosen by looking at the featureData of the Expressionset, e.g.:
```

> head(pData(featureData(GSE18520_eset)))
probeset gene
A1BG 229819_at A1BG
A1BG-AS1 232462_s_at A1BG-AS1
A1CF 220951_s_at A1CF
A2M 217757_at A2M
A2M-AS1 1564139_at A2M-AS1
A2ML1 1553505_at A2ML1

```

The full, unmerged ExpressionSets are available through the FULLVcuratedOvarianData package at http://bcb.dfci.harvard.edu/ova Probeset to gene maps are again provided in the featureData of those ExpressionSets. Where official Bioconductorannotation packages are available for the array, these are stored in the ExpressionSet annotation slots, e.g.:
```

> annotation(GSE18520_eset)

```
[1] "hgu133plus2"
so that standard filtering methods such as nsFilter will work by default.

\section*{8 Available Clinical Characteristics}

\section*{9 Summarizing the List of ExpressionSets}

This example provides a table summarizing the datasets being used, and is useful when publishing analyses based on curatedOvarianData. First, define some useful functions for this purpose:
```

> source(system.file("extdata", "summarizeEsets.R", package =

+ "curatedOvarianData"))

```

Now create the table, used for Table 1 of the curatedOvarianData manuscript:
Optionally write this table to file, for example ( replace myfile <- tempfile() with something like myfile <- "nicetable.csv" )
```

> (myfile <- tempfile())

```


Figure 6: Available clinical annotation. This heatmap visualizes for each curated clinical characteristic (rows) the availability in each dataset (columns). Red indicates that the corresponding characteristic is available for at least one sample in the dataset. This plot is Figure 2 of the curatedOvarianData manuscript.

\section*{[1] "/tmp/Rtmp8JAJau/file786022c2486f"}
> write.table(summary.table, file=myfile, row.names=FALSE, quote=TRUE, sep=",")

\section*{10 For non-R users}

If you are not doing your analysis in \(R\), and just want to get some data you have identified from the curatedOvarianData manual, here is a simple way to do it. For one dataset:
```

> library(curatedOvarianData)
> library(affy)
> data(GSE30161_eset)
> write.csv(exprs(GSE30161_eset), file="GSE30161_eset_exprs.csv")
> write.csv(pData(GSE30161_eset), file="GSE30161_eset_clindata.csv")

```

Or for several datasets:
```

> data.to.fetch <- c("GSE30161_eset", "E.MTAB.386_eset")
> for (onedata in data.to.fetch){

+ print(paste("Fetching", onedata))
+ data(list=onedata)

```
```

+ write.csv(exprs(get(onedata)), file=paste(onedata, "_exprs.csv", sep=""))
+ write.csv(pData(get(onedata)), file=paste(onedata, "_clindata.csv", sep=""))
+ }

```

\section*{11 Session Info}
- R version 3.4.0 (2017-04-21), x86_64-pc-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Running under: Ubuntu 16.04.2 LTS
- Matrix products: default
- BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so
- LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so
- Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils
- Other packages: Biobase 2.36.0, BiocGenerics 0.22.0, Matrix 1.2-9, affy 1.54.0, curatedOvarianData 1.14.0, genefilter 1.58.0, logging 0.7-103, metafor \(1.9-9\), mgcv 1.8-17, nlme 3.1-131, survival 2.41-3, sva 3.24.0, xtable 1.8-2
- Loaded via a namespace (and not attached): AnnotationDbi 1.38.0, BiocInstaller 1.26.0, BiocStyle 2.4.0, DBI 0.6-1, IRanges 2.10.0, RCurl 1.95-4.8, RSQLite 1.1-2, Rcpp 0.12.10, S4Vectors 0.14.0, XML 3.98-1.6, affyio 1.46 .0 , annotate 1.54 .0 , backports 1.0 .5 , bitops \(1.0-6\), compiler 3.4.0, digest 0.6 .12 , evaluate 0.10 , grid 3.4.0, htmltools 0.3 .5 , knitr 1.15.1, lattice \(0.20-35\), magrittr 1.5 , memoise 1.1.0, preprocessCore 1.38.0, rmarkdown 1.4, rprojroot 1.2 , splines 3.4 .0 , stats4 3.4 .0 , stringi 1.1 .5 , stringr 1.2.0, tools 3.4 .0 , yaml 2.1.14, zlibbioc 1.22.0
\begin{tabular}{rlllll}
\hline & PMID & N samples & stage & histology & Platform \\
\hline E.MTAB.386 & 22348002 & 129 & \(1 / 128 / 0\) & \(129 / 0 / 0 / 0 / 0 / 0 / 0\) & Illumina humanRef-8 v2.0 \\
GSE12418 & 16996261 & 54 & \(0 / 54 / 0\) & \(54 / 0 / 0 / 0 / 0 / 0\) & SWEGENE H_v2.1.1_27k \\
GSE12470 & 19486012 & 53 & \(8 / 35 / 10\) & \(43 / 0 / 0 / 0 / 0 / 0 / 10\) & Agilent G4110B \\
GSE13876 & 19192944 & 157 & \(0 / 157 / 0\) & \(157 / 0 / 0 / 0 / 0 / 0 / 0\) & Operon v3 two-color \\
GSE14764 & 19294737 & 80 & \(9 / 71 / 0\) & \(68 / 2 / 6 / 0 / 2 / 0 / 2\) & Affymetrix HG-U133A \\
GSE17260 & 20300634 & 110 & \(0 / 110 / 0\) & \(110 / 0 / 0 / 0 / 0 / 0 / 0\) & Agilent G4112A \\
GSE18520 & 19962670 & 63 & \(0 / 53 / 10\) & \(53 / 0 / 0 / 0 / 0 / 0 / 10\) & Affymetrix HG-U133Plus2 \\
GSE19829.GPL570 & 20547991 & 28 & \(0 / 0 / 28\) & \(0 / 0 / 0 / 0 / 0 / 0 / 28\) & Affymetrix HG-U133Plus2 \\
GSE19829.GPL8300 & 20547991 & 42 & \(0 / 0 / 42\) & \(0 / 0 / 0 / 0 / 0 / 0 / 42\) & Affymetrix HG_U95Av2 \\
GSE20565 & 20492709 & 140 & \(27 / 67 / 46\) & \(71 / 6 / 6 / 7 / 6 / 0 / 44\) & Affymetrix HG-U133Plus2 \\
GSE2109 & PMID unknown & 204 & \(37 / 87 / 80\) & \(85 / 9 / 28 / 11 / 59 / 0 / 12\) & Affymetrix HG-U133Plus2 \\
GSE26193 & 22101765 & 107 & \(31 / 76 / 0\) & \(79 / 6 / 8 / 8 / 6 / 0 / 0\) & Affymetrix HG-U133Plus2 \\
GSE26712 & 18593951 & 195 & \(0 / 185 / 10\) & \(185 / 0 / 0 / 0 / 0 / 0 / 10\) & Affymetrix HG-U133A \\
GSE30009 & 22492981 & 103 & \(0 / 103 / 0\) & \(102 / 1 / 0 / 0 / 0 / 0 / 0\) & TaqMan qRT-PCR \\
GSE30161 & 22348014 & 58 & \(0 / 58 / 0\) & \(47 / 5 / 1 / 1 / 1 / 0 / 3\) & Affymetrix HG-U133Plus2 \\
GSE32062.GPL6480 & 22241791 & 260 & \(0 / 260 / 0\) & \(260 / 0 / 0 / 0 / 0 / 0 / 0\) & Agilent G4112F \\
GSE32063 & 22241791 & 40 & \(0 / 40 / 0\) & \(40 / 0 / 0 / 0 / 0 / 0 / 0\) & Agilent G4112F \\
GSE44104 & 23934190 & 60 & \(25 / 35 / 0\) & \(28 / 12 / 11 / 0 / 0 / 0 / 0\) & Affymetrix HG-U133Plus2 \\
GSE49997 & 22497737 & 204 & \(9 / 185 / 10\) & \(171 / 0 / 0 / 0 / 23 / 0 / 10\) & ABI Human Genome \\
GSE51088 & 24368280 & 172 & \(31 / 120 / 21\) & \(122 / 3 / 7 / 9 / 11 / 0 / 20\) & Agilent G4110B \\
GSE6008 & 19440550 & 103 & \(42 / 53 / 8\) & \(41 / 8 / 37 / 13 / 0 / 0 / 4\) & Affymetrix HG-U133A \\
GSE6822 & PMID unknown & 66 & \(0 / 0 / 66\) & \(41 / 11 / 7 / 1 / 0 / 0 / 6\) & Affymetrix Hu6800 \\
GSE8842 & 19047114 & 83 & \(83 / 0 / 0\) & \(31 / 16 / 17 / 10 / 1 / 0 / 1\) & Agilent G4100A cDNA \\
GSE9891 & 18698038 & 285 & \(42 / 240 / 3\) & \(264 / 0 / 20 / 0 / 1 / 0 / 0\) & Affymetrix HG-U133Plus2 \\
PMID15897565 & 15897565 & 63 & \(11 / 52 / 0\) & \(63 / 0 / 0 / 0 / 0 / 0 / 0\) & Affymetrix HG-U133A \\
PMID17290060 & 17290060 & 117 & \(1 / 115 / 1\) & \(117 / 0 / 0 / 0 / 0 / 0 / 0\) & Affymetrix HG-U133A \\
PMID19318476 & 19318476 & 42 & \(2 / 39 / 1\) & \(42 / 0 / 0 / 0 / 0 / 0 / 0\) & Affymetrix HG-U133A \\
TCGA.RNASeqV2 & 21720365 & 261 & \(18 / 242 / 1\) & \(261 / 0 / 0 / 0 / 0 / 0 / 0\) & Illumina HiSeq RNA sequencing \\
TCGA.mirna.8x15kv2 & 21720365 & 554 & \(39 / 511 / 4\) & \(554 / 0 / 0 / 0 / 0 / 0 / 0\) & Agilent miRNA-8x15k2 G4470B \\
TCGA & 21720365 & 578 & \(43 / 520 / 15\) & \(568 / 0 / 0 / 0 / 0 / 0 / 10\) & Affymetrix HT_HG-U133A \\
\hline
\end{tabular}
Table 1: Datasets provided by curatedOvarianData. This is an abbreviated version of Table 1 of the manuscript; the full version is written by the write.table command above. Stage column is early/late/unknown, histology column is ser/clearcell/endo/mucinous/other/unknown.

\section*{References}
[1] Benjamin Frederick Ganzfried, Markus Riester, Benjamin Haibe-Kains, Thomas Risch, Svitlana Tyekucheva, Ina Jazic, Xin Victoria Wang, Mahnaz Ahmadifar, Michael J Birrer, Giovanni Parmigiani, et al. curatedovariandata: clinically annotated data for the ovarian cancer transcriptome. Database, 2013:bat013, 2013.
[2] Levi Waldron, Benjamin Haibe-Kains, Aedín C Culhane, Markus Riester, Jie Ding, Xin Victoria Wang, Mahnaz Ahmadifar, Svitlana Tyekucheva, Christoph Bernau, Thomas Risch, Benjamin Frederick Ganzfried, Curtis Huttenhower, Michael Birrer, and Giovanni Parmigiani. Comparative meta-analysis of prognostic gene signatures for Late-Stage ovarian cancer. J. Natl. Cancer Inst., 106(5), 3 April 2014. doi:10.1093/jnci/dju049.
[3] W E Johnson, C Li, and A Rabinovic. Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics, 8(1):118-127, Jan 2007.
[4] Jeffrey T. Leek, W. Evan Johnson, Hilary S. Parker, Andrew E. Jaffe, and John D. Storey. sva: Surrogate Variable Analysis. R package version 3.4.0.```

