
Image Analysis with beadarray

Mike Smith

May 18, 2017

Introduction

From version 2.0 beadarray provides more flexibility in the processing of array images and the extraction
of bead intensities than its predecessor. In the past intensity extraction from array images by beadarray
attmepted to emulated that performed by Illumina, with minimal opportunities for deviation from this.
Whilst the default approach taken in beadarray is still to emulated Illumina, we have made each step
modular, in order to allow greater flexibility for the user. This vignette is designed to show how one
can read the TIFF images from the BeadArray scanner and implement alternative feature intensity
extraction algorithms.

1 Reading bead-level data into beadarray

1.1 Standard Illumina Image Processing

The first step in a pipeline for image processing is to read both the TIFF image and the bead-level text
file. The text file contains the identities of each bead, as well as the bead-centre coordinates. The
image processing methods contained within beadarray use these coordinates as seed points for intensity
extraction, although one can conceive of approaches where bead-centres are calculated seperately, prior
to intensity extraction. However, even with such an approach the Probe ID for each bead will need to
be extracted from the .txt file.

tiff <- readTIFF();

data <- readBeadLevelTextFile();

The standard method employed by Illumina’s scanner for calculating bead intensity is a four step process,
described in Kuhn et al [?]. It can be summarized as:

• Calculate background value
• Sharpen image
• Calculate foreground value
• Subtract background for foreground to give final intensity

1

Image Analysis with beadarray 2

If the function readIllumina() is called with useImages = TRUE then intensities are extracted using
code that gives a very close emulation of that used by Illumina. If one wished to perform this calcuation
themselves (outside of readIllumina()), it can be done using the following code.

bg <- illuminaBackground(tiff, data[,3:4]);

tiffSharp <- illuminaSharpen(tiff);

fg <- illuminaForeground(tiffSharp, data[,3:4]);

finalIntensity <- fg - bg;

Each of the functions above take a matrix representing the pixel values from the TIFF image as their
first argument. The background and foreground algorithms additionally take a two column matrix con-
taining the coordinates of the bead centres. If one wished to calculate intensities for only a subset of
the beads then supplying only the appropriate bead-centres in this step would achieve this.

After calculating intensties they need to be inserted into a beadLevelData object. The code below
shows how to create a new object and insert intensity values. However, this approach creates an empty
beadLevelData object, which will be lacking any information except that which the user manually inserts.

BLData <- new(Class = "beadLevelData");

BLData <- insertBeadData(BLData, array = 1, what = "Grn", data = finalIntensity)

An easier alternative to creating your own beadLevelData object is to use the function readIllumina()

to read the data as described in the main vignette. This ensures that any available data (such as sample
IDs, scanner metrics, grid sizes etc.) are read in and stored. One can then choose to overwrite the
values generated by readIllumina(), or store alternative intensities alongside them.

The example below first reads the data using the standard arguments to readIllumina(), which will
extract the intensities from the .txt file. The second step overwrites those intensities with those we
calculated previously (which should be very similar). The final command creates a new entry in the
beadLevelData object (refered to as ‘GrnLog’), that stores the log transform of the values we calculated
earlier. In this way the user can store a variety of intensity values if they wish to experiment with
alternative forms of background subtraction, gradient removal etc.

BLData <- readIllumina();

BLData <- insertBeadData(BLData, array = 1, what = "Grn", data = finalIntensity)

BLData <- insertBeadData(BLData, array = 1, what = "GrnLog", data = log2(finalIntensity))

1.2 Alternative Methods

The examples above have focused on applying the same intensity extraction algorithms that are employed
by Illumina. However, one may wish to employ an alternative algorithm to test its performance. The
example below implements an alternative method of calculating the background intensity values, as
recommended by Smith et al [?].

Image Analysis with beadarray 3

bg <- medianBackground(tiff, data[,3:4]);

We can then use the new background intensities in the same way as previously, before inserting them
into the beadLevelData object.

2 Parallel Processing

We have included some support for parallel processing in the functions to perform sharpening of the
image and the two background calculation methods. These can offer some increase in throughput when
one is using a single computer to analyse a small number of samples. However if one is dealing with
a large number of arrays then there are probably more efficient mechanisms to achieve speedup, such
as reading seperate chips on multiple machines (or R sessions) and combining the data after they have
been read.

This multicore support is implemented at the C level using the OpenMP library. Unfortunately adding
support for this generates a warning on Bioconductor, so support needs to be added manually and the
package build from source. The procedure is slightly different for users on Linux and Windows machines.

Linux users should create a file called Makevars in the beadarray/src directory and add the following
two lines before building the package from source.

PKG_CFLAGS=-fopenmp

PKG_LIBS=-lgomp

Windows users should create a file called Makevars.win in the beadarray/src directory and add the
following two lines before building the package from source.

PKG_CFLAGS=-fopenmp

PKG_LIBS=-lgomp -mthreads -lpthreadGC2

3 Session Info

sessionInfo()

R version 3.4.0 (2017-04-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.2 LTS

##

Matrix products: default

BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so

##

Image Analysis with beadarray 4

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] parallel stats graphics grDevices utils datasets

[7] methods base

##

other attached packages:

[1] beadarray_2.26.1 ggplot2_2.2.1 Biobase_2.36.2

[4] BiocGenerics_0.22.0 knitr_1.15.1

##

loaded via a namespace (and not attached):

[1] Rcpp_0.12.10 highr_0.6

[3] compiler_3.4.0 plyr_1.8.4

[5] GenomeInfoDb_1.12.0 XVector_0.16.0

[7] zlibbioc_1.22.0 bitops_1.0-6

[9] tools_3.4.0 base64_2.0

[11] digest_0.6.12 evaluate_0.10

[13] RSQLite_1.1-2 memoise_1.1.0

[15] tibble_1.3.1 gtable_0.2.0

[17] rlang_0.1 DBI_0.6-1

[19] yaml_2.1.14 GenomeInfoDbData_0.99.0

[21] stringr_1.2.0 S4Vectors_0.14.1

[23] IRanges_2.10.1 stats4_3.4.0

[25] rprojroot_1.2 grid_3.4.0

[27] AnnotationDbi_1.38.0 rmarkdown_1.5

[29] limma_3.32.2 BeadDataPackR_1.28.0

[31] reshape2_1.4.2 magrittr_1.5

[33] backports_1.0.5 scales_0.4.1

[35] htmltools_0.3.6 GenomicRanges_1.28.2

[37] BiocStyle_2.4.0 colorspace_1.3-2

[39] stringi_1.1.5 openssl_0.9.6

[41] RCurl_1.95-4.8 lazyeval_0.2.0

[43] munsell_0.4.3 illuminaio_0.18.0

	1 Reading bead-level data into beadarray
	1.1 Standard Illumina Image Processing
	1.2 Alternative Methods

	2 Parallel Processing
	3 Session Info

