
BEclear - Correct for batch effects in DNA
methylation data

Markus Merl*
email: beclear.package@gmail.com

Modified: February 18, 2015 Compiled: April 24, 2017

This example guides to the BEclear package to correct for batch effects
in DNA methylation data. The package provides some functions to detect
and correct such batch effects. The core function BEclear is based on Latent
Factor Models [1] and can also be used to predict missing values in any other
matrix containing real numbers.

Contents

1 Introduction 2

2 calcPvalues 3

3 calcMedians 4

4 calcSummary 5

5 calcScore 6

6 makeBoxplot 7

7 clearBEgenes 8

8 countValuesToPredict 9

9 BEclear 9

1

10 findWrongValues & replaceWrongValues 9

11 correctBatchEffect 10

12 Conclusions 10

13 References 10

1 Introduction

The individual chapters guide through the available methods of the BEclear
package in a logical order following an example of correcting some batch
affected DNA methylation data. This article should only give a small tutorial,
more details about the individual methods can always be found in the help
sections of the BEclear package, e.g. through typing ”?calcMedians” on the
R console. To work with the methods contained in the BEclear package, a
matrix or data.frame with genes as rownames and samples as column names
as well as a samples data.frame with the first column named ”sample id” and
the second column named ”batch id” is needed as input. To run an example
workflow, we first have to load the example data into our workspace. A
matrix with 250 genes as rows and 40 samples as columns containing beta
values, as well as a data.frame containing the samples and corresponding
batch names emerges. To get an intuition of how the inuput data for the
methods should look like, we print out the first 10 rows and five columns of
the matrix on the screen and also the first 10 rows of the samples data.frame.

> library(BEclear)

> data(BEclearData)

> ex.data[1:10,1:5]

s20 s21 s22 s23 s24

ACSM3 0.22978729 0.21628728 0.20719868 0.23292691 0.21205930

ADAM28 0.34350641 0.45796065 0.37496248 0.42052354 0.39337616

ADCK1 0.21761416 0.21203847 0.21308033 0.21713120 0.21438141

AFTPH 0.03149421 0.03067515 0.03035862 0.02930077 0.02363116

AKAP7 0.12652223 0.08984297 0.16380988 0.10872611 0.11501186

ANKRD24 0.05164166 0.04273068 0.03712615 0.04343010 0.04302312

ANKRD44 0.34317757 0.32560143 0.27817751 0.31322486 0.29840699

2

ANKS4B 0.57125501 0.54677390 0.52091911 0.60753275 0.54190976

APCDD1 0.48614910 0.42010326 0.44058872 0.52759982 0.44388208

APOBEC3G 0.36366491 0.33017162 0.37493338 0.35095431 0.44060871

> ex.samples[1:10,]

sample_id batch_id

1 s20 b109

2 s21 b109

3 s22 b109

4 s23 b109

5 s24 b117

6 s25 b117

7 s26 b117

8 s27 b117

9 s28 b117

10 s29 b117

The beta values stored in the ex.data matrix are obtained from level 3 BRCA
data from the TCGA portal [2]. Generally, beta values are claculated by di-
viding the methylated signal by the sum of the unmethylated and methylated
signals from a DNA methylation microrarray. In the level 3 TCGA data, this
calculation has already been done. The sample data used here contains av-
eraged beta values of probes that belong to promoter regions of single genes.
Another possibility would be to use beta values of single probes, whereby the
probe names should then be used instead of the gene names as rownames of
the matrix.

2 calcPvalues

Next, we want to know if our data is batch affected or not. We therefore
calculate false discovery rate adjusted p-values by Kolmogorov-Smirnov (ks)
test for every gene in every batch. We could also use any other adjustment
method contained in the p.adjust function of the R stats package. If possible,
we can run the method in parallel mode which is also the default of this
paramter. If the method should be run on a machine with just one core, the
parallel parameter should simply be set to FALSE. The resulting p-values
tell us if a gene from a certain batch contains a batch effect or not. Thereby,
every gene with a p-value below 0.01 is assumed as batch affected.

3

> pvals <- calcPvalues(ex.data, ex.samples, parallel=TRUE,

+ cores=4, adjusted=TRUE, method="fdr")

R Version: R version 3.4.0 (2017-04-21)

Returned is a data.frame containing p-values for all 10 batches and for every
gene. We print out the p-values for 10 genes and 4 batches:

> pvals[210:220,5:8]

b136 b142 b155 b72

SLC17A2 2.124143e-01 0.7375169 0.8638664 0.3228734

SLC38A4 5.932453e-02 0.8830409 0.5966599 1.0000000

SMARCD2 3.222988e-04 0.5651447 0.5651447 0.6495726

SMOC1 5.932453e-02 0.8530364 0.8450292 0.4375000

SMOX 9.201325e-04 0.4531502 0.4592892 0.2500000

SNX21 7.385032e-06 0.9750337 0.9750337 1.0000000

SOD1 1.032961e-04 0.2955466 0.7605263 0.7605263

SPC24 3.222988e-04 0.1113360 0.1842105 0.7777778

SPINK2 3.222988e-04 0.8905788 0.8905788 0.8905788

SSRP1 3.222988e-04 0.9180162 0.9163293 0.9163293

SYCE2 3.222988e-04 0.9282471 0.9282471 1.0000000

We can see that most of the p-values are beyond 0.01, but some of the genes
have p-values below our threshold value, e.g. the ”SPINK2”, ”SNX21” or
”SMOX” genes in batch b136, which all have a p-values < 0.0001 from which
we conclude that the beta values of these genes corresponding to batch b136
does not follow the typical distribution for the beta values in the other batches
which suggests a batch effect.

3 calcMedians

To see to which extend the found genes from the ks-test are affected by the
batch effect, we calculate the median difference (mdif) values for every gene
and every batch in a similar way. We consider all genes with mdif values
beyond or equal to 0.05 as batch affected since values beyond this threshold
would already make a biological difference in the methylation level. Since
beta values are bounded between 0 and 1, this threshold indicates more

4

than 5% of the overall deviation of this [0;1] interval. Returned is again a
data.frame containing mdif values for every gene in every batch. We print
out again the mdif values for the same genes and batches as before.

> mdifs <- calcMedians(ex.data, ex.samples, parallel=TRUE,

+ cores=4)

> mdifs[210:220,5:8]

b136 b142 b155 b72

SLC17A2 0.01326067 0.011684347 0.0064376902 0.0568709256

SLC38A4 0.05427230 0.024569384 0.0442606951 0.0023979164

SMARCD2 0.04377473 0.007261480 0.0015304622 0.0049537648

SMOC1 0.02004716 0.006187701 0.0088631859 0.0325320528

SMOX 0.01276110 0.001521808 0.0016256588 0.0139147353

SNX21 0.03979558 0.009434266 0.0025460079 0.0001944529

SOD1 0.04040058 0.010059310 0.0018819630 0.0107954042

SPC24 0.04880502 0.005595816 0.0038687584 0.0016017197

SPINK2 0.43006149 0.028696780 0.0164482151 0.0179958882

SSRP1 0.04399476 0.002045536 0.0015797555 0.0038052277

SYCE2 0.03488399 0.002955042 0.0004563072 0.0001072030

We can see that most of the mdif values are smaller than 0.05, but some of the
genes have mdif values beyond this threshold value, especially the ”SPINK2”
gene in batch b136, which has a mdif value of ca. 0.43 which, together with
the small pvalue, strongly indicates a batch effect for this gene.

4 calcSummary

Now, we summarize the results of the p-value and mdif calculations.

> summary <- calcSummary(medians=mdifs, pvalues=pvals)

This method simply lists all genes that have p-values smaller than or equal
to 0.01 and mdif values greater than 0.05, together with the corresponding
batch number in a data.frame. Now we have a list of all genes supposed to
be batch affected. Let us print the first 10 rows of this summary:

> summary[1:10,]

5

gene batch median pvalue

1 ADAM28 b136 0.25390182 3.222988e-04

2 AKAP7 b136 0.22362551 2.975248e-05

3 ANKRD44 b136 0.25784823 2.410328e-03

4 APCDD1 b136 0.20783921 1.557227e-06

5 AREG b136 0.36590731 1.032961e-04

6 BCL2L14 b136 0.23561895 5.885965e-03

7 BRI3BP b136 0.06133987 4.600662e-04

8 CBX3 b136 0.34424122 3.222988e-04

9 CNTD1 b136 0.26502460 5.885965e-03

10 CSTA b136 0.23760637 5.885965e-03

We can see that all of the affected genes are from batch b136. Although we
would define this batch as batch affected, some genes could also be found in
other batches which are just slightly affected. We therefore would not talk
about a batch effect, but the beta values of these found genes can also be
corrected. When looking for such genes, we can find 1 in batch b117 and 2
in batch b61.

> summary[summary$batch != "b136",]

gene batch median pvalue

19 HEPACAM b117 0.05120382 0.002826153

41 PTPRN b61 0.06829343 0.002024291

54 XCL2 b61 0.06371507 0.002024291

Overall, we found 54 genes with adjusted p-values below 0.01 and mdif val-
ues beyond or equal to 0.05. 51 of these genes were found in batch b136.
Alltogether, this strongly indicates a batch effect.

5 calcScore

Outgoing from the summary, we can calculate a score that tells us for every
batch if it contains a batch effect or not:

> score <- calcScore(ex.data, ex.samples, summary, dir=getwd())

> score

6

batch 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 BEscore

1 b109 0 0 0 0 0 0 0 0 0 0 0.000

2 b117 1 0 0 0 0 0 0 0 0 0 0.004

3 b120 0 0 0 0 0 0 0 0 0 0 0.000

4 b124 0 0 0 0 0 0 0 0 0 0 0.000

5 b136 10 2 31 7 1 0 0 0 0 0 0.752

6 b142 0 0 0 0 0 0 0 0 0 0 0.000

7 b155 0 0 0 0 0 0 0 0 0 0 0.000

8 b72 0 0 0 0 0 0 0 0 0 0 0.000

9 b185 0 0 0 0 0 0 0 0 0 0 0.000

10 b61 2 0 0 0 0 0 0 0 0 0 0.008

The method lists the number of affected genes in terms of mdif and p-values
for every gene and delivers us a so called BEscore that tells us if we should
correct the data for batch effects or not. The BEscore for batch b136 is 0.752
and tells us that we should correct the data. Additionally, the scoring table is
stored as .RData file in the specified directory. As default value, the current
working direcotry is used. Details about the scoring system can be found in
the documentation of this method.

6 makeBoxplot

We can also visualize the result of the calculated score through a color-coded
boxplot

> makeBoxplot(ex.data, ex.samples, score, bySamples=TRUE,

+ col="standard", main="Example data", xlab="Batch",

+ ylab="Beta value", scoreCol=TRUE)

7

● ●●

0.0

0.2

0.4

0.6

0.8

Example data

Batch

B
et

a
va

lu
e

b1
09

b1
17

b1
20

b1
24

b1
36

b1
42

b1
55

b1
85 b6

1
b7

2

The boxplot shows the example data separated by samples. The batch num-
bers are shown on the x-axis in a color that denotes if the batch is affected
(red) or not (green) or if there is a slight batch affect assumed (yellow). We
can easily recognize that the boxes of batch b136 behave different compared
to the other batches.

7 clearBEgenes

Now we decided to correct the data for the found batch effect. Therefore we
have to set all previously found affected beta values to NA:

> cleared.data <- clearBEgenes(ex.data, ex.samples, summary)

Returned is the input matrix with NA values as defined by the summary.

8

8 countValuesToPredict

If we already have a matrix with missing entries (not necessarily beta values),
we can use this method to count the NA values within the matix:

> counted <- countValuesToPredict(cleared.data)

9 BEclear

This method performs the batch effect correction by predicting all the missing
entries we formerly set to NA in our input matrix and returns a matrix
that contains all beta values from the original input matrix, together with
predicted beta values for the entries formerly set to NA. The correction is
done by performing matrix completion using Latent Factor Models based on
matrix factorization [1,3]:

> corrected.data <- BEclear(cleared.data, parallel=TRUE,

+ cores=4, rowBlockSize=60, colBlockSize=60,

+ epochs=50, outputFormat="RData", dir=getwd())

The result of the prediction can easily be seen when we again use the
makeBoxplot method:

> makeBoxplot(corrected.data, ex.samples, score, bySamples=TRUE,

+ col="standard", main="Corrected example data",

+ xlab="Batch", ylab="Beta value", scoreCol=FALSE)

For more details about the prediction and the further parameters please read
the documentation of this method. Note that the corrected data is also stored
as .Rdata file in the specified directory.

10 findWrongValues & replaceWrongValues

Sometimes during the prediction, it can happen that values beyond the
boundaries of beta values are returned, that means values smaller than zero
or greater than one. findWrongValues simply returns a list of these values,
together with the position in the output matrix, replaceWrongValues corrects
these by simply setting the wrong values to zero or one, respectively. Since
we cannot guarantee that we get wrong values during the prediction with the

9

example data, we forego these methods for now. Note that these methods
are especially designed for the prediction of DNA methylation data.

11 correctBatchEffect

This method performs most of the previously introduced methods step by
step in a logical order to simply correct the input data on the basis of the
calculated score or not.

> result <- correctBatchEffect(ex.data, ex.samples,

+ parallel=TRUE, cores=4, adjusted=TRUE,

+ method="fdr", rowBlockSize=60, colBlockSize=60,

+ epochs=50, outputFormat="RData", dir=getwd())

Returned is a list containing the complete output of the previously introduced
methods, e.g. result$medians returns the mdif values containing data.frame.
For details see again the documentation of this method.

12 Conclusions

In this tutorial, we have followed the whole procedure of detecting and cor-
recting a batch effect in DNA methylation data by using the methods from
the BEclear package. This document is intended to give a first overview
about the functionality of the package. More details and references can be
found in the corresponding documentation.

13 References

[1] E. Candes, B. Recht, Exact matrix completion via convex optimization,
Communications of the ACM, 55(6), p. 111-119, 2012.
[2] http://cancergenome.nih.gov/
[3] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for rec-
ommender systems, IEEE Computer, 42(8), p. 30-37, 2009.

10

