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1 Introduction

High-throughput phenotyping generates large volumes of varied data includ-
ing both categorical and continuous data. Operational and cost constraints
can lead to a work-flow that precludes traditional analysis methods. Fur-
thermore, for a high throughput environment, a robust automated statistical
pipeline that alleviates manual intervention is required.

PhenStat is a package that provides statistical methods for the identification
of abnormal phenotypes with an emphasize on high-throughput data-flows.
The package contains dataset checks and cleaning in preparation for the
analysis, four statistical frameworks for the phenodeviants identification and
additional functions that help to decide the correct method for analysis.

Simple explanation of statistical frameworks is given below. More details can
be found in the appropriate sections of the User’s Guide.

We also have implemented the IMPCdata package that allows easy access
to the phenotyping data produced by the International Mouse Phenotyping
Consortium (IMPC) and is available in Bioconductor.

1. Mixed Models framework assumes that base line values of dependent
variable are normally distributed but batch (assay date) adds noise
and models variables accordingly in order to separate the batch and
the genotype. Model optimisation starting with:

depV ariable = Genotype+Sex+Genotype∗Sex+Weight+(1|Batch)

Assume batch is normally distributed with defined variance. This
framework can be used in case when you have controls measured over
multiple batches and you ideally have knockout mice measured in multi-
ple batches. The knockouts do not have to be concurrent with controls.

2. Time Fixed Effect framework estimates each batch effect to separate it
from genotype. Model optimisation starting with:
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depV ariable = Genotype+ Sex+Genotype ∗ Sex+Weight+Batch

This framework can be used in case when there are up to 5 batches and
concurrent controls approach had been used.

3. Reference Range Plus framework identifies the normal variation form
the wildtype animals, classifies dependent variables from the genotype
of interest as low, normal or high and compares proportions to assess
for movement towards high or low class borders.

This framework requires sufficient number of controls (more than 60
records) in order to correctly identify normal variation and can be used
when other methods are not applicable or as a first simple data assess-
ment method.
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4. Fisher Exact Test is a standard framework for categorical data which
compares data proportions and calculates the percentage change in
classification.

5. Logistic Regression is a framework for categorical data recoded to two
levels: 0 (e.g. as expected or reference phenotype) and 1 (abnormal).
This method models the relationship between the variable of interest
and a number of independent variables assessing the impact of sex,
genotype and whether the genotype effect depends on the sex.

All analysis frameworks output a statistical significance measure, an effect
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size measure, model diagnostics (when appropriate), and graphical visuali-
sation of the genotype effect.

Depending on the user needs, the statistical analysis output can either be
interactive where the user can view the graphical output and analysis sum-
mary or for a database implementation the output consists of a vector of
output and saved graphical files.

This package has been tested and demonstrated with an application of 420
lines of historic mouse phenotyping data from the Sanger MGP and Europhe-
nome resources. Please note, the testing of the Time Fixed Effect framework
has been limited due to the shortage of suitable datasets.

Figure 1: The PhenStat package’s three stage structure: dataset processing,
statistical analysis, and result output.

The package consists of three stages as shown in Figure 1:

1. Dataset processing: includes checking, cleaning and terminology unifi-
cation procedures and is completed by function PhenList which creates
a PhenList object.
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2. Statistical analysis: is managed by function testDataset and consists of
Mixed Model, Time Fixed Effect, Reference Range Plus, Fisher Exact
framework and Logistic Regression framework implementations. The
results are stored in PhenTestResult object. Potentially this layer can
be extended adding new statistical methods.

3. Results Output: depending on user needs there are two functions for
the test results output: summaryOutput and vectorOutput that present
data from PhenTestResult object in a particular format. The output
layer is also easily extendible.

Package has a function recommendMethod to assess the suitability of the
dataset for the various statistical analysis methods.

Package run time depends on a variety of factors including dataset size,
computational resources, etc. Average analysis run time of the pilot dataset
in our local environement is 1.34 seconds.

2 Data Processing with PhenList Function

PhenList function performs data processing and creates a PhenList object.
As input, PhenList function requires dataset of phenotypic data that can be
presented as data frame. For instance, it can be dataset stored in csv or txt
file.

> dataset <- read.csv("myPhenotypicDataset.csv")

> dataset <- read.table("myPhenotypicDataset.txt",sep="\t")

Data is organised with a row for a sample and each column provides in-
formation such as meta data (strain, genotype, etc.) and the variable of
interest.

In Table 1 the example dataset is presented with numerical variables of in-
terest. Table 2 shows the example dataset with categorical data.

In addition to dependent variable column (the variable of interest) mandatory
columns are ”Genotype” and ”Sex”. The ”Assay.Date” column is used to
model ”Batch” effect if not specified differently. ”Weight” column is used to
model body weight effect.

The information provided in the ”Assay.Date” column is treated as a cat-
egorical variable with different strings as different levels. As such there is
no requirement to provide the date in any particular format (ie D\M\Y or
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M\D\Y) however please remove any time stamp. Removing the time stamp
is necessary such that data will cluster by day appropriately.

The main tasks performed by the PhenStat package’s function PhenList
are:

• terminology unification (see section 2.1 for more details),

• filtering out undesirable records (when the argument dataset.clean is
set to TRUE),

• and checking if the dataset can be used for the statistical analysis.

All tasks are accompanied by error messages, warnings and/or other informa-
tion: error messages explain why function stopped, warning messages require
user’s attention (for instance, user is notified that column was renamed in the
dataset), and information messages provide other details (for example, the
values that are set in the Genotype column). If messages are not desirable
PhenList function’s argument outputMessages can be set to FALSE meaning
there will be no messages.

Here is an example when the user sets out-messages to FALSE:

> file <- system.file("extdata", "test1.csv", package="PhenStat")

> dataset1 <- read.csv(file)

# Default behaviour with messages

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modelling.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Sparc/Sparc’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

# Out-messages are switched off

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc",

outputMessages=FALSE)

# There are no messages!
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2.1 Terminology Unification

We define ”terminology unification” as the terminology used to describe data
(variables) that are essential for the analysis. The PhenStat package uses
the following nomenclature for the names of columns: ”Sex”, ”Genotype”,
”Batch” or ”Assay.Date” and ”Weight”. In addition, expected sex values are
”Male” and ”Female” and missing value is NA. PhenList function creates
a copy of the dataset and then uses internal arguments that help to map
columns and values from user’s naming system into the package’s nomencla-
ture. The original file with the dataset stays unchanged since all changes
take place within PhenList object. Please note ”Assay.Date” is renamed to
”Batch” automatically.

The following PhenList function’s arguments have to be specified to enable
terminology unification to match expected columns to user names:

• dataset.colname.batch allows the user to define column name within
dataset for the batch effect if this column name is other than ”Batch”
or ”Assay.Date” (user’s definition has a priority over ”Assay.Date”),

• dataset.colname.genotype allows the user to define column name within
dataset for the genotype info if this column name is other than ”Geno-
type”,

• dataset.colname.sex allows the user to define column name within dataset
for the sex info if this column name is other than ”Sex” in the dataset,

• dataset.colname.weight allows the user to specify column name within
dataset for the weight info if this column name is other than ”Weight”
in the dataset,

• dataset.values.missingValue allows the user to specify value used as
missing value in the dataset if other than NA,

• dataset.values.male allows the user to define value used to label ”males”
in the dataset if other than ”Male”,

• dataset.values.female allows the user to specify value used to label ”fe-
males” in the dataset if other than ”Female” value has been used.

In the example below dataset’s values for females and males are 1 and 2
accordingly. Those values are changed to ”Female” and ”Male”.

> file <- system.file("extdata", "test3.csv", package="PhenStat")

> dataset_test <- read.csv(file)
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> test <- PhenList(dataset=dataset_test,

dataset.clean=TRUE,

dataset.values.female=1,

dataset.values.male=2,

testGenotype="Mysm1/+")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modelling.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Mysm1/+’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

2.2 Filtering

Filtering is required, as the statistical analysis requires there to be only two
genotype groups for comparison (e.g. wildtype versus knockout). Thus the
function PhenList requires users to define the reference genotype (manda-
tory argument refGenotype with default value ”+/+”) and test genotype
(mandatory argument testGenotype). If the PhenList function argument
dataset.clean is set to TRUE then all records with genotype values others
than reference or test genotype are filtered out. The user may also specify
hemizygotes genotype value (argument hemiGenotype) when hemizygotes are
treated as the test genotype. This is necessary to manage sex linked genes,
where the genotype will be described differently depending on the sex. Con-
sider the following example of a knockout of a X-linked gene. In this situation,
Table 3 describes the possible genotype labels and which should be compared
biologically.

Sex Reference genotype Test genotype Heterozygous genotype
Female +/+ KO/KO +/KO
Male +/+ KO/Y

Table 3: Example of the dataset with sex linked genes

With the dataset described in Table 3 where hemiGenotype argument of the
PhenList function is defined as ”KO/Y”, the actions of the function are:
”KO/Y” genotypes are relabelled to ”KO/KO” for males; females ”+/KO”
heterozygous are filtered out.
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If a user would like to switch off filtering, (s)he can set PhenList function’s
argument dataset.clean to FALSE (default value is TRUE). In the following
example the same dataset is processed successfully passing the checks proce-
dures (see section 2.3) when dataset.clean is set to TRUE and fails at checks
otherwise.

> file <- system.file("extdata", "test3.csv", package="PhenStat")

> dataset <- read.csv(file)

> test<-PhenList(dataset,

testGenotype="Mysm1/+",

dataset.values.male="1",

dataset.values.female="2")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modelling.

Warning:

Dataset has been cleaned by filtering out records with genotype value

other than test genotype ’Mysm1/+’ or reference genotype ’+/+’.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Mysm1/+’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

# Filtering is switched off

> test<-PhenList(dataset,

testGenotype="Mysm1/+",

dataset.clean=FALSE)

Warning:

Dataset’s ’Batch’ column is missed.

You can define ’dataset.colname.batch’ argument to specify column

for the batch effect modelling. Otherwise you can only fit a glm.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’HOM’, ’Mysm1/+’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

********* Errors start *********

Check failed:

Dataset’s ’Genotype’ column has to have two values.

You can define ’testGenotype’ and ’refGenotype’ arguments to automatically

filter out records with genotype values other than specified.
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Alternatively you can define ’hemiGenotype’ and ’testGenotype’ arguments to relabel hemizygotes to homozygotes.

********* Errors end ***********

Filtering also takes place when there are records that do not have at least
two records in the dataset with the same genotype and sex values. This type
of filtering is needed to successfully process a dataset with Mixed Model,
Time Fixed Effect and Logistic Regression frameworks. However, in some
cases it is beneficial to process dataset with all genotype/sex records by using
Fisher Exact Test and Reference Range Plus frameworks. Unfiltered dataset
is stored within PhenList object to allow such processing (see p.21).

Consider the following example of the genotype and sex values in the dataset:

Sex Reference genotype Test genotype
Female +/+ (20 records) Mysm1/+ (5 records)
Male +/+ (25 records) Mysm1/+ (1 record only)

Table 4: Example of the dataset with 3 sex values

When dataset.clean argument’s is set to TRUE all ”Male” records are filtered
out since there is only one record for genotype/sex combination ”Mysm1/
+”/males.

2.3 Dataset Checks

After terminology unification and filtering tasks, PhenList function checks
the dataset availability for the statistical analysis:

• column names and sex values are there and described in the package’s
nomenclature,

• test and reference genotype records are in the dataset,

• there are at least two records for each genotype/sex values combination.

• if there is ”Weight” column in the dataset then there are at least two
weight records for each genotype/sex values combination.

If one of the checks fails, the function stops and the PhenList object is not
created. In the following example ”Sex” column is missed in the dataset and
the checks fail. Note, a dataset can consist of one sex but a sex column is
still required to ensure the appropriate model is fitted.
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> dataset <- read.csv("test_noSexColumn.csv")

> test<-PhenList(dataset,testGenotype="Mysm1/+")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’

and will be used for the batch effect modelling.

********* Errors start *********

Check failed:

Dataset’s ’Sex’ column is missed.

********* Errors end ***********

Next example shows the results of the dataset described in the previous
section 2.2 : three sex values and not enough records for the ”unsexed” sex
and both genotype values.

> dataset <- read.csv("test_3sexes.csv")

> test<-PhenList(dataset,

testGenotype="Mysm1/+")

...

Warning:

Since dataset has to have at least two data points for each genotype/sex combination

and there are not enough records for the combination(s): ’+/+’/’unsexed’ (0),

’Mysm1/+’/’unsexed’ (1), appropriate sex records have been filtered out from the dataset.

...

# Filtering is switched off

> test<-PhenList(dataset,

testGenotype="Mysm1/+",

dataset.clean=FALSE)

...

********* Errors start *********

Check failed:

Dataset’s ’Sex’ column has to have one or two values and currently the data has more than two.

Check failed:

Dataset’s ’Sex’ column has ’Female’, ’Male’, ’unsexed’ values

instead of ’Female’ and/or ’Male’ values only.

Please delete records with sex(es) ’unsexed’ from the dataset.

Check failed:

Dataset should have at least two data points for each genotype/sex combination.

At the moment there are no enough data points for the following combination(s):

’+/+’/’unsexed’ (0), ’Mysm1/+’/’unsexed’ (1).
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********* Errors end ***********

Many checking failures will be avoided when dataset.clean argument of the
PhenList function is set to TRUE (default value). See examples in this and
in the previous section 2.2.

3 PhenList Object

The output of the PhenList function is the PhenList object that contains
a cleaned dataset (PhenList object’s slot datasetPL), unfiltered dataset for
future potential usage in RR and FE frameworks (PhenList object’s slot
datasetUNF ), reference genotype and test genotypes, terminology unification
values. There is a number of useful methods available for the object, like
getStat to obtain a simple statistics about dataset columns, noSexes to get
a number of sex values available in the dataset, etc.

The example below shows how to print out the whole cleaned dataset and
how to view the statistics about it (output is shown in Table 5).

> file <- system.file("extdata", "test1.csv", package="PhenStat")

> dataset1 <- read.csv(file)

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc", outputMessages=FALSE)

> test@datasetPL

...

> getStat(test)

...

Table 5 shows the content of the PhenList method getStat output and de-
scribes the data focusing on the columns of the dataset. Each column is a
variable with summary description. The description includes: whether vari-
able is numerical or not, whether variable’s classed continuous (variability
is more than 0.5%), number of levels, number of data points and for the
numerical variables various summary measures (mean, standard deviation,
minimal and maximal values).

PhenList object has stored many characteristics about the data: reference
genotype, test genotype, hemizygotes genotype, original column names, etc.

An example is given below.

> file <- system.file("extdata", "test2.csv", package="PhenStat")
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Variable Num Cont Levels # Mean StdDev Min Max
Age.In.Weeks TRUE FALSE 10 468 14 0.21 13.1 14.6
Batch FALSE FALSE 49 468 NA NA NA NA
Birth.Date FALSE FALSE 111 468 NA NA NA NA
Bone.Area TRUE TRUE 248 463 9.6 0.84 7.46 11.73
Bone.Mineral.Content TRUE TRUE 405 463 0.48 0.06 0.31 0.64
Bone.Mineral.Density TRUE TRUE 120 463 0.05 0 0.04 0.06
Cohort.Name FALSE FALSE 59 468 NA NA NA NA
Colony.Name FALSE FALSE 76 468 NA NA NA NA
Colony.Prefix FALSE FALSE 76 468 NA NA NA NA
Core.Strain FALSE FALSE 1 468 NA NA NA NA
Tissue.Mass TRUE TRUE 427 463 35.22 5.3 20.44 49.86
Fat.Mass TRUE TRUE 385 463 14.92 3.35 4.52 23.21
Fat.Percentage TRUE TRUE 403 463 42.01 5.16 19.26 55.21
Full.Strain FALSE FALSE 9 468 NA NA NA NA
Sex FALSE FALSE 2 468 NA NA NA NA
Gene.Name FALSE FALSE 76 468 NA NA NA NA
Genotype FALSE FALSE 2 468 NA NA NA NA
Lean.Mass TRUE TRUE 369 463 20.31 2.81 14.84 28.8
Mouse FALSE FALSE 468 468 NA NA NA NA
Mouse.Name FALSE FALSE 468 468 NA NA NA NA
Base.Length TRUE FALSE 17 468 10.19 0.32 9.3 10.9
Pipeline FALSE FALSE 1 468 NA NA NA NA
Strain FALSE FALSE 2 468 NA NA NA NA
Weight TRUE TRUE 183 468 34.95 5.09 20.4 48.4

Table 5: Simple statistics about dataset variables – dataset.stat content

> dataset2 <- read.csv(file)

> test2 <- PhenList(dataset=dataset2,

testGenotype="Arid4a/Arid4a",

dataset.colname.weight="Weight.Value")

> testGenotype(test2)

[1] "Arid4a/Arid4a"

> refGenotype(test2)

[1] "+/+"

> getVariables(test2)

[1] "Age.In.Weeks" "Alb" "Alp" "Alt" "Amy" ...
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> getColumn(test2,"Gluc")

[1] 18.96 16.73 26.61 ...

> getColumnBatchAdjusted(test2,"Gluc")

[1]-5.610609973 -7.840609973 2.039390027...

4 Statistical Analysis

The PhenStat package provides five methods (frameworks) for statistical
analysis: Linear Mixed Models (MM), Time as Fixed Effect (TF) and Refer-
ence Range method (RR) for continuous data, Fisher Exact Test (FE) and
Logistic Regression method (LR) for categorical data. In all frameworks,
the statistical significance is assessed, the biological significance measured
through an effect size estimate and finally the genotype effect is classified
e.g. ”If phenotype is significant - both sexes equally”.

4.1 Manager for Analysis Methods – testDataset func-
tion

PhenStat’s function testDataset works as a manager for the different statis-
tical analyses methods. It checks the dependent variable, runs the selected
statistical analysis framework and returns modelling/testing results in the
PhenTestResult object (see Figure 1).

4.1.1 Common Arguments

The testDataset function’s argument phenList defines the PhenList object
prepared for the analysis.

Function’s argument depVariable defines the dependent variable.

Function’s argument method defines which statistical analysis framework to
use. The default value is ”MM” which stands for mixed model framework.
To perform Time as Fixed Effect method the argument method is set to
”TF”. To perform Fisher Exact Test, the argument method is set to ”FE”.
For the Reference Range Plus framework method is set to ”RR” and finally,
for the Logistic Regression framework method is set to ”LR”.
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4.1.2 Method Specific Arguments

There are two arguments specific for the ”MM” and ”TF” frameworks:

• dataPointsThreshold defines the required number of data points in a
group (subsets per genotype and sex combinations) for a successful
analysis. The default value is 4. The minimal value is 2.

• transformValues defines to perform or not data transformation if needed
(see p.61 for details). The default value is FALSE.

There is an argument useUnfiltered specific for ”RR” and ”FE” frameworks
which defines to use or not unfiltered dataset (dataset with all records re-
gardless the number of records per genotype/sex combinations). The default
value is FALSE.

Consider the following example of the genotype and sex values in the dataset
with a low sample size for the measurement ”6kHz-evoked Auditory Brain
Stem Response Threshold”:

Batch Genotype Sex Value
10/08/2015 BL3569 Female 15
03/08/2015 BL3569 Female 15
29/07/2015 BL3569 Male 10
25/11/2015 +/+ Female 10
25/11/2013 +/+ Male 15
11/08/2014 +/+ Male 20
05/08/2014 +/+ Male 15
07/10/2015 +/+ Female 15
06/02/2014 +/+ Male 10
08/06/2015 +/+ Male 15
27/10/2014 +/+ Female 15

Table 6: Example of the dataset with low sample size

If ”RR” framework is called with the argument ”useUnfiltered” set to FALSE
then the original dataset is cleaned by filtering out records with genotype/sex
combinations less than 2 (Table 7):

In turn, when ”RR” framework is called with the argument ”useUnfiltered”
set to TRUE the original unfiltered dataset (Table 6) is used.

There are two more arguments specific for the ”RR” framework:
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Batch Genotype Sex Value
10/08/2015 BL3569 Female 15
03/08/2015 BL3569 Female 15
25/11/2015 +/+ Female 10
07/10/2015 +/+ Female 15
27/10/2014 +/+ Female 15

Table 7: Example of the cleaned dataset with low sample size

• RR naturalVariation for the variation ranges in the RR framework with
default value set to 95 and minimal value set to 60;

• RR controlPointsThreshold for the number of control data points in
the RR framework with default value 60 and minimal value set to 40.

4.1.3 Checks

The testDataset function performs basic checks which ensure the statisti-
cal analysis would be appropriate and successful: depVariable column is
present in the dataset; thresholds value are set and do not exceed minimal
values.

After the basic checks the testDataset function performs framework specific
checks:

• Mixed Model (MM) and Time as Fixed Effect (TF) framework checks:

1. depVariable column values are numeric.

2. Variability check 1 (whole column): depVariable column values
are variable enough (the ratio of different values to all values in
the column ≥ 0.5%);

3. Variability check 2 (variability within a group): there are enough
data points in subsets per genotype/sex combinations. The num-
ber of values from depVariable column should exceed dataPointsThresh-
old in all subsets.

4. Variability check 3 (variability for ”Weight” column) applied only
when equation argument value is set to ”withWeight”: there are
enough weight records in subsets per genotype/sex combinations.
The number of values from ”Weight” column should exceed data-
PointsThreshold in all subsets, otherwise equation ”withoutWeight”
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is used;

• Additional Time as Fixed Effect (TF) framework checks:

1. Number of batches: there are from 2 to 5 batches (assay dates) in
the dataset which contain test genotype.

2. Control points: there are concurrent controls data in the dataset,
meaning the presence of data points for at least one sex in all
genotype/batch level combinations.

• Reference Range Plus (RR) framework checks:

1. depVariable column values are numeric.

2. There are data: the number of levels in depVariable column after
filtering out of null values exceeds zero.

3. Control points: there are enough data points in subsets per ref-
erence genotype/sex combinations. The number of values from
depVariable column should exceed RR controlPointsThreshold in
all subsets.

• Fisher Exact Test (FE) framework checks:

1. There are data: the number of levels in depVariable column after
filtering out of null values exceeds zero.

2. Number of levels: number of depVariable levels is less than 10.

• Logistic Regression (LR) framework checks:

1. There are data: the number of levels in depVariable column after
filtering out of null values exceeds zero.

2. Number of levels is two and values of the levels are 0 and 1.

If issues are identified, clear guidance is returned to the user. After the
checking procedures, testDataset function runs the selected framework to
analyse dependent variable.

To ensure flexibility and debugging, the framework can comprise of more
than one stage. For instance, the more complex MM and TF frameworks
both have the functionality to operate in two stages.

testDataset function’s argument callAll instructs the package to run all stages
of the framework one after another when set to TRUE (default behaviour).
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However, when callAll flag is set to FALSE it instructs the testDataset func-
tion to run only the first stage of the selected framework. For instance,
testDataset function runs startModel and after that finalModel functions of
the MM framework if the argument callAll is set to TRUE. More information
about this two stages process is provided in section 4.2.3.

If framework contains only one stage (such as the Fisher Exact Test case)
then testDataset function runs that single stage regardless of the callAll ar-
gument’s value.

The example how to call MM and FE framework is given below.

> file <- system.file("extdata", "test1.csv", package="PhenStat")

> dataset1 <- read.csv(file)

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc", outputMessages=FALSE)

> result_MM_Lean.Mass <- testDataset(test,depVariable="Lean.Mass", method="MM",

dataPointsThreshold=2)

...

> result_FE_Length <- testDataset(test,depVariable="Nose.To.Tail.Base.Length", method="FE")

..

Further details about the MM, TF, RR, FE and LR framework are in the
next subsections.

4.2 Mixed Model Framework

First, we will describe the mixed model top-down methodology which starts
with a fully loaded model and ends with final reduced model and genotype
effect evaluation procedures as described in West et al. (2007).

4.2.1 Motivation

Through high throughput phenotyping programs, such as EUMODIC, where
data was systematically collected on one genetic background, the significant
sources of variation can be identified and it became obvious that batch (de-
fined here as those readings collected on a particular day) can lead to large
variation in phenotyping variables Karp et al. (2012).

Figure 2, demonstrates variation seen in control data from a standardised
phenotyping pipeline.
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Figure 3, demonstrates using artificially constructed data how mathemati-
cally this can arise from batch variation adding variability to the data. With
this batch to batch variation, data collected on the same day will be more
similar than other days, hence the readings are correlated and the assump-
tion, of many statistical tests, of independent readings cannot be made.
Furthermore, the variation with batch, means that this has to be consid-
ered to be able to assign causality i.e. if there is a difference in readings is
this due to batch or genotype difference. Therefore these observations have
significant implications for the data analysis of both high throughput and
secondary phenotyping experiments where use of small batches of animals is
common.

Figure 2: Representative time course plot showing the batch to batch varia-
tion in control data for male mice from a B6Brd;B6N-Tyrc-Brd genetic back-
ground from WTSI MGP program. Example shown is the variation seen in
the lean mass variable measured in grams. For each day, data is collected a
box plot is drawn as a five point summary indicating the minimum, 1st quar-
tile, median, 3rd quartile and maximum. Shown in red is the global median
fat mass value.

One option would be to ensure all animals for a line are processed in one day
with concurrent controls. However, it is challenging and costly to produce
sufficient animals of the right age within a narrow time point for an exper-
iment. Consider the WTSI Sanger Mouse Genetics Project which requires
7 male and 7 female homozygote mice, generated by a heterozygote cross;
a best case scenario would require 14 mating pairs being assembled at the
same point in time Pinkert (2002). In order to generate these mating pairs,
there would be a staged breeding process to generate the mice which involve
several rounds of expansions depending on breeding success. This best case
scenario is commonly hampered by fecundity, viability or other phenotypic
problems within a line and hence to achieve a one batch pipeline the pair-
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Figure 3: Artificially constructed data demonstrating how batch variation
affects data distribution with time. In this artificial data, the variable of in-
terest was assumed to be biologically randomly normally distributed variable
with mean=7, standard deviation=1.5. To represent the batch effect, 300 as-
says days were generated with a randomly distributed batch effect (mean=0,
standard deviation 0.5) which was added to the dependent variable biological
mean before randomly sampling the dependent variable.

ing number needs increasing significantly. In contrast, by accepting smaller
numbers of mice in multiple batches, lower breeding pair numbers can be
established. The smaller scale allows the generation of mice to answer firstly
developmental and breeding issues and secondly to feed the pipeline over
time and subsequent litters. As soon as mice are produced at the right age,
these are feed into the pipeline. This batch approach, allows the pipeline
to utilise animals that would otherwise be discarded as the process had not
generated the required experimental sample size which ensure meet the high
throughput pipeline needs and also help reduce the breeding cost per line.
Furthermore, the operational constraints arising in a high throughput en-
vironment make optimal experimental design impractical; typically mutant
and control mice are not assayed on the same day, so any phenotypic differ-
ences could be due to genotype or to subtle changes in the environment (e.g.
temperature fluctuations or pipetting errors).

An alternative method, linear mixed models (MM) are a class of statistical
models suited to modelling multiple sources of variability on a phenotype,
where some explanatory factors (such as sex, weight and mutant genotype)
are assumed to take fixed values that affect the population mean, whilst
others such as batch are treated as affecting the covariance structure; animals
from the same batch will have correlated phenotypes. Karp et al. (2012)
demonstrated the utility and benefits of a MM framework for high throughput
phenotyping data. The methodology used there has been developed further
and refined for this package.
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4.2.2 Theory

There are two possible start models, depending on whether weight is included
as a factor (see Eq1 for the model without weight and Eq2 for the model
including weight).

depV ariable v Genotype+ Sex+Genotype ∗ Sex (Eq1)

depV ariable v Genotype+ Sex+Genotype ∗ Sex+Weight (Eq2)

We reference to the Eq1 and Eq2 as to the models with ”loaded” mean
structure and random batch-specific intercepts or fully loaded model (see
Fig. 4).

The final model construct is influenced by a number of criteria. These crite-
ria, such as fixed effects, batch effect and the structure of residual variances,
can be either evaluated from the dataset or defined by user (see Fig. 5). The
following criteria (effects) are considered:

• Batch effect (batch variation). Considered only when batch column is
present in the dataset.

• Residual variances homogeneity where homogeneous residual variances
means the variance for all genotype levels is considered equivalent.

• Body weight effect. Considered only when Eq2 is used.

• Sex effect. Considered only when there are more than one sex in the
dataset.

• Genotype by sex interaction effect. Considered only when there are
more than one sex in the dataset.

The selection of model is influenced by the batch effect (random effects) —
is batch in the dataset, and if so, is it significant in explaining variation in
the dependent variable — and a covariance structure for the residuals that
can be homogeneous or heterogeneous (see Fig. 4 Step 1-3). The selected
model is then modified by reducing non-significant effects (see Fig. 4 Step 4
and Fig. 5).

When the final model is selected and reduced, the genotype effect is assessed
by comparing a genotype and null model fitted with maximum likelihood
evaluation method (ML). Finally, the final genotype model is refitted using
restricted maximum likelihood evaluation method (REML) to get unbiased
estimates of the variance parameters (see Fig. 4 Step 5,6 and Fig. 5).
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Figure 4: MM framework steps: model selection process and model reducing
by using significance of fixed effects.
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Figure 5: MM framework: start model formula and final model formula cre-
ation based on the dataset and significances of the effects (can be estimated
or defined by user).
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Figure 6: MM framework: different models that are considered.
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4.2.3 Implementation

There are two functions in the PhenStat package that implements the Mixed
Model framework:

• startModel function evaluates model’s criteria and stores the result in
the PhenTestResult object;

• finalModel function builds the final model using the model’s criteria
from PhenTestResult object and fits the model using restricted maxi-
mum likelihood method (REML).

By default, both functions will be called from testDataset manager sequen-
tially, that is why startModel function’s arguments and specific for MM
method testDataset function’s arguments concur. In the text above we men-
tion startModel function’s arguments only.

The equation type is defined by startModel function’s argument equation that
can take value ”withWeight” which is default one and ”withoutWeight”. The
argument defines the presence or absence of body weight effect in the model
(see Eq1 and Eq2). In case when there are no body weight records in the
dataset startModel sets equation argument to ”withoutWeight” automati-
cally.

startModel function creates start fully loaded model and modifies it after
testing of different hypothesis. As was described in the previous theory
section the model view is influenced by the number of criteria. Each cri-
teria or effect (body weight effect, residual variances homogeneity, sex effect,
genotype by sex interaction effect, batch effect) is evaluated individually
and TRUE/FALSE values are assigned to the appropriate sections of Phen-
TestResult object based on evaluation results. TRUE value means that effect
is significant and will be modelled. FALSE value means deletion of the effect
from the model.

The package allows to assign user defined values to the effects of the model.
If user would like to assign TRUE/FALSE values to the effects of the model
that differ from calculated ones then (s)he has to define keepList argument
of startModel functions which is a list of TRUE/FALSE values for each
one criterion in the following order: is batch effect significant, are resid-
ual variances homogeneous, is body weight effect significant, is sex effect
significant, is sex by genotype interaction effect significant. For instance,
keepList=c(TRUE, TRUE, TRUE, TRUE, TRUE) defines the fully loaded
model will all possible fixed effects with homogeneous residual variances; in
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turn keepList=c(FALSE, FALSE, TRUE, TRUE, TRUE) defines the fully
loaded model without random effects and with heterogeneous residual vari-
ances.

startModel function checks user defined effects for consistency (for instance,
if there are no ”Weight” column in the dataset then weight effect can’t be as-
signed to TRUE, etc.) and prints out both calculated and user defined effects
(only when outputMessages argument is set to TRUE) for the user’s conve-
nience. Note: user defined effects have a priority over calculated (evaluated)
effects.

The result of the startModel function is MM start model with reduced non-
significant effects stored in the PhenTestResult object together with the eval-
uated or user defined effects. It is important to mention here the convergency
problem. If for some reason, the selected model is failing to converge we sim-
plify it by selecting the similar but simplier model and try to fit again. For
instance, if model with heterogeneous residuals is not converging then model
with homogeneous residuals will be selected.

The next step of MM framework: evaluation of genotype effect and fitting of
selected model using REML is implemented in package’s function finalModel.
The results are added into the PhenTestResult object. PhenTestResult object
at the end of the MM framework contains model formula, significances of the
effects, genotype evaluation results and model fitting results including effect
sizes.

By default both functions (startModel and finalModel) will be called from
testDataset manager one after another. We’ve made this logical separation of
functionality in order to add more flexibility for the statisticians. Basically,
it means that a user can check the evaluation of fixed effects and the selected
model before final model fitting. This kind of ”debugging” functionality
allows the user to change some of the arguments of functions and start the
model building process from scratch if needed.

We believe that the possibility to change mixed models framework behaviour
as described above will help users to go deeper into details of the modelling
process, as well as debug and compare the results from different models.

# Default behaviour

> result <- testDataset(test,depVariable="Bone.Area", equation="withoutWeight")

Information:

Dependent variable: ’Bone.Area’.

Information:
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Method: Mixed Model framework.

Information:

Calculated values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=FALSE.

Information:

Equation: ’withoutWeight’.

Information:

Perform all MM framework stages: startModel and finalModel

# Perform each step of the MM framework separatly

> result <- testDataset(test,depVariable="Bone.Area", equation="withoutWeight",callAll=FALSE)

Information:

Dependent variable: ’Bone.Area’.

Information:

Method: Mixed Model framework.

Information:

Calculated values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=FALSE.

Information:

Equation: ’withoutWeight’.

# Estimated model effects

> result$model.effect.batch

[1] TRUE

> result$model.effect.variance

[1] TRUE

> result$model.effect.weight

[1] FALSE

> result$model.effect.sex

[1] TRUE

> result$model.effect.interaction

[1] FALSE

> result$numberSexes

[1] 2

# Change the effect values: interaction effect will stay in the model

> result <- testDataset(test,depVariable="Bone.Area",

equation="withoutWeight",keepList=c(TRUE,TRUE,FALSE,TRUE,TRUE),callAll=FALSE)

Information:

Dependent variable: ’Bone.Area’.
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Information:

Method: Mixed Model framework.

Information:

User’s values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=TRUE.

Information:

Calculated values for model effects are: keepBatch=TRUE, keepVariance=TRUE,

keepWeight=FALSE, keepSex=TRUE, keepInteraction=FALSE.

Warning:

Calculated values differ from user defined values for model effects.

Information:

Equation: ’withoutWeight’.

> result <- finalModel(result)

> summaryOutput(result)

...

4.2.4 Diagnostics

There are two functions we’ve implemented for the automated diagnostics
and classification of MM framework results: testFinalModel and classifica-
tionTag.

The first one performs diagnostic tests to assess the MM quality of fit. This
includes normality tests for the two genotype levels residuals, BLUPs (best
linear unbiased prediction) and “rotated” residuals (Houseman et al. (2004))
(last two only if applicable). There is only one argument of the function
which is PhenTestResult object. There are no arguments checks assuming
that function is called internally from the finalModel function. Consequently
if calling directly it should be used with precaution.

testFinalModel returns list of the following values:

• Reference genotype value.

• Normality test result (p-value) for the reference genotype’s residuals.

• Test genotype value.

• Normality test result (p-value) for the test genotype’s residuals.
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• BLUPs normality test result (p-value); applicable only when there is
batch random effects in the model, otherwise set to NA.

• “Rotated” residuals normality test result (p-value); applicable only
when there is batch random effects in the model, otherwise set to NA.

BLUP in statistics is best linear unbiased prediction and is used in linear
mixed models for the estimation of random effects. See tutorial BLUPs for
more details.

“Rotated” residuals are constructed by multiplying the estimated marginal
residual vector by the Cholesky decomposition of the inverse of the estimated
marginal variance matrix. The resulting “rotated” residuals are used to con-
struct an empirical cumulative distribution function and pointwise standard
errors. See Cholesky Residuals for Assessing Normal Errors in a Linear Model
with Correlated Outcomes: Technical Report for more details about “ro-
tated” residuals.

4.2.5 Classification Tag

classificationTag function returns a classification tag to assign a sexual di-
morphism assessment of the phenotypic change from the results of MM frame-
work.

> testFinalModel(result)

[1] "+/+" "0.0560133469740866" "Sparc/Sparc"

[4] "0.816672883686998" "0.345325318416593" "0.0480124939288989"

> classificationTag(result)

[1] "With phenotype threshold value 0.01 - both sexes equally"

When the function is called through vectorOutput function, the tag shown
in Figure 7 will be proceeded by the phrase “If phenotype is significant”,
meaning that globally the test has not assessed whether there was a statisti-
cal significant difference just that if there was this would be the classification
if it was statistically significant. When the function is called through sum-
maryOutput function or directly there is an argument phenotypeThreshold
(default value is 0.01), which sets the significance threshold of whether there
is a phenotype of interest. If globally, the analysis indicates there is a sta-
tistically significant phenotype then the classification tag is appended to the
phrase “With phenotype threshold value XXX”.

The Mammalian Phenotype Ontology is under development as a community
effort to provide standard terms for annotating mammalian phenotypic data
and is housed and managed by the JAXS laboratory (see MP ontology).
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Figure 7: Assigning a classification tag. The output of the mixed model
framework is queried to assign a classification tag of how the observed phe-
notype was observed across the two sexes. Within the decision tree, the
question “Is the effect the same for both sexes? “ is asking whether mathe-
matically was there an interaction between the genotype and sex. Occasion-
ally the procedure will find that there was a significant interaction but when
it comes to identifying how this occurred and quantifying the effect for each
sex, there is insufficient power. In this scenario the classification returned
states that it “cannot classify the effect”.
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Figure 8: Assigning a Mammalian Phenotype (MP) ontology term in the
presence of sexual dimorphism.

With the mixed model implementation, the output is very rich and a clas-
sification tag can be appended to the MP term to give richer information
on the observed phenotype (e.g. abnormal circulating sodium levels – both
sexes equally). Figure 8, details the decision tree that can be used with the
MM output to interpret the results such a ontology term can be discerned
and an annotation tag added when appropriate.

4.2.6 Model Failures and Jitter

In this section, we would like to discuss failure of model fitting and the
potential use of jitter. At times, the model fitting process with the MM
methodology would struggle to fit a model. In these instances, the PhenStat
method would return an error message stating that the software can’t fit
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Figure 9: Mean corpuscular volume distribution for a dataset comparing a
wildtype group (coded as 1) and a knockout group (coded as 3) of male mice.
When PhenStat processes this data, models are not estimated as the software
fails to converge on a solution and estimate the parameters, thus the software
returns the error “Error: Can’t fit the model ... Try to add jitter or RR plus
method.”

the the model and suggest that you could try jitter or an alternate method
such as reference range approach. For example, this was seen with a Mean
Corpuscular Volume dataset which had data only for male mice and the
knockout mice had little variation as the majority of readings were 43 fl
(shown in Fig. 9).

> file <- system.file("extdata", "test_jitter.csv", package="PhenStat")

> dataset_jitter <- read.csv(file)

> test_jitter <- PhenList(dataset=dataset_jitter,

testGenotype="3", refGenotype="1",

dataset.values.missingValue="null")

> result <- testDataset(test_jitter, depVariable="MCV",

equation="withoutWeight")

Information:

Dependent variable: ’MCV’.

Information:

Perform all MM framework stages: startModel and finalModel.

Information:
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Method: Mixed Model framework.

Error:

Can’t fit the model MCV ~ Genotype. Try to add jitter or RR plus method.

Jitter is a function that adds a small amount of noise to a variable. The
noise is added randomly at 1000th of the signal difference for that variable.
In the example shown, the additional of noise allows the model to converge
and estimate the values.

Code to add jitter and process the new variable:

> test_jitter@datasetPL$MCVWITHjitter <- jitter(test_jitter@datasetPL$MCV,

factor =((max(test_jitter@datasetPL$MCV) - min(test_jitter@datasetPL$MCV)) / 1000))

> result_jitter <- testDataset(test_jitter, depVariable="MCVWITHjitter",

equation="withWeight")

Information:

Dependent variable: ’MCVWITHjitter’.

...

> summaryOutput(result_jitter)

Test for dependent variable:

*** MCVWITHjitter ***

Method:

*** Mixed Model framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: MCVWITHjitter ~ Genotype

Was batch significant? TRUE

Was variance equal? FALSE

Genotype p-value: 7.872660e-03

Genotype effect: 1.3082 +/- 0.4792

Was there evidence of sexual dimorphism? no (p-value NA)

Genotype percentage change Male: 2.83%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - a significant change for the one sex tested

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error DF t-value p-value
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(Intercept) 46.293656 0.4869087 238 95.076670 2.551272e-191

Genotype3 1.308178 0.4792010 238 2.729914 6.808624e-03

4.2.7 Reporting Biological Effect

The biological effect is reported in two formats: model estimate and a per-
centage change.

The first measure is on a scale specific to that variable; whilst the second
is relative to the global signal and thus is scaled comparable across vari-
ables.

The model estimate is in the scale of the variable and is the estimated change
arising from being a knockout animal relative to the reference data. In the
presence of sexual dimorphism the model estimate is estimated separately for
the male and female knockout animals. In the summaryOutput view these
estimates are reported in the ANOVA table. In the vectorOutput view these
values are captured and reported as either Genotype estimate or Sex FvKO
estimate and Sex MvKO estimate depending on whether sexual dimorphism
was found to be significant.

The percentage change is the ratio of the genotype effect for a sex relative
to the global average signal for that variable. The figures 10 and 11 show
the various models and how the percentage change is estimated. The global
average here is the mean value of all values from the variable of interest. The
calculated percentage changes are in the summaryOutput and reported in
the vectorOutput as ”Genotype percentage change Male” and/or ”Genotype
percentage change Female”.

See Figures 10 and 11 for the percentage change calculation details.

Figure 10: Calculation of the percentage change for model without weight

Example calculation:

> file <- system.file("extdata", "test1.csv", package="PhenStat")

> test <- PhenList(dataset=read.csv(file), testGenotype="Sparc/Sparc")
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Figure 11: Calculation of the percentage change for model that includes
weight

...

> result <- testDataset(test,depVariable="Lean.Mass",

method="MM", equation="withoutWeight", transformValues=FALSE)

...

> summaryOutput(result)

Test for dependent variable:

*** Lean.Mass ***

Method:

*** Mixed Model framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Lean.Mass ~ Genotype + Sex

Was batch significant? TRUE

Was variance equal? TRUE

Genotype p-value: 6.751997e-04

Genotype effect: -1.8618 +/- 0.5418

Was there evidence of sexual dimorphism? no (p-value 6.330802e-01)

Genotype percentage change Female: -9.17%

Genotype percentage change Male: -9.17%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - both sexes equally

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error DF t-value p-value

(Intercept) 18.440648 0.1696796 412 108.679253 2.044168e-305

GenotypeSparc/Sparc -1.861759 0.5417867 412 -3.436332 6.495823e-04

SexMale 4.209940 0.1607472 412 26.189818 1.018842e-89

> mean_all <- mean(test@datasetPL[,c("Lean.Mass")],na.rm=TRUE)
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[1] 20.30544

Genotype percentage changeMale = (−1.861759/20.30544) ∗ 100 = −9.17%

GenotypepercentagechangeFemale = (−1.861759/20.30544)∗100 = −9.17%

If the weight is included in the fitted model the results are different:

> result <- testDataset(test,depVariable="Lean.Mass",

method="MM", equation="withWeight", transformValues=FALSE)

> summaryOutput(result)

Test for dependent variable:

*** Lean.Mass ***

Method:

*** Mixed Model framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Lean.Mass ~ Genotype + Sex + Weight

Was batch significant? TRUE

Was variance equal? FALSE

Genotype p-value: 3.715089e-01

Genotype effect: -0.2914 +/- 0.3305

Was there evidence of sexual dimorphism? no (p-value 1.022353e-01)

Genotype percentage change Female: -1.44%

Genotype percentage change Male: -1.44%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - no significant change

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error DF t-value p-value

(Intercept) 7.6111388 0.58862654 411 12.9303357 2.512303e-32

GenotypeSparc/Sparc -0.2914357 0.33047985 411 -0.8818562 3.783700e-01

SexMale 1.6407343 0.18080930 411 9.0743913 4.791912e-18

Weight 0.3430502 0.01808121 411 18.9727422 4.147891e-58

> mean_all <- mean(test@datasetPL[,c("Lean.Mass")],na.rm=TRUE)

[1] 20.30544
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GenotypepercentagechangeMale = (−0.2914357/20.30544)∗100 = −1.44%

GenotypepercentagechangeFemale = (−0.2914357/20.30544)∗100 = −1.44%

4.3 Time Fixed Effect Framework

Time Fixed Effect framework manages data variation by estimating each
batch effect to separate it from genotype.

4.3.1 Motivation

Through high throughput phenotyping programs, such as EUMODIC, where
data was systematically collected on one genetic background, the significant
sources of variation can be identified and it became obvious that batch (de-
fined here as those readings collected on a particular day) can lead to large
variation in phenotyping variables Karp et al. (2012). A high throughput
phenotyping program will have a well-defined phenotyping pipeline which
consists of a sequence of phenotyping procedures carried out at specific ages.
To date, standardisation has focused on the experimental methods by which
data were collected [5,6]. However the workflow – the practical implementa-
tion of a pipeline – varies from center to center. Each center’s workflow is
a balance of resources, other goals (e.g. allowing for additional phenotyping
depending on earlier results) and throughput requirements. Differences in
the number and frequency of controls, whether knockout animals are phe-
notyped at one time or in multiple batches, and blinding methodologies are
the most important variables. One strategy implemented is to accept that
animals for a knockout line are obtained in small batches due to fertility or
fecundity issues, but with each small batch control animals are concurrently
phenotyped. This allows an analysis using a regression method where batch
is treated as a fixed effect. We have called this analysis framework “Time
Fixed Effect”.

4.3.2 Theory

There are two possible start models, depending on whether weight is included
as a factor (see Eq3 for the model without weight and Eq4 for the model
including weight).
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depV ariable v Genotype+ Sex+Genotype ∗ Sex+Batch (Eq3)

depV ariable v Genotype+Sex+Genotype∗Sex+Weight+Batch (Eq4)

The same top-down approach can be used here as in Mixed Models frame-
work for the model optimization process. When batch is insignificant then
the Mixed Model formula is the same as Time Fixed Effect framework’s for-
mula.

As in the case of Mixed Model framework the final model construct is influ-
enced by a number of criteria. The only one difference is that there are no
random effects in the model.

The following criteria (effects) are considered:

• Batch effect (batch variation). NB! In TF framework batch effect is a
fixed effect.

• Residual variances homogeneity where homogeneous residual variances
means the variance for all genotype levels is tested equivalent.

• Body weight effect. Considered only when Eq4 is used.

• Sex effect. Considered only when there are more than one sex in the
dataset.

• Genotype by sex interaction effect. Considered only when there are
more than one sex in the dataset.

The selection of model is influenced by the batch effect – is batch in the
dataset, and if so, is it significant in explaining variation in the dependent
variable – and a covariance structure for the residuals that can be homoge-
neous or heterogeneous. The selected model is then modified by reducing
non-significant effects. When the final model is selected and reduced, the
genotype effect is assessed by comparing a genotype and null model fitted
with maximum likelihood evaluation method (ML). Finally, the final geno-
type model is refitted using restricted maximum likelihood evaluation method
(REML) to get unbiased estimates of the variance parameters.

4.3.3 Implementation

The analysis requires the removal of dates which are not concurrent with
knockout animals. This is achieved by the TFDataset function that goes
through all dataset’s records and removes ones that don’t have data in test
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genotype and in reference genotype for the same batch level (assay date)
at least for one sex. Summary statistics on the cleaning impact are then
provided following the table of data.

See the example below:

> file <- system.file("extdata", "test7_TFE.csv", package="PhenStat")

> test <- PhenList(dataset=read.csv(file),

testGenotype="het",

refGenotype = "WT",

dataset.colname.sex="sex",

dataset.colname.genotype="Genotype",

dataset.values.female="f",

dataset.values.male= "m",

dataset.colname.weight="body.weight",

dataset.colname.batch="Date_of_procedure_start")

...

> test_TF <- TFDataset(test,depVariable="Cholesterol")

Data points containing ’Cholesterol’ by batch levels:

| ----------- | ----------- | ----------- | ----------- | ----------- |

| | WT | WT | het | het |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| Batch | Female | Male | Female | Male |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 02.09.2013 | 7 | 4 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 03.02.2014 | 0 | 1 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

...

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 13.01.2014 | 4 | 2 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 13.05.2013 | 7 | 5 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 14.01.2014 | 5 | 7 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 14.04.2014 | 0 | 4 | 4 | 3 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 14.10.2013 | 7 | 5 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 15.07.2013 | 5 | 5 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 16.06.2014 | 8 | 8 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 16.09.2013 | 2 | 3 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 17.02.2014 | 6 | 4 | 3 | 4 |

| ----------- | ----------- | ----------- | ----------- | ----------- |
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| * 17.03.2014 | 4 | 5 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 18.02.2014 | 0 | 3 | 2 | 3 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 18.03.2014 | 4 | 3 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

...

* - removed record(s)

Number of batch levels left: 3

Records removed (reference genotype): 92%

Records removed (test genotype): 0%

...

result <- testDataset(test_TF,depVariable="Cholesterol",method="TF")

Information:

Dependent variable: ’Cholesterol’.

Information:

Perform all TF framework stages: startTFModel and finalTFModel.

Information:

Method: Time as Fixed Effect framework.

Information:

Equation: ’withWeight’.

Information:

Calculated values for model effects are: keepBatch=TRUE, keepEqualVariance=FALSE, keepWeight=TRUE,

keepSex=FALSE, keepInteraction=TRUE.

The cleaned dataset contains only three batches which correspond to con-
current control approach.

| ----------- | ----------- | ----------- | ----------- | ----------- |

| | WT | WT | het | het |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| Batch | Female | Male | Female | Male |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 14.04.2014 | 0 | 4 | 4 | 3 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 17.02.2014 | 6 | 4 | 3 | 4 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 18.02.2014 | 0 | 3 | 2 | 3 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

Similarly to the MM framework there are two functions in the PhenStat
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package that implements the Time Fixed Effect framework:

• startTFModel function evaluates model’s criteria and stores the result
in the PhenTestResult object;

• finalTFModel function builds the final model using the model’s cri-
teria from PhenTestResult object and fits the model using restricted
maximum likelihood method (REML).

By default, both functions will be called from testDataset manager sequen-
tially.

4.3.4 Diagnostics

The vectorOutput function includes statistical tests for normality on the
residuals for the wildtype and residuals for the knockout (see section 4.2.4).
These normality tests are provide to assist in the building automated tools
for assessing model fit, however when there is a lot of data, the statistical test
can be overall sensitive to departures from normality and when the number
of data points is low, the test can lack ability to detect deviations from
normality.

The normality tests are driven by the function testFinalModel and it returns
a list of the following values:

1. Reference genotype value.

2. Normality test result (p-value) for the reference genotype’s residuals.

3. Test genotype value.

4. Normality test result (p-value) for the test genotype’s residuals.

5. NA

6. NA

For example:

> testFinalModel(result)

[1] "WT" "0.803172853943264" "het"

[4] "0.788809875034823" NA NA

Graphical methods are the recommended method for assessing model fits.
Model fit quality can also be assessed graphically using qqplotGenotype, box-
plotResidualBatch and plotResidualPredicted (see case study example 10.2
for example usage).
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4.3.5 Classification Tag

The classificationTag function returns a classification tag to assign a sexual
dimorphism assessment of the phenotypic change from the results of the TF
framework. Figure 7 shows the decision tree that is used to determine the
tag assigned.

> classificationTag(result)

[1] "With phenotype threshold value 0.01 - both sexes equally"

When the function is called through vectorOutput function, the tag will be
proceeded by the phrase “If phenotype is significant”, meaning that globally
the test has not assessed whether there was a statistical significant difference
just that if there was this would be the classification if it was statistically
significant. When the function is called through summaryOutput function
or directly there is an argument phenotypeThreshold (default value is 0.01),
which sets the significance threshold of whether there is a phenotype of in-
terest. If globally, the analysis indicates there is a statistically significant
phenotype then the classification tag is appended to the phrase “With phe-
notype threshold value XXX”.

4.3.6 Reporting Biological Effect

Within Time Fixed Effect framework the biological effect is also reported
in two formats: model estimate and a percentage change. The meaning of
the calculated values is the same as in Mixed Model framework. Please see
section 4.2.7 for details.

4.4 Fisher Exact Test Framework

Fisher Exact Test is a standard framework for categorical data which com-
pares data proportions and calculates the percentage change in classifica-
tion.

4.4.1 Motivation

A Fisher Exact Test was chosen as most abnormal phenotype traits are rare
event thus the signal is low. Batch is not considered significant because
day to day variation does not effect abnormality call for these types of vari-
ables.
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4.4.2 Implementation

The Fisher Exact Test is implemented with basic R functions from the stats
package after the construction of count matrices (also called chi squared
tables) from the dataset.

Together with count matrices we also calculate percentage matrices for effect
size calculation.

From the chi squared table statistical significance is assessed using a Fisher
Exact Test whilst the biological significance is estimated by an effect size (see
section 10.4.4 for more details).

These are calculated separately for 3 subsets (if there are multiple sex values
in the dataset):

• combined dataset (regardless the sex values),

• males only subset,

• females only subset.

All results are stored in PhenTestResult object:

> file <- system.file("extdata", "test_categorical.csv", package="PhenStat")

> dataset_cat <- read.csv(file)

> test_cat <- PhenList(dataset=dataset_cat, testGenotype="Aff3/Aff3")

Warning:

Dataset’s column ’Assay.Date’ has been renamed to ’Batch’ and will be used for the batch effect modeling.

Warning:

Dataset has been cleaned by filtering out records with genotype value

other than test genotype ’Aff3/Aff3’ or reference genotype ’+/+’.

Warning:

Dataset’s ’Weight’ column is missed.

You can define ’dataset.colname.weight’ argument to specify column

for the weight effect modeling. Otherwise you can only use mixed model equation ’withoutWeight’.

Information:

Dataset’s ’Genotype’ column has following values: ’+/+’, ’Aff3/Aff3’

Information:

Dataset’s ’Sex’ column has following value(s): ’Female’, ’Male’

> result_cat <- testDataset(test_cat,

depVariable="Thoracic.Processes",
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method="FE")

Information:

Dependent variable: ’Thoracic.Processes’.

Information:

Method: Fisher Exact Test framework.

> result_cat@depVariable

[1] "Thoracic.Processes"

> getVariable(result_cat)

[1] "Thoracic.Processes"

> result_cat@method

[1] "FE"

> method(result_cat)

[1] "FE"

> noSexes(result_cat)

[1] 2

# Chi squared table for all data

> getCountMatrices(result_cat)$all

+/+ Aff3/Aff3

Abnormal 142 12

Normal 753 1

# Chi squared table for males only records

> getCountMatrices(result_cat)$male

+/+ Aff3/Aff3

Abnormal 59 5

Normal 390 1

# Percentage matrix for all data

> result_cat$model.output$percentage_matrix_all

+/+ Aff3/Aff3 ES change

Abnormal 16 92 76

Normal 84 8 76

# Percentage matrix for females only records

> getPercentageMatrix(analysisResults(result_cat)[[3]])

+/+ Aff3/Aff3

Abnormal 15.86592 92.307692

Normal 84.13408 7.692308

# Effect size for all data

> analysisResults(result_cat)[[1]]@ES

[1] 76
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# Effect size for females only records

> analysisResults(result_cat)[[3]]@ES

[1] 81

# Fisher Exact Test results for all data

> analysisResults(result_cat)[[1]]@modelOutput

Fisher’s Exact Test for Count Data

data: count_matrix_all

p-value = 4.844e-09

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.0003770171 0.1096287774

sample estimates:

odds ratio

0.0159923

# p-value for all data

> pvalue(analysisResults(result_cat)[[1]])

[1] 4.844291e-09

The same data as shown in examples can be obtained by using output func-
tions of the package: summaryOutput, vectorOutput and vectorOutputMatri-
ces. See section 8 for more details.

If there is only one level for the dependent variable in the dataset e.g. ”Nor-
mal“ then the package will add level ”Other” into the count matrices for
consistency. All values for this level will be set to 0. The following is an
example of such case:

> file <- system.file("extdata", "test_categorical_normal.csv", package="PhenStat")

> dataset_cat_normal <- read.csv(file)

> test2 <- PhenList(dataset=dataset_cat_normal, testGenotype="Aff3/Aff3")

> result2 <- testDataset(test2,depVariable="Thoracic.Processes", method="FE")

> levels(factor(result2@analysedDataset$Thoracic.Processes))

[1] "Normal"

> summaryOutput(result2)

Test for dependent variable:

*** Thoracic.Processes ***

Method:

*** Fisher Exact Test framework ***

----------------------------------------------------------------------------

Model Output (’*’ highlights results with p-values less than threshold 0.01)

----------------------------------------------------------------------------

All
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p-value: 1.0000

Effect size: 0%

Males only

p-value: 1.0000

Effect size: 0%

Females only

p-value: 1.0000

Effect size: 0%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

Not significant

----------------------------------------------------------------------------

Count Matrices

----------------------------------------------------------------------------

All

+/+ Aff3/Aff3

Normal 895 13

Other 0 0

Males only

+/+ Aff3/Aff3

Normal 449 6

Other 0 0

Females only

+/+ Aff3/Aff3

Normal 446 7

Other 0 0

4.4.3 Classification Tag

We’ve implemented the function classificationTag also for the FE framework.
However, in the case of Fisher Exact Test it is not sexual dimorphism clas-
sification, but rather the overall estimation of the signals significance across
the different datasets.

Having the Fisher Exact Test results for three datasets: males only, females
only, all (combined set) the p-values are compared with phenotypeThreshold
argument which default value is 0.01. For each one set the function calculates
is genotype significant or not (significant if p-value is less than phenotype-
Threshold) and then assigns classification tag. In the Table 8, the possible
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classification tags are presented.

No
sexes

Genotype significant in Classification Tag

general males
only

females
only

combined
set

1 yes - - yes Significant for the sex tested
1 no - - no Not significant
2 no no no no Not significant
2 yes no no yes Significant in males and in combined

dataset
2 yes no yes no Significant in females dataset only
2 yes yes no no Significant in males dataset only
2 yes yes no yes Significant in males and in combined

dataset
2 yes yes yes no Significant in males and in females

dataset
2 yes no yes yes Significant in females and in combined

dataset
2 yes yes yes yes Significant in males, females and in

combined dataset

Table 8: Classification tag assignment by using Fisher Exact Tests results
for three sets: males only, females only, all (combined set).

4.5 Reference Range Plus Framework

At times phenotyping data has been collected in such a way, that typical
analysis routes are not considered reliable. The conservative, easy to under-
stand reference range method (RR framework) can have a role in identifying
phenodeviants.

4.5.1 Theory

The reference range methodology is considered a conservative method where
data are classed normal, low or high depending on whether they lie within
the natural variation seen within the control.
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Figure 12: Control data are used to find the ranges for normal, low and high
classifications.

Once the data are classified by using the ranges calculated from control data,
then a Fisher Exact Test is used to compare the movement towards the low
or high classification.

Figure 13: Fisher Exact Test is used to calculate p-values.

4.5.2 Implementation

The RR methodology is driven from the testDataset function manager. To
analyse the data using the RR methodology the argument method needs to
be set to ”RR”. For the RR methodology there are a number of additional
arguments that determine how the RR is executed. The RR naturalVariation
argument (defaults to 95, minimal value is set to 60) determines how much
of the data is classified as normal and thus is used in the calculations of the
classification threshold. The thresholds are determined using a percentile
method, which avoids any distribution assumptions. For example, when
RR naturalVariation defaults to 95, then 95% of the data will be classed as
normal, i.e. the 2.5 and 97.5 percentile thresholds of the dependent variable
are used to define the boundaries of normal.

The RR controlPointsThreshold argument (defaults to 60) determines the
minimum number of data points per sex that are used to determine a ref-
erence range. Since the mathematical minimum is recommended as 40 data
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points (see Solberg (1983) for details) RR controlPointsThreshold minimal
value is also set to 40.

Data is analysed in three ways: 1) male only, 2) female only, and 3) all
(combined dataset). In the all classification, the classifications of normal, low,
and high are combined in the count table but please note the classification
to normal, low, or high are run on a sex specific basis. In the situation where
only one sex is present the output is returned in the all category.

If we had compared normal vs low and high classification simultaneously
there would have been a potential problem of having a highly significant p-
value yet an ES that is low. This can arise when there is movement away
from the normal classification to both a low and high classification at the
same time. As people want to use one filter this was a problem.

Our solution is to compare movement towards low separately from move-
ment towards high classifications. As a result an adjustment for the multiple
testing is needed (we use simple multiplication of p-value by two) since there
are two tests performed: low vs normal/high (low classification) and high vs
normal/low (high classification).

The effect size calculated is the maximum percentage change seen in the low
and high classification. For each trait level (i.e. the observed phenotype),
the change in percentage effect size is seen by subtracting the percentage
observed in the knockout from the control.

All results are stored in PhenTestResult object:

> file <- system.file("extdata", "test_Akt2.csv", package="PhenStat")

> DEXAdata <- read.csv(file)

> test <- PhenList(dataset=DEXAdata,

testGenotype="Akt2/Akt2",

refGenotype="WT",

dataset.colname.batch="dateOfExperiment",

dataset.values.female="female",

dataset.values.male="male",

dataset.colname.genotype="Genotype",

dataset.colname.sex="Gender")

...

> result <- testDataset(test,

depVariable="Lean.Mass",

method="RR")

...

> summaryOutput(result)

Test for dependent variable:

*** Lean.Mass ***
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Method:

*** Reference Ranges Plus framework ***

1) High vs Normal/Low

All Females only Males only

p-value 1.0000 1.0000 1.0000

ES 3% 3% 3%

2) Low vs Normal/High

All Females only Males only

p-value 0.0000 0.0000 0.0000

ES 59% 72% 47%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - significant in males (Low), females (Low) and in combined dataset (Low)

----------------------------------------------------------------------------

Thresholds

----------------------------------------------------------------------------

Natural variation: 95

Min control points: 60

Normal values ’males only’: 18.10925 to 30.0315

Normal values ’females only’: 14.38975 to 23.52675

----------------------------------------------------------------------------

Count Matrices

----------------------------------------------------------------------------

All

WT Akt2/Akt2

Low 30 16

Normal/High 1116 10

All

WT Akt2/Akt2

High 30 0

Normal/Low 1116 26

Females only

WT Akt2/Akt2

Low 15 9

Normal/High 559 3

Males only

WT Akt2/Akt2

Low 15 7

Normal/High 557 7
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Females only

WT Akt2/Akt2

High 15 0

Normal/Low 559 12

Males only

WT Akt2/Akt2

High 15 0

Normal/Low 557 14

4.5.3 Classification Tag

We’ve also implemented the function classificationTag for the RR frame-
work with the same restrictions as for Fisher Exact Test – it is not sexual
dimorphism classification, but rather the overall estimation of the signals
significance across various datasets.

The table of possible classification tags is very similar to the Fisher Exact Test
classification table (see Table 8) with one additional element: next to each one
dataset name (males only, females only, combined) we added the classification
movement value. The possible values are ”Low, ”High” and ”NA”. ”NA”
value is assigned when there are both low and high classifications significant
for the particular subset.

For example, if in all three subsets the genotype is significant and movement
is classified as ”high” the classification tag is ”Significant in males (High),
females (High) and in combined dataset (High)”.

4.6 Logistic Regression Framework

Logistic Regression Framework is a framework suitable for categorical data
when the variable of interest has been recoded to 0 and 1. This method
models the relationship between the variable of interest and a number of
independent variables assessing the impact of sex, genotype and whether the
genotype effect depends on the sex.

4.6.1 Motivation

The logistic regression allows the assessment of the genotype impact on phe-
notype for both sexes simultaneously and allows a statistical assessment of
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whether the genotype effect has a sexual dimorphic element. The inclusion
of both sexes simultaneously increases statistical power and by the inclusion
of a sexual dimorphic assessment allows a more refined assessment of the
genotype effect.

The approach implemented uses the ”logistf” package of R, which is a bi-
ased reduction logistic regression which provides a refinement to the logistic
regression method to allow studies with rare event categorical data Heinze
(2006).

The ”logistf” package does not support the inclusion of random effects which
was used in the MM framework to model batch in high throughput studies.
This is not an issue for the majority of genotype-phenotype studies on cate-
gorical data as the phenotype traits are typically rare events studies looking
for rare abnormal phenotypes and day to day variation would not influence
this phenotype.

4.6.2 Theory

The method starts with equation X

depVariable = Genotype + Sex + Genotype * Sex (EqLR)

depV ariable v Genotype+ Sex+Genotype ∗ Sex (Eq5)

The same top-down approach is used here as in Mixed Models framework
for the model optimization process, though the model optimisation steps are
fewer compared to the mixed model method. The optimisation considers two
aspects assessing whether they statistically significant (p-value less than 0.05)
in explaining variation in the model before selecting the final model:

• Sex effect. Considered only when there are more than one sex in the
dataset.

• Genotype by sex interaction effect. Considered only when there are
more than one sex in the dataset.

As an exploration validation test, we have built a routine in to assess whether
batch was significant however it cannot influence the final fitted model as
the biased reduction methodology used here cannot work with random ef-
fects.

When the final model is selected and reduced, the genotype effect is assessed
by comparing a genotype and null models. Finally, the final genotype model

58



is fitted to estimate the effects associated with each term included in the
model.

Unlike standard regression which returns estimates (coefficients) that predict
the change in the dependent variable for one unit change in the independent
variable, Logistic Regression is looking at probabilities. The Logistic Regres-
sion model estimates are still measures of the contribution to variations in
the dependent variable but as a log odd estimate. To increase interpretability
you can relate this back to the experiment by converting the estimate into
an odds ratio by calculating the exponential of the value (i.e. Eβ or exp(β)).
Where an odds ratio is an indicator of the change in odds resulting from a
unit change in the predictor. For example, with an odds ratio of 2 which
tells us that being a testGenotype animal leads to a 7.4 higher odds of being
abnormal.

4.6.3 Implementation

The analysis requires the recoding of the data to 0 and 1 where 0 is the refer-
ence phenotype and 1 is the abnormality. This is achieved by the LRDataset
function that recodes all abnormal phenotypes as 1 and the remainder as
0.

Similarly to the MM framework there are two functions in the PhenStat
package that implements the Logistic Regression Effect framework:

• startLFModel function evaluates model’s criteria and stores the result
in the PhenTestResult object;

• finalLFModel function builds the final model using the model’s criteria
from PhenTestResult object and assesses the genotype effect and fits
the final model.

By default, both functions will be called from testDataset manager sequen-
tially.

See the example below:

> file <- system.file("extdata", "test_categorical.csv", package="PhenStat")

> test <- PhenList(dataset=read.csv(file),

testGenotype="Aff3/Aff3")

> test2 <- LRDataset(test, depVariable="Thoracic.Processes",

abnormalValues="Abnormal")

> result2 <-testDataset(test2,depVariable="Thoracic.Processes",method="LR")

> summaryOutput(result2)
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Test for dependent variable:

*** Thoracic.Processes ***

Method:

*** Logistic Regression ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Thoracic.Processes ~ Genotype + Sex

Was batch significant? FALSE

Genotype p-value: 1.943939e-09

Genotype effect: 3.7983 +/- 0.9034

Was there evidence of sexual dimorphism? no (p-value 5.441219e-01)

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - both sexes equally

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error ci.lower ci.upper p-value

(Intercept) -1.4646494 0.1209814 -1.7077333 -1.23321580 0.000000e+00

GenotypeAff3/Aff3 3.7983232 0.9033813 2.3619588 6.02332990 1.943939e-09

SexMale -0.4251768 0.1840563 -0.7891747 -0.06661705 2.002838e-02

4.6.4 Classification Tag

The classificationTag function returns a classification tag to assign a sexual
dimorphism assessment of the phenotypic change from the results of the LR
framework. Figure 7 shows the decision tree that is used to determine the
tag assigned.

> classificationTag(result)

[1] "With phenotype threshold value 0.01 - both sexes equally"

When the function is called through vectorOutput function, the tag will be
proceeded by the phrase “If phenotype is significant”, meaning that globally
the test has not assessed whether there was a statistical significant difference
just that if there was this would be the classification if it was statistically
significant. When the function is called through summaryOutput function
or directly there is an argument phenotypeThreshold (default value is 0.01),
which sets the significance threshold of whether there is a phenotype of in-
terest. If globally, the analysis indicates there is a statistically significant
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phenotype then the classification tag is appended to the phrase “With phe-
notype threshold value XXX”.

4.6.5 Understanding the estimates

The model estimates represent change in the probability of being a member
of the modeled categories (e.g. female versus male or refGenotype versus
testGenotype). The estimated coefficients are expressed in log units and are
not directly interpretable. They can be converted to an odds ratio by taking
the coefficient and using it as the power to which the base of the natural
logarithm (2.71828) is raised, the result represents the change in the odds
of the modeled event associated with a one-unit change in the independent
variable (i.e. for sex going from female to male or for genotype going from
refGenotype to the testGenotype). If a coefficient is positive, its transformed
log value will be greater than one, meaning that the modeled event is more
likely to occur. If a coefficient is negative, its transformed log value will be
less than one, and the odds of the event occurring decrease. A coefficient of
zero (0) has a transformed log value of 1.0, meaning that this coefficient does
not change the odds of the event one way or the other.

5 Data Transformation

The testDataset function has an argument “transformValues” which can be
set to TRUE or FALSE. By default the value is set to FALSE meaning NOT
to perform transformation.

The ”MM” and ”TF” regression methods make an assumption of normally
distributed data. Unfortunately at times, a non-linear transformation is
needed to improve the distribution of the data to improve the model fitting
reliability. The Box-Cox transformation (Box and Cox (1964)) represents a
family of power transformations with a procedure to find the normalizing
transformation for each variable. The procedure returns the optimal lambda
value that specifies the transformation necessary and the procedure identifies
the value by testing a variety of lambda values. The Box-Cox power transfor-
mation is not a guarantee for normality as the procedure looks to minimise
standard deviation based on the assumption that the transformed data has
the highest likelihood to be normally distributed when the standard devia-
tion is the smallest. The Box-Cox transformation of the variable is defined
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as:

y′i =

{
(yi+scaleShift)

λ−1
λ

, if λ 6= 0

ln(yi + scaleShift), otherwise
(1)

The parameter λ is estimated using the profile-likelihood function. The pa-
rameter scaleShift is a scaling correction for negative data. The Box-Box
transformation incorporates many tradition transformations (table 9).

λ Transformation equivalent
Name Specification

0.5 Square root transformation
√
Y

0.33 Cube root transformation 3
√
Y

0.25 Fourth root transformation 4
√
Y

0 Log transformation ln(Y )
-0.5 Reciprocal square root transformation 1√

Y

-1 Reciprocal transformation 1
Y

-2 Reciprocal power 2 transformation 1
Y 2

Table 9: Relationship between lambda and common transformations.

PhenStat has an implementation of the Box-Cox transformation to determine
if a transformation is needed and if so how the data should be transformed.
Implementation steps:

1. Scaling assessment

The Box-Cox power transformation only works if all the data is positive
and greater than 0. This can be achieved by adding a scaling correction
(scaleShift) to all data before it is transformed. This value if required is
returned in both the summaryOutput and the vectorOutput functions.

2. Determine Lambda

The Box-Cox procedure is applied to the data taking into account struc-
ture in the data by specifying them as fixed effects and use profile-
likelihood techniques to derive the optimal λ and the 95% confidence
interval for λ.

3. Convert output to transformation requirement

• If the statistical method is ”FE”, ”LR” or ”RR” or if the user
has chosen to perform analysis without data transformation (test-
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Dataset function’s argument transformValues is set to FALSE)
then no transformation is needed (”lambda=NA, scaleShift=NA,
transformed=FALSE, code=0”)

• If the 95% confidence interval for λ includes 1 then no transforma-
tion is needed (”lambda=value, scaleShift=value, transformed=FALSE,
code=1”).

• If the λ value is between -0.1 and 0.1, at the same time 1 is not
included into the 95% confidence interval for λ then the value is
classed as 0 and a log transformation is performed (”lambda=0,
scaleShift=value, transformed=TRUE, code=2”).

• If the optimal λ value exceeds 5 or -5 then we consider that trans-
formation is not appropriate (”lambda=value, scaleShift=value,
transformed=FALSE, code=4”). This has been implemented as
with these large λ values the resulting transformed variable would
have values that were too large/small for meaningful regression
analysis. This can happen with small datasets or datasets that
are poorly suited to regression analysis (e.g. datasets with little
variation).

• For all other lambda values the implementation performs power
transformation using the optimal λ value (”lambda=value, scaleShift=value,
transformed=TRUE, code=3”).

VectorOutput results concerning transformation are classified in table 10.

Code λ Values transformed Comment
0 NA No Statistical method doesn’t required data

transformation or user requested to perform
without transformation.

1 value No According to test results transformation is
not needed.

2 0 Yes Log transformation is applied.
3 value Yes Power transformation is applied.
4 value No Optimal lambda value is not found within a

range of -5 to 5.

Table 10: VectorOutput values explaining transformation.

As shown in figure 14, the transformation recommended by PhenStat package
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lead to an improvement in the residual distribution improving the model
fit.

Figure 14: Impact of transformation on model residuals. Mixed model anal-
ysis of the Kcne2 knockout of blood plasma triglyceride data obtained at
the Wellcome Trust Sanger Institute. PhenStat transformation assessment
recommended a log transformation. A: Residuals obtained on fitting a model
to the raw data. B: Residuals obtained on fitting a model to the PhenStat
transformed data.

After transformation the model estimates are on a new scale and hence for
interpretability it can be useful to convert these values back to the original
scale. In the summaryOutput function, the genotype estimate and standard
error is converted and this is reported as “Genotype effect (original scale)”.
For a database users, or if you are interested in other model variables, below
are the conversion functions:

yi =

{
sign(y′i ∗ λ+ 1) ∗ |y′i ∗ λ+ 1| 1λ − scaleShift, if λ 6= 0

ey
′
i − scaleShift, otherwise

(2)

sign(x) =


1, if x > 0

0, if x = 0

−1, if x < 0
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6 PhenTestResult Object

The output of the testDataset function is the PhenTestResult object regard-
less the statistical method used. The following data are stored in this ob-
ject:

• a subset that actually was analysed (slot analysedDataset) with the fol-
lowing columns: original values of dependent variable, sex values and
genotype values, transformed values of dependent variable if transfor-
mation was applied, batch values and batch adjusted values of depen-
dent variable if batches are present in the dataset, weight values if
weight is in the dataset;

• a name of the variable that was analysed (slot depVariable);

• reference and test genotypes (slots refGenotype and testGenotype),

• information about transformation if it was applied (slots transforma-
tionRequired, lambdaValue and scaleShift);

• statistical method used and method’s parameters (slots method and
parameters);

• analysis results (slot analysisResults).

There is a number of useful methods available for the PhenTestResult object,
like batchIn and weightIn to figure out the batch/weight presence, noSexes
to get a number of sex values available in the dataset, etc.

If transformation of original data has been performed it is useful to plot
the dataset based graphics to see the transformation effect. In such a case
method called analysedDatasetPhenList will output the PhenList object with
transformed values. This object is used as an input argument for the graphic
functions.

There is also a method specific for regression analysis methods (MM, TF,
LR): getGenotypeEffect to get report of biological effect and a method specific
for the Fisher Exact Test based frameworks (FE, RR): getCountMatrices to
obtain all count matrices.

The content of the analysisResults slot depends on the statistical method that
has been used. It contains output of regression analysis for MM, TF and LR
frameworks and number of ”htest” objects with additional meta data (like
subset, classification, effect size, count matrix) for Fisher Exact Test based
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frameworks (FE, RR). ”htest” class is used by fisher.test function to return
Fisher Exact Test results.

”FE” framework returns analysisResults slot with a list of 3 (1 in case of
one sex only) extended ”htest” objects since there are three subsets: ”all”,
”males only”, ”females only”. ”RR” framework returns analysisResults slot
that contains a list of 6 (2 in case of one sex only) extended ”htest” object
since there are three subsets (”all”, ”males only”, ”females only”) and two
classifications (low and high).

There are special methods available for the extended ”htest” objects. For
example: matrixCount to get count matrix, getPercentageMatrix to obtain
percentage matrix, getColumnView to obtain p-value and ES value together
with meta data.

> file <- system.file("extdata", "test_Akt2.csv", package="PhenStat")

> DEXAdata <- read.csv(file)

> test <- PhenList(dataset=DEXAdata,

testGenotype="Akt2/Akt2",

refGenotype="WT",

dataset.colname.batch="dateOfExperiment",

dataset.values.female="female",

dataset.values.male="male",

dataset.colname.genotype="Genotype",

dataset.colname.sex="Gender")

> result <- testDataset(test,

depVariable="Lean.Mass",

method="RR")

# print out count matrices and percentage matrices for male only subset

> for (i in seq_along(analysisResults(result))) {

val <- analysisResults(result)[[i]]

if (analysedSubset(val)=="males"){

print(comparison(val))

print("Count matrix")

print(matrixCount(val))

print("Percentage matrix")

print(getPercentageMatrix(val))

}

}

[1] "Low vs Normal/High"

[1] "Count matrix"

WT Akt2/Akt2

Low 15 7

Normal/High 557 7

[1] "Percentage matrix"

WT Akt2/Akt2

Low 2.622378 50
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Normal/High 97.377622 50

[1] "High vs Normal/Low"

[1] "Count matrix"

WT Akt2/Akt2

High 15 0

Normal/Low 557 14

[1] "Percentage matrix"

WT Akt2/Akt2

High 2.622378 0

Normal/Low 97.377622 100

7 Method Recommendation for Dataset

Sometimes the analysis path to follow is obvious. For example, the variable
”head shape” with options ”Normal” or ”Abnormal” is clearly categorical
and therefore the Fisher Exact Test (FE) framework appropriate. At times,
it is however less obvious. An example, could be the variable ”number of
vertebrates”. Initial as this is a number this suggest continuous methods
(e.g. MM, TF or RR) however on inspection there is no variation and in fact
this variable is best treated as categorical. Based on our experience, we have
prepared a function called recommendMethod which explores the data and
makes recommendations on analysis that can be conducted. Please note, at
times multiple analysis paths could be suitable.

file <- system.file("extdata", "test1.csv", package="PhenStat")

test <- PhenList(dataset=read.csv(file),

testGenotype="Sparc/Sparc")

...

recommendMethod(test,"Lean.Mass")

...

[1] "MM and RR"

Function recommendMethod goes through all common and framework’s spe-
cific checks and makes recommendations according to the check failure/success
results.
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8 Output of Results

The PhenStat package stores the results of statistical analyses in the Phen-
TestResult object. For numeric summary of the analysis, there are two func-
tions to present PhenTestResult object data to the user: summaryOutput
that provides a printed summary output and vectorOutput that creates a
vector form output. These output forms were generated for differing users
needs.

8.1 Summary Output

The summaryOutput function supports interactive analysis of the data and
prints results on the screen.

The following is an example of summary output of MM framework:

# Mixed Model framework

> file <- system.file("extdata", "test1.csv", package="PhenStat")

> dataset1 <- read.csv(file)

> test <- PhenList(dataset=dataset1,

testGenotype="Sparc/Sparc",outputMessages=FALSE)

> result <- testDataset(test,

depVariable="Lean.Mass",outputMessages=FALSE, transformValues=TRUE)

> summaryOutput(result)

Test for dependent variable:

*** Lean.Mass, power transformed with lambda value = -0.7 ***

Method:

*** Mixed Model framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Lean.Mass ~ Genotype + Sex + Weight

Was batch significant? TRUE

Was variance equal? TRUE

Genotype p-value: 1.141215e-01

Genotype effect (original scale): 0.9962 +/- 1.0025

Was there evidence of sexual dimorphism? no (p-value 8.917040e-01)

Genotype percentage change Female: -0.31%

Genotype percentage change Male: -0.3%
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----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - no significant change

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error DF t-value p-value

(Intercept) 1.178594383 0.0033490036 411 351.923894 0.000000e+00

GenotypeSparc/Sparc -0.003843757 0.0024479122 411 -1.570219 1.171337e-01

SexMale 0.010122217 0.0010264122 411 9.861747 9.871536e-21

Weight 0.002009066 0.0001029706 411 19.511070 1.757719e-60

The summary output for MM and TF frameworks contains metrics about
the fitted model:

• Intercept is the reference level after all other factors are accounted
for. For example, for equation with weight (Eq2) in fully loaded model
intercept is reference genotype’s female with zero weight.

• Value stands for the estimated coefficient. This number will obviously
vary based on the magnitude of the variable your are inputting into
the regression, but it’s always good to spot check this number to make
sure it seems reasonable.

• Std.Error is a standard error of the coefficient estimate – measure of
the variability in the estimate for the coefficient. Lower is better but
this number is relative to the value for the coefficient.

• DF stands for the “Degrees of Freedom” which is the difference between
the number of observations included in training sample and the number
of variables used in model (intercept counts as a variable).

• t-value of the coefficient estimate is a score that measures whether or
not the coefficient for this variable is meaningful for the model. It is
used to calculate the p-value.

• p-value is variable p-value that represents the probability the vari-
able is NOT relevant. The lower the more important is the variable
(model part). If the number is really small, R will display it in scientific
notation.

For the ”FE” framework results summaryOutput function’s output includes
count matrices, p-values and effect size measures.
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> file <- system.file("extdata", "test_categorical.csv", package="PhenStat")

> dataset_cat <- read.csv(file)

> test2 <- PhenList(dataset=dataset_cat,

testGenotype="Aff3/Aff3",outputMessages=FALSE)

> result2 <- testDataset(test2,

depVariable="Thoracic.Processes",

method="FE",outputMessages=FALSE)

> summaryOutput(result2)

Test for dependent variable:

*** Thoracic.Processes ***

Method:

*** Fisher Exact Test framework ***

----------------------------------------------------------------------------

Model Output (’*’ highlights results with p-values less than threshold 0.01)

----------------------------------------------------------------------------

All

* p-value: 0.0000

* Effect size: 76%

Males only

* p-value: 0.0003

* Effect size: 70%

Females only

* p-value: 0.0000

* Effect size: 81%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - significant in males, females and in combined dataset

----------------------------------------------------------------------------

Count Matrices

----------------------------------------------------------------------------

All

+/+ Aff3/Aff3

Abnormal 142 12

Normal 753 1

Males only
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+/+ Aff3/Aff3

Abnormal 59 5

Normal 390 1

Females only

+/+ Aff3/Aff3

Abnormal 83 7

Normal 363 0

The output of the “RR” framework summaryOutput function includes count
matrices, p-values and effect size measures separately for High vs Normal/Low
and Low vs Normal/High classifications and thresholds used for the calcula-
tions.

> result <- testDataset(test,depVariable="Lean.Mass", method="RR")

Information:

Dependent variable: ’Lean.Mass’.

Information:

Method: Reference Ranges Plus framework.

> summaryOutput(result)

Test for dependent variable:

*** Lean.Mass ***

Method:

*** Reference Ranges Plus framework ***

1) High vs Normal/Low

All Females only Males only

p-value 1.0000 1.0000 1.0000

ES 3% 3% 3%

2) Low vs Normal/High

All Females only Males only

p-value 0.0120 0.0198 0.2510

ES 17% 26% 9%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

Not significant

----------------------------------------------------------------------------

Thresholds

----------------------------------------------------------------------------

Natural variation: 95

Min control points: 60
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Normal values ’males only’: 18.830 to 26.630

Normal values ’females only’: 15.586 to 20.6035

----------------------------------------------------------------------------

Count Matrices

----------------------------------------------------------------------------

All

+/+ Sparc/Sparc

Low 13 3

Normal/High 435 12

All

+/+ Sparc/Sparc

High 12 0

Normal/Low 436 15

Females only

+/+ Sparc/Sparc

Low 6 2

Normal/High 221 5

Males only

+/+ Sparc/Sparc

Low 7 1

Normal/High 214 7

Females only

+/+ Sparc/Sparc

High 6 0

Normal/Low 221 7

Males only

+/+ Sparc/Sparc

High 6 0

Normal/Low 215 8

The output of the “LR” framework summaryOutput function includes sum-
mary model information and the model output:

> file <- system.file("extdata", "test_categorical.csv", package="PhenStat")

> test <- PhenList(dataset=read.csv(file),

testGenotype="Aff3/Aff3")

> test2 <- LRDataset(test, depVariable="Thoracic.Processes",

abnormalValues="Abnormal")

> result2 <-testDataset(test2,depVariable="Thoracic.Processes",method="LR")

> summaryOutput(result2)

Test for dependent variable:

*** Thoracic.Processes ***
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Method:

*** Logistic Regression ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Thoracic.Processes ~ Genotype + Sex

Was batch significant? FALSE

Genotype p-value: 1.943939e-09

Genotype effect: 3.7983 +/- 0.9034

Was there evidence of sexual dimorphism? no (p-value 5.441219e-01)

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - both sexes equally

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error ci.lower ci.upper p-value

(Intercept) -1.4646494 0.1209814 -1.7077333 -1.23321580 0.000000e+00

GenotypeAff3/Aff3 3.7983232 0.9033813 2.3619588 6.02332990 1.943939e-09

SexMale -0.4251768 0.1840563 -0.7891747 -0.06661705 2.002838e-02

8.2 Vector Format

vectorOutput function was developed for large scale application where au-
tomatic implementation would be required. As such, each value within the
output vector is strictly defined and depends only on the statistical analysis
method that has been used. The main idea here is that vector format is
specified and is the same regardless of the analysis framework.

Example of the vectorOutput function results for the MM framework:

> vectorOutput(result)

Method

"MM framework, linear mixed-effects model, equation with weight"

Dependent variable

"Lean.Mass"

Batch included

"TRUE"

Residual variances homogeneity

"FALSE"

Genotype contribution

"0.371508943144266"

Genotype estimate
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"-0.29143571549456"

Genotype standard error

"0.330479850268177"

Genotype p-val

"0.378369997588029"

Sex estimate

"1.64073430331594"

Sex standard error

"0.180809296427475"

Sex p-val

"4.79191190571249e-18"

Weight estimate

"0.343050209791982"

Weight standard error

"0.0180812139273457"

Weight p-val

"4.1478905048872e-58"

...

Results of vectorOutput function for TF framework looks very similar to the
MM output.

In the Table 11 vector output values are described.

As was mentioned above vectorOutput format is the same for all frameworks.
However, in case of ”FE”, ”RR” and ”LR” many values are not defined. For
example, vectorOutput results for ”FE” framework:

> vectorOutput(result_cat)

Method

"Fisher Exact Test framework"

Dependent variable

"Thoracic.Processes"

Batch included

"NA"

Residual variances homogeneity

"NA"

Genotype contribution

"NA"

Genotype estimate

"76"

Genotype standard error

"NA"

Genotype p-Val

"4.35745946092922e-09"

...

Gp1 genotype

"+/+"

...
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Tag name Sub-tag Output ex-
ample

Meaning

Natural variation - 95 Percentage of data classed
as ‘normal’

Min control points - 60 Minimum number of data
points required to construct
reference range

Normal values males only 19.19875
to
27.12625

The thresholds used to de-
fine normal

females only 15.786 to
21.520

all 15.786 to
21.520

only provided if only one sex
tested

Table 12: The ”RR” framework’s information stored within the additional
information index in the vector output.

Gp2 genotype

"Aff3/Aff3"

...

Sex FvKO estimate

"81"

...

Sex FvKO p-val

"1.00779809539594e-05"

Sex MvKO estimate

"70"

Sex MvKO standard error

"NA"

Sex MvKO p-val

"0.00025633944344021"

Classification tag

"With phenotype threshold value 0.01 - significant in males, females and in combined dataset"

Additional information

"NA"

Additional information for ”RR” framework contains data that help to under-
stand how the RR methodology was implemented. For example the thresh-
olds that define normal are stored within the additional information field.
See table 12 for details.

Example of vectorOutput results for ”RR” framework:
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> vectorOutput(result)

Method

"Reference Ranges Plus framework"

Dependent variable

"Lean.Mass"

Batch included

"NA"

Residual variances homogeneity

"NA"

Genotype contribution

"NA"

Genotype estimate

"59%,3%"

Genotype standard error

"NA"

Genotype p-Val

"0.0000,1.0000"

...

Sex FvKO estimate

"72%,3%"

Sex FvKO standard error

"NA"

Sex FvKO p-val

"0.0000,1.0000"

Sex MvKO estimate

"47%,3%"

Sex MvKO standard error

"NA"

Sex MvKO p-val

"0.0000,1.0000"

Classification tag

"With phenotype threshold value 0.01 - significant in males (Low), females (Low) and in combined dataset (Low)"

Additional information

"{\"Natural variation:95\",\"Min control points:60\",

\"Normal values ’males only’:18.10925 to 30.0315\",

\"Normal values ’females only’:14.38975 to 23.52675\"}"

8.3 Count Matrices in Vector Format

There is an additional function to support the FE and RR frameworks: vec-
torOutputMatrices. This function returns values from count matrices in the
vector format. We’ve limited the number of levels for dependent variable
to 10. In the vector, the first three positions represent: dependent variable,
genotype level 1 (reference genotype) and genotype level 2 (test genotype).
The next 10 positions are used to define the dependent variable levels. When
there are less than 10 levels, “NA” value is used. The next 20 positions repre-
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sent combined count matrix values. Thereafter the vector contains the males
only count matrix values and females only count matrix values. Again “NA”
is used when the values are not present. The positions are labelled with the
group and level.

For the chi squared tables from example described in “Fisher Exact Test
framework” subsection (see 4.4) results of vectorOutputMatrices function
look like this:

> vectorOutputMatrices(result_cat)

Dependent variable Gp1 Genotype (g1)

"Thoracic.Processes" "+/+"

Gp2 Genotype (g2) Dependent variable level1 (l1)

"Aff3/Aff3" "Abnormal"

Dependent variable level2 (l2) Dependent variable level3 (l3)

"Normal" NA

Dependent variable level4 (l4) Dependent variable level5 (l5)

NA NA

Dependent variable level6 (l6) Dependent variable level7 (l7)

NA NA

Dependent variable level18 (l8) Dependent variable level9

NA NA

Dependent variable level10 (l10) Value g1_l1

NA "144"

Value g2_l1 Value g1_l2

"12" "755"

Value g2_l2 Value g1_l3

"1" NA

Value g2_l3 Value g1_l4

NA NA

Value g2_l4 Value g1_l5

NA NA

Value g2_l5 Value g1_l6

NA NA

Value g2_l6 Value g1_l7

NA NA

Value g2_l7 Value g1_l8

NA NA

Value g2_l8 Value g1_l9

NA NA

Value g2_l9 Value g1_l10

NA NA

Value g2_l10 Male Value g1_l1

NA "61"

Male Value g2_l1 Male Value g1_l2

"5" "392"

Male Value g2_l2 Male Value g1_l3

"1" NA
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Male Value g2_l3 Male Value g1_l4

NA NA

Male Value g2_l4 Male Value g1_l5

NA NA

Male Value g2_l5 Male Value g1_l6

NA NA

Male Value g2_l6 Male Value g1_l7

NA NA

Male Value g2_l7 Male Value g1_l8

NA NA

Male Value g2_l8 Male Value g1_l9

NA NA

Male Value g2_l9 Male Value g1_l10

NA NA

Male Value g2_l10 Female Value g1_l1

NA "83"

Female Value g2_l1 Female Value g1_l2

"7" "363"

Female Value g2_l2 Female Value g1_l3

"0" NA

Female Value g2_l3 Female Value g1_l4

NA NA

Female Value g2_l4 Female Value g1_l5

NA NA

Female Value g2_l5 Female Value g1_l6

NA NA

Female Value g2_l6 Female Value g1_l7

NA NA

Female Value g2_l7 Female Value g1_l8

NA NA

Female Value g2_l8 Female Value g1_l9

NA NA

Female Value g2_l9 Female Value g1_l10

NA NA

Female Value g2_l10

NA

9 Graphics

For graphical output of the analysis, multiple graphical functions have been
generated and these can be called by a user individually or alternatively,
generateGraphs generates all relevant graphs for an analysis and stores the
graphs in the defined directory.

> generateGraphs(phenTestResult=result,dir="./graphs",graphingName="Lean Mass",type="windows")
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> generateGraphs(phenTestResult=result_cat,dir="./graphs_categorical",type="windows")

9.1 Graphics for FE, RR and LR frameworks

There is only one graphical output for ”FE”, ”RR” and ”LR” frameworks:
categorical bar plot. This graph allows a visual representation of the count
data, comparing observed proportions between reference and test genotypes.

> categoricalBarplot(result_cat)

The example of bar plot is shown in Fig. 15. This graph allows a visual
representation of the genotype effect for the variable of interest.

Figure 15: The PhenStat package’s graphical output: categorical bar plot.

9.2 Graphics for MM and TF frameworks

There are many graphic functions for the MM framework results. They
can be divided into two types: dataset based graphs and results based
graphs.
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9.2.1 Dataset based graphs

There are four functions in the dataset based graphs category:

• boxplotSexGenotype creates a box plot split by sex and genotype.

• boxplotSexGenotypeBatchAdjusted creates a box plot split by sex and
genotype after the variation arising from batch has been accounted for
as a random effect.

• scatterplotSexGenotypeBatch creates a scatter plot split by sex, geno-
type and batch if batch data present in the dataset. Please note the
batches are not ordered with time but allow assessment of how the
treatment groups lie relative to the normal control variation.

• scatterplotGenotypeWeight creates a scatter plot body weight versus
dependent variable. Both a regression line and a loess line (locally
weighted line) is fitted for each genotype.

> boxplotSexGenotype(test,depVariable="Lean.Mass",graphingName="Lean Mass")

> boxplotSexGenotypeBatchAdjusted(test,depVariable="Lean.Mass",graphingName="Lean Mass Adjusted for Batch")

> scatterplotSexGenotypeBatch(test,depVariable="Lean.Mass",graphingName="Lean Mass")

> scatterplotGenotypeWeight(test,depVariable="Bone.Mineral.Content",graphingName="BMC")

An example of box plot split by sex and genotype is shown in Fig. 16.
Outliers are shown as independent data points beyond the fences (“whiskers”)
of the boxplot. An outlier is defined as a data point that is 1.5 times the
interquartile range above the upper quartile and bellow the lower quartile.

The example of scatter plot split by sex, genotype and batch is shown in
Fig. 17. This allows a visualisation of variation of dependent variable with
time. The MM framework assumes this variation is random and conforms
the normal distribution. Then the genotype distribution can be compared
relative to natural variation.

The example of scatter plot of body weight versus dependent variable is
shown in Fig. 18. When weight is included in the model MM framework, it
assumes a linear relationship between dependent variable and body weight.
This graph allows an assessment of this assumption.

9.2.2 Adjustment for batch

In order to demonstrate the power of boxplotSexGenotypeBatchAdjusted func-
tion the following dataset has been used: provided by the Toronto Centre
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Figure 16: The PhenStat package’s graphical output: box plot split by sex
and genotype.

Figure 17: The PhenStat package’s graphical output: scatter plot split by
sex, genotype and batch.
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Figure 18: The PhenStat package’s graphical output: scatter plot of body
weight versus dependent variable.

for Phenogenomics of blood plasma calcium data obtained from a study on
gene knockout mice carrying the Tox3 tm1b(KOMP)Mbp targeted allele which
were created by blastocyst injection of targeted ES cells, and bred on the
C57BL/6NCrl genetic background. Data was collected on a standardized
high throughput phenotyping pipeline with regular control animals.

A statistically significant genotype effect was reported from a mixed model
analysis of the data (p-value = 6.836e-7) with an estimated effect size of
−0.3535± 007 mg/dl affecting both sexes equally. However, visually inspec-
tion of the raw data suggests that no genotype effect is present (Figure 19:A).
The conflict arises as the batch differences are masking the genotype effect in
the raw data resulting in a boxplot of the raw data where no genotype effect
can be observed. It is a strong example of why an analysis that removes
batch effects (as the mixed model method does) is needed. The boxplot-
SexGenotypeBatchAdjusted function provides a graphing of the data after
modelling has accounted for batch as a random effect and with this approach
the genotype effect is then revealed (Figure 19:B). It is worth noting that
when the graph is plotted with scatterplotSexGenotypeBatch function (Fig-
ure 20) where data is plotted by batch with close inspection the genotype
effect can be seen without adjustment.
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> data <- system.file("extdata", "Tox3CaDataset.csv", package="PhenStat")

> test <- PhenList(dataset=data, testGenotype="heterozygote",

refGenotype="null",dataset.colname.batch="dateOfExperiment",

dataset.colname.genotype="zygosity", dataset.colname.sex="sex")

> result <- testDataset(phenList=test, depVariable="dataPoint", equation="withoutWeight", method="MM")

> summaryOutput(result)

> boxplotSexGenotype(test, "dataPoint", "Calcium (mg/dl)")

> boxplotSexGenotypeBatchAdjusted(test, "dataPoint", "Calcium (mg/dl) adjusted for batch")

> scatterplotSexGenotypeBatch(test, "dataPoint", "Calcium (mg/dl)")

Figure 19: Exploration of the variation in calcium with genotype. Data
shown is the calcium data for the Tox3 knockout provided by Toronto Centre
for Phenogenomics. A: boxplotSexGenotype function is showing the variation
in calcium by sex and genotype. B: boxplotSexGenotypeBatchAdjusted func-
tion is showing the variation in calcium by sex and genotype after removing
the effect of batch by modelling batch as a random effect.

9.2.3 Results based graphs

There are five functions in the results based graphs category:

• qqplotGenotype creates a Q-Q plot of residuals for each genotype.

• qqplotRandomEffects creates a Q-Q plot of blups (best linear unbiased
predictions). Only relevant in MM framework.

• qqplotRotatedResiduals creates a Q-Q plot of “rotated” residuals. Only
relevant in MM framework.

• plotResidualPredicted creates predicted versus residual values plots split
by genotype.

• boxplotResidualBatch creates a box plot with residue versus batch split
by genotype.
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Figure 20: Exploration of the variation in calcium with genotype by batch
using the function scatterplotSexGenotypeBatch. Data shown is the calcium
data for the Tox3 knockout provided by Toronto Centre for Phenogenomics.

> qqplotGenotype(result)

# MM framework specific graphic function

> qqplotRandomEffects(result)

# MM framework specific graphic function

> qqplotRotatedResiduals(result)

> plotResidualPredicted(result)

> boxplotResidualBatch(result)

The example of Q-Q plot of residuals for each genotype is shown in Fig. 21.
The MM framework assumes residuals are normally distributed. Residuals
are the differences between the real values observed for a dependent variable
and the fitted values from the model. A Q-Q plot assesses this assumption
(residuals will be randomly arranged around the line if normally distributed).

The example of Q-Q plot of BLUPs (best linear unbiased predictions) is
shown in Fig. 22. The MM assumes the BLUPs are normally distributed.
This graph assesses this assumption by plotting BLUPs and the ideal normal
line (large deviations from the line can be an indicator of problems with the
model fit). BLUPs are best linear unbiased predictions and are used for the
estimation of random batch effects. As such this is specific to MM framework
only. See tutorial BLUPs for more details.

Another method to assess the model fit of MM framework is to consider the
normality of the “rotated” and “unrotated” residuals. The example of Q-Q
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Figure 21: The PhenStat package’s graphical output: Q-Q plot of residuals
for each genotype.

Figure 22: The PhenStat package’s graphical output: Q-Q plot of BLUPs
(best linear unbiased predictions).
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plot of “rotated” residuals is shown in Fig. 23. See section 4.2.4 for the
details about “rotated” residuals.

Figure 23: The PhenStat package’s graphical output: Q-Q plot of “rotated”
residuals.

The example of residual-by-predicted plot is shown in Fig. 24. Residuals,
differences between fitted and real values, are plotted against the predicted
(fitted) values of dependent variable. A residual-by-predicted plot can be
used to diagnose nonlinearity or nonconstant error variance. It is also can be
used to find outliers.

Here are the characteristics of a residual-by-predicted plot when model fitness
is close to the ideal and what they suggest about the appropriateness of the
model:

• The residuals are arranged randomly around the 0 line. This suggests
that the assumption that the relationship is linear is reasonable.

• The residuals roughly form a ”horizontal band” around the 0 line. This
suggests that the variances of the error terms are equal.

• No one residual outstands from the basic random pattern of residuals.
This suggests that there are no outliers. See Regression Methods for
more details.
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Figure 24: The PhenStat package’s graphical output: residual-by-predicted
plot split by genotype.

The example of box plot with residue versus batch split by genotype is shown
in Fig. 25. This allows assessment that the residual behaviour for all batches
is within natural deviation and the model is fitting the data well.

10 Case Studies

10.1 PhenStat MM framework Usage Example

The following dataset, provided by Wellcome Trust Sanger Institute (WTSI)
Mouse Genetics Project (MGP) is Dual-energy X-ray absorptiometry data
obtained for a study on gene knockout mice carrying the Akt2<tm1Wcs>
targeted allele which were created by blastocyst injection of targeted ES cells,
and bred on the 129S5/SvEvBrd genetic background. Data were collected
doing a standardized high throughput phenotyping pipeline following a multi-
batch workflow, where regular control animals are collected and knockout
animals of the correct age are issued to the pipeline as they arise.
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Figure 25: The PhenStat package’s graphical output: box plot with residual
versus batch split by genotype.

Genotype Sex Number Animals Number Batches

Akt2 /Akt2
Female 12 3
Male 14 3

+/+
Female 574 96
Male 572 97

Table 13: Number of animals and number of batches in the Akt2 dataset

10.1.1 Loading the data and initial steps of analysis

Initial steps focus on loading the data, using the PhenStat tools to generate
the PhenList object, and then the result object. We can then explore the
data and fitted results using the visualisation and output functions.

> file <- system.file("extdata", "test_Akt2.csv", package="PhenStat")

> DEXAdata <- read.csv(file)

> test <- PhenList(dataset=DEXAdata,testGenotype="Akt2/Akt2",

refGenotype="WT",

dataset.colname.batch="dateOfExperiment",

dataset.values.female="female",

dataset.values.male="male" )

> result <- testDataset(test,depVariable="Lean.Mass",
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method="MM",equation="withoutWeight",transformValues=FALSE)

10.1.2 Exploring and understanding the summary output

The first two lines of the summaryOutput confirm the statistical framework
used and the dependent variable studied. If the values of dependent vari-
able have been transformed (see section 5) then information about trans-
formation parameters appears together with dependent variable name. For
example:

> resultTransformed <- testDataset(test,depVariable="Lean.Mass",

method="MM",equation="withoutWeight",transformValues=TRUE)

> summaryOutput(resultTransformed)

Test for dependent variable:

*** Lean.Mass, power transformed with lambda value = 1.7 and scale shift = 1 ***

Method:

*** Mixed Model framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Lean.Mass ~ Genotype + Sex

Was batch significant? TRUE

Was variance equal? FALSE

Genotype p-value: 2.661943e-10

Genotype effect (original scale): -10.5581 +/- 2.2910

Was there evidence of sexual dimorphism? no (p-value 1.467981e-01)

Genotype percentage change Female: -30%

Genotype percentage change Male: -21.01%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - both sexes equally

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error DF t-value p-value

(Intercept) 92.95823 1.656484 1048 56.11778 4.921042e-318

GenotypeAkt2/Akt2 -27.88930 3.868329 1048 -7.20965 1.072359e-12

SexMale 39.79585 1.243963 1048 31.99118 3.071828e-157

Lean Mass values have been transformed with parameter λ = 1.7 and pa-
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rameter scaleShift = 1. In the form of equation:

Lean.Massi =
(Lean.Mass originali + 1)1.7 − 1

1.7
, for i = 1, .., 1172

The function’s testDataset output is PhenTestResult object that contains slot
called analysedDataset from which original values (here ”Lean.Mass original”),
transformed values (here ”Lean.Mass”) and batch adjusted (here ”Lean.Mass adjusted”)
values can be obtained:

> head(resultTransformed@analysedDataset)

Lean.Mass Sex Genotype Batch Weight Lean.Mass_original Lean.Mass_adjusted

1 45.34405 Female Akt2/Akt2 2008-10-22T23:00:00Z 14.8 11.98 -5.085269

2 49.13590 Female Akt2/Akt2 2008-03-18T00:00:00Z 17.1 12.60 -6.152621

3 51.26762 Female Akt2/Akt2 2008-03-18T00:00:00Z 17.2 12.94 -5.812621

4 65.58713 Female Akt2/Akt2 2008-03-20T00:00:00Z 18.4 15.09 -4.509509

5 60.56454 Female Akt2/Akt2 2008-03-20T00:00:00Z 18.5 14.36 -5.239509

6 55.24919 Female Akt2/Akt2 2008-10-22T23:00:00Z 18.7 13.56 -3.505269

Coming back to the output of summaryOutput function, the next section
of it shows the final fitted model and clarifies model’s details. As the MM
framework is an optimisation process exploring the data to fit the best model
to the data, the final fitted model details will vary. We can see that batch
variation, the variation in readings between different assay dates, were found
to be statistical significant (”Was batch significant? TRUE”) and hence a
mixed model will have been fitted where batch is treated as a random effect.
If it was not significant, then the model would have reverted to a simpler
linear model. The next line of output, “Was variance equal?”, indicating
whether the model assumes equal variance between genotype groups or un-
equal. In this case, the variance was not found to be equal and therefore the
final model estimated the variance for each group separately.

The “Genotype p-value” reports the statistical significance for the genotype
effect and is assessed by comparing a treatment model (final fitted model)
with a null model where a null model has no genotype effects in the model
but all other significant main effects. In this example the null model would
thus be Lean.Mass ∼ Sex. Looking at the output the ”Genotype p-value” is
highly statistical significant as a 2.661943e− 10 value is reported.

After transformation the model estimates are on a new scale and hence for
interpretability it is useful to convert these values back to the original scale.
In the summaryOutput function, the genotype estimate and standard error
is converted and this is reported as “Genotype effect (original scale)”. In our
example the genotype effect is estimated at −10.5581± 2.2910.
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The next stage of the output, indicates whether there was evidence of sexual
dimorphism (i.e. the genotype effect was found to be dependent on sexes).
In this case, the statistical test of sexual dimorphism was non-significant (p-
value = 0.147) hence the final model assessed a genotype effect rather than
the genotypes for each sex separately.

The next two lines of the output show percentage changes – the ratio of the
genotype effect for a sex relative to the wildtype signal for that variable for
that sex (see section 4.2.7 for more details).

Genotype percentage change Female = (−27.89/92.96) ∗ 100 = −30%

Genotype percentage change Male = (−27.89/(92.96+39.8))∗100 = −21.01%

As there was no evidence for sexual dimorphism, and thus the genotype
effect was estimated independently of sex, then a classification tag “both
sexes equally” has been assigned.

We can then look at the model fitting details in the final output of the
function by examining the table to see how the main effects contributed to
the variation in the dependent variables.

A regression model estimates each component of the model, by isolating how
that effect influences the dependent variable (i.e. lean mass) as though all
other parts of the model had been fixed and isolated. From the table of
output, we can see that the intercept (the expected reading for lean mass for
female reference genotype (aka female wildtype animals) is 92.96. Then we
can see the effect of the genotype is -27.89 (-10.56 in original scale) in that
knockout animals are predicted to have 27.89 grams (10.56 in original scale)
less lean mass relative to the control animals. Finally we can see that being
a male animals leads to an increase of 39.8 grams (11.03 grams in original
scale). These estimates are in agreement with the visualisation of the data
(see section 10.1.3).

Here is the function example for reverse transformation in order to obtain
original scale values:

> reverseTransformValues(c(-27.89,39.8),lambda = 1.7,scaleShift = 1)

[1] -10.55820 11.03411

Function’s summaryOutput results for the not transformed lean mass val-
ues:

> summaryOutput(result)

Test for dependent variable:
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*** Lean.Mass ***

Method:

*** Mixed Model framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Lean.Mass ~ Genotype + Sex

Was batch significant? TRUE

Was variance equal? FALSE

Genotype p-value: 1.901362e-10

Genotype effect: -3.5271 +/- 0.4866

Was there evidence of sexual dimorphism? no (p-value 9.055876e-01)

Genotype percentage change Female: -19.04%

Genotype percentage change Male: -15.24%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - both sexes equally

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error DF t-value p-value

(Intercept) 18.525264 0.1936360 1048 95.670550 0.000000e+00

GenotypeAkt2/Akt2 -3.527111 0.4866433 1048 -7.247836 8.204401e-13

SexMale 4.620361 0.1581236 1048 29.219943 8.940893e-138

10.1.3 Assessment of raw data and distribution characteristics

To assess model fit, graphical tools are ideal. They focus on two areas:

1. Assessment of raw data and distribution characteristics

2. Assessment of model fit

The function, boxplotSexGenotype, allows the genotype effect to be visualised
for each sex group. For the Akt2 example, we can suggest that there looks
to be a significant genotype effect that is seen in both sexes.

> boxplotSexGenotype(result, "Lean.Mass", "Lean Mass (g)")
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Figure 26: boxplotSexGenotype function for Akt2 example.

A second function, scatterplotSexGenotypeBatch, allows the comparison be-
tween genotype as a function of batch and sex. This plot allows the user
to visualise the batch variation and assess how the treatment measures look
relative to the batch variation. It is important to note that as dates can be
entered in many forms, the batches are not ordered with time. For the Akt2
lean mass example, we can see that there is significant batch variation, which
explains why a mixed model was fitted.

> scatterplotSexGenotypeBatch(test, "Lean.Mass", "Lean Mass (g)")
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Figure 27: scatterplotSexGenotypeBatch function for Akt2 example.

10.1.4 Assessment of model fit

Five functions are available and they focus on looking at residual behaviour.
A residual, is the difference between the estimated dependent variable from
the final model estimates and the actual measured dependent variable re-
sponse. A model is a good fit, when the residuals are normally distributed
and there is no systematic pattern in the distribution of the residuals relative
to the dependent variable.

The vectorOutput function includes statistical tests for normality on the
residuals for the wildtype, residuals for the knockout, the blups and “ro-
tated” residuals (see section 4.2.4). These normality tests are provide to
assist in the building automated tools for assessing model fit, however when
there is a lot of data (e.g. in a dataset where the wildtype arises from a
high throughput program with a running baseline), the statistical test can
be overall sensitive to departures from normality and when the number of
data points is low (e.g. in many knockout groups), the test can lack ability
to detect deviations from normality.

• qqplotGenotype

This function assesses the normality of the residuals are assessed for
each genotype through plotting a normal Q-Q plot. Q-Q plots are a
means of comparing two distributions. To test normality, we plot the
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residuals against a normal distribution and see if they match. If the
two distributions are similar the points on a QQ plot will fall along
the y=x line (unity). Thus we are looking for a random distribution of
points along the lines.

Looking at the Akt2 lean mass example, the residuals on the homozy-
gous knockout group are near perfect showing the model is fitting this
data well. The residuals on the WT group are deviating in a way (sys-
tematic below at one end and systematic above at the other) which
indicates that we have long tails to our distribution. This is not con-
cerning as we have a very large control dataset and we do have outliers
in the data.

> qqplotGenotype(result)

Figure 28: qqplotGenotype function for Akt2 example.

• boxplotResidualBatch

This function allows visualisation to assist the user to assess whether
the deviation in the residual is consistent across all the batches and
similar in size between the wildtype and knockout line. For the Akt2
example, we can see that the variation in residual is consistent across
all the batches and similar in size between the knockout and wildtype
group.
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A few of the wildtype (control) dataset points have large residuals and it
would be worth looking at these data points further to see why these are
outliers. They do not suggest the model should be discarded because
as a proportion of the dataset they are few and scattered through the
dataset.

> boxplotResidualBatch(result)

Figure 29: boxplotResidualBatch function for Akt2 example.

• plotResidualPredicted

This function plots the residuals against the predicted readings for both
genotypes. The predicted readings are the values the model would
estimate for the dependent variable. As a user, you are looking to
see that the model is fitting the data well over the entire data range.
Looking at the Akt2 data, we can see that there spread of the residuals
is fairly consistent, however there are some data points that are not
being fit well by the model, the good news is that they are in the
control set but they should be considered further to see if a reason for
their poor fit can be ascertained.

> plotResidualPredicted(result)
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Figure 30: plotResidualPredicted function for Akt2 example.

• qqplotRandomEffects

This function is assessing the assumption that the batch effects are
normally distributed. The estimates of the random effects, aka the
estimates of the batch effects in this scenario, are called best linear
unbiased prediction BLUPs. Here a normal Q-Q plot is used to plot
the estimated BLUPs against a normal distribution. So looking at the
Akt2 lean mass example, the majority of the data points are distrbuted
along the line. There is some systematic deviation at the tails but it is
a small percentage of the points and as it is above and below the line it
indicates long tails (ie outliers) and so we can conclude the distribution
is not too far from the ideal and the model is a good representation of
the data.

> qqplotRandomEffects(result)
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Figure 31: qqplotRandomEffects function for Akt2 example.

• qqplotRotatedResiduals

This function, allows the user to consider the normality of the “rotated”
and “unrotated” residuals and have been recommended to assess model
fit success with mixed models (Houseman et al. (2004)). See section
4.2.4 for more details. So looking at the Akt2 lean mass example, the
majority of the data points are distributed along the line. There is
some systematic deviation at the tails but it is a small percentage of
the points and as it is above and below the line it indicates long tails
(i.e. outliers) and so we can conclude the distribution is not too far
from the ideal and the model is a good representation of the data.

> qqplotRotatedResiduals(result)
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Figure 32: qqplotRotatedResiduals function for Akt2 example.

10.1.5 Including weight as a covariate in the model fitting pro-
cess

Weight is included in the initial model via the testDataset function equa-
tion argument being set to either “withWeight” or “withoutWeight”. When
weight is included as a covariate, the model is assuming that the depen-
dent variable (e.g. lean mass) has a linear relationship with body weight.
If weight is not found to be statistical significant in explaining the variation
in the dependent variable, then weight as a covariate will drop out of the
final model and the equation will automatically revert to an equation type
“withoutWeight”.

There are two advantages to including weight:

1. Increase in sensitivity. If differences in animal weight lead to greater
variability in the dependent variable, then by adding weight and ac-
counting for this variability then the statistical model will be more
sensitive to a genotype effect.

2. Adjusting for weight differences between the knockout and
control group. When there is a weight difference between the knock-
out and wildtype animals, the genotype effect is confounded by the
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weight effect in that there is a difference in the dependent variable but
you cannot assess whether it is due to the differences in body weight of
the knockout and control animals or genotype differences between the
knockout and control animals. When weight is included in the equa-
tion, the genotype effect is then testing for a genotype difference after
adjusting for the weight difference.

We have found that the majority of continuous phenotypic variables moni-
tored in the WTSI Mouse Genetics Project (MGP) have a relationship with
body weight. Looking at the Akt2 dataset we can see that there is a differ-
ence in body weight between the wildtype and knockout group and thus body
weight can be a confounding factor to isolating the genotype effect.

> boxplotSexGenotype(test, "Weight", "Body Weight (g)")

Figure 33: boxplotSexGenotype function for Akt2 example to show the body
weight impact.

When body weight is included, the inclusion can be seen in the final fitted
model as weight is listed as a covariate and then in the final model output
table, where the influence of weight on the fitted model is shown. With
weight included the genotype effect is estimating the impact of genotype
after adjusting for weight differences in the animals.

Looking at the summaryOutput for the Akt2 example, the table shows that
for each gram of body weight the lean mass increased by 0.32g. When weight
is included in the equation it changes the definition of the intercept from the
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lean mass value of a wildtype female animal to the lean mass value of a
wildtype female animal of zero body weight. This happens as the model is
estimating each of these terms influences in isolation of the other terms. In
contrast to the earlier fitted results (section 10.1.2), when weight is included
in the model, the classification tag identifies the change as “no significant
change” as the global genotype test is now not significant with a p-value of
0.64. This means the statistically difference observed with the fitted model
“withoutWeight” was entirely due to a body weight differences between the
knockout and control animals. So whilst there is a fundamental differences
in lean mass between the knockout and control this is due to the knockout
animals being smaller than the control animals.

> result <- testDataset(test,depVariable="Lean.Mass",

method="MM",equation="withWeight",transformValues=FALSE)

> summaryOutput(result)

Test for dependent variable:

*** Lean.Mass ***

Method:

*** Mixed Model framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Lean.Mass ~ Genotype + Sex + Weight

Was batch significant? TRUE

Was variance equal? FALSE

Genotype p-value: 6.399898e-01

Genotype effect: -0.1925 +/- 0.4120

Was there evidence of sexual dimorphism? no (p-value 1.053833e-01)

Genotype percentage change Female: -1.04%

Genotype percentage change Male: -0.83%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - no significant change

----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error DF t-value p-value

(Intercept) 7.6201046 0.52150631 1047 14.6117207 3.827390e-44

GenotypeAkt2/Akt2 -0.1924952 0.41201772 1047 -0.4672012 6.404531e-01

SexMale 2.1550868 0.17386173 1047 12.3954067 5.056608e-33

Weight 0.3541522 0.01623164 1047 21.8186332 2.718321e-87
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10.1.6 Additional model diagnostics when weight is included

In addition to the diagnostic discussed in previous section, when weight is
included in the model, it is important to consider whether the linear relation-
ship between body weight and the dependent variable is a valid assumption.
This can be assessed with the scatterplotGenotypeWeight function. In this
plot, for each genotype a regression line is fitted to assess the relationship
between the dependent variable and body weight. Then a locally weight line
(loess line) is plotted. The loess line allows assessment that the regression
line fits all the data well. Note the loess line can be distorted by a few data
points so if it deviates strongly but for only a few data points, this is not
concerning. This graph is used to assess whether a linear relationship exists
and whether it is the same for both genotypes.

In the Akt2 example, it can be clearly seen that a common linear relationship
exists between lean mass and body weight, such that as the weight increases
so does the lean mass. It can also be seen that the knockout animals have
a lower body weight and subsequently lower lean mass but the drop in lean
mass is entirely in accordance with the drop in body weight.

> scatterplotGenotypeWeight(test, depVariable="Lean.Mass")

Figure 34: scatterplotGenotypeWeight function for Akt2 example.
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10.2 PhenStat TF framework Usage Example

The following dataset, provided by the German Mouse Clinic from a plasma
chemistry study on gene knockout mice carrying the Dbn1 targeted allele
on the C57BL/6NTac(USA) genetic background. Data was collected via a
standardised high throughput phenotyping pipeline following a multi-batch
workflow, with concurrent controls. The dataset contains baseline controls
of which a proportion is concurrent.

Genotype Sex Number Animals Number Batches

Het
Female 9 3
Male 10 3

WT(concurrent controls)
Female 6 1
Male 10 3

WT(baseline controls)
Female 189 NA
Male 218 NA

Table 14: Number of animals and number of batches in the Dbn1 dataset

10.2.1 Loading the data and initial steps of analysis

Initial steps focus on loading the data ready for statistical analysis. For the
TF framework there are two steps; first the use of PhenList and a second
specific function to the TF framework using the TFDataset function to gen-
erate a dataset cleaned to remove control data that isn’t concurrent. The
resulting cleaned data can be analysed and the results explored using the
visualisation and output functions.

>file <- system.file("extdata", "test7_TFE.csv", package="PhenStat")

>test <- PhenList(dataset=read.csv(file), refGenotype="WT", testGenotype="het",

dataset.colname.sex="sex", dataset.values.male="m",dataset.values.female="f",

dataset.colname.batch="Date_of_procedure_start",dataset.colname.weight="body.weight")

...

>testTF_new <- TFDataset(test,depVariable="HDL")

Data points containing ’HDL’ by batch levels:

| ----------- | ----------- | ----------- | ----------- | ----------- |

| | WT | WT | het | het |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| Batch | Female | Male | Female | Male |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 02.09.2013 | 7 | 4 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |
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| * 03.02.2014 | 0 | 1 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 03.03.2014 | 6 | 6 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

...

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 14.01.2014 | 5 | 7 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 14.04.2014 | 0 | 4 | 4 | 3 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 14.10.2013 | 7 | 5 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 15.07.2013 | 5 | 5 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 16.06.2014 | 8 | 8 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 16.09.2013 | 2 | 3 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 17.02.2014 | 6 | 4 | 3 | 4 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 17.03.2014 | 4 | 5 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| 18.02.2014 | 0 | 3 | 2 | 3 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 18.03.2014 | 4 | 3 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

...

| ----------- | ----------- | ----------- | ----------- | ----------- |

| * 31.03.2014 | 3 | 3 | 0 | 0 |

| ----------- | ----------- | ----------- | ----------- | ----------- |

* - removed record(s)

Number of batch levels left: 3

Records removed (reference genotype): 92%

Records removed (test genotype): 0%

>result <- testDataset(testTF_new, depVariable="HDL", dataPointsThreshold=2, method="TF",

transformValues=FALSE)

...

The cleaning of the data is reported in the output of the TFDataset function.
First the output shows the number of data points by batch for each sex and
genotype combination. For data to be retained for a date, there needs to be
both test and ref genotype data for a sex. Summary statistics on the cleaning
impact are then provided following the table of data.
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10.2.2 Exploring and understanding the summary output

The first two lines of the summaryOutput confirm the statistical framework
used and the dependent variable studied. The next section of the output
clarifies the final fitted model details. As the TF framework is an optimisation
process exploring the data to fit the best model to the data, the final fitted
model details will vary. We can see that batch variation, the variation in
readings between different assay dates, were found to be statistical significant
and hence a model including batch as a fixed effect was fitted. The next line of
output, “Was variance equal?”, indicating whether the model assumes equal
variance between genotype groups or unequal. In this case, the variance was
not found to be equal and therefore the final model estimated the variance
for each group separately.

Furthermore, we can see that there was statistical evidence of sexual dimor-
phism and therefore the final model would estimate the genotype effect for
each sex separately. The next stage of the output, classification tag, de-
tails the classification of the effect seen as discussed in section 4.3.5 and in
this case the genotype effect was specific to the males at the default (0.01)
threshold.

>summaryOutput(result)

Test for dependent variable:

*** HDL ***

Method:

*** Time as Fixed Effect framework ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: HDL ~ Sex + Genotype:Sex + Weight + Batch

Was batch significant? TRUE

Was variance equal? FALSE

Genotype p-value: 1.072892e-04

Genotype by male effect: -0.3063 +/- 0.0781

Genotype by female effect: -0.0170 +/- 0.0856

Was there evidence of sexual dimorphism? yes (p-value 3.044927e-02)

Genotype percentage change Female: -1.44%

Genotype percentage change Male: -19.15%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - males only
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----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error t-value p-value

(Intercept) 0.18543523 0.24670119 0.7516593 4.583132e-01

SexMale 0.15246298 0.07485017 2.0369090 5.087890e-02

Weight 0.05286366 0.01036426 5.1005716 1.917964e-05

Batch17.02.2014 -0.25235168 0.05892587 -4.2825277 1.848788e-04

Batch18.02.2014 -0.48135264 0.06644529 -7.2443452 5.617868e-08

SexFemale:Genotypehet -0.01704878 0.08560398 -0.1991587 8.435284e-01

SexMale:Genotypehet -0.30625701 0.07813579 -3.9195486 4.975257e-04

We can also see in this section the assessment of the “Genotype p-value”
reports the statistical significance for the genotype effect and is assessed by
comparing a treatment model (final fitted model) with a null model where
a null model has no genotype effects in the model but all other significant
main effects.

In this example the null model would thus be HDL v Sex+Weight+Batch.
Looking at the output the “Genotype p-value” is statistical significant as a
0.0001 value is reported.

The percentage changes – the ratio of the genotype effect for a sex relative to
the wildtype signal for that variable for that sex (see section 4.2.7 for more
details) are estimated as -1.44% for females and -19.15% for males.

There was an evidence for sexual dimorphism, so according to the decision
tree from Figure 7 the classification tag ”males only” has been assigned.

The final section of the output ”Model Output Summary” provides a sum-
mary table showing the estimates for each component of the final model
fitted. As a regression model estimates each component of the model, by iso-
lating how that effect influences the dependent variable (i.e. HDL) as though
all other parts of the model had been fixed and isolated. From the summary
output, we can see that the intercept (the expected reading for HDL) for
female reference genotype (aka female wildtype animals of 0 body weight
for the first batch) is 0.185. Then we can see that being male is statistical
significant and leads to an increase in HDL of 0.152. We can also see the
impact of weight 0.0528/g. As batch was significant source of variation, and
it is treated as a fixed effect we can see the estimated impact of each batch on
the readings. Finally, we can see the impact of being het male mouse where
the values were lower by -0.3 units with standard error of 0.078. The lack of
significance of the female het mice can be seen in that the estimated effect is
-0.02 with an error term 0.09 which is larger than the estimated effect and
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therefore this effect cannot be classed as significant.

10.2.3 Assessment of raw data and distribution characteristics

Graph of the knockout data against the baseline controls:

> boxplotSexGenotype(test, "HDL", "High Density Lipoprotein (mM)")

Figure 35: boxplotSexGenotype for the Dbn1 High Density Lipoprotein ex-
ample showing the baseline and concurrent controls.

Graph of the knockout versus the concurrent controls:

> boxplotSexGenotype(testTF_new, "HDL", "High Density Lipoprotein (mM)")
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Figure 36: boxplotSexGenotype for the Dbn1 High Density Lipoprotein ex-
ample showing only the concurrent controls.

Graph showing batch variation for the baseline and concurrent controls:

> scatterplotSexGenotypeBatch(test, "HDL", "High Density Lipoprotein (mM)")

Figure 37: scatterplotSexGenotypeBatch for the Dbn1 High Density Lipopro-
tein example showing the baseline and concurrent controls. The test genotype
Dbn1 data are highlighted with red colour.
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Graph showing batch variation for the concurrent controls only:

> scatterplotSexGenotypeBatch(testTF_new, "HDL", "High Density Lipoprotein (mM)")

Figure 38: scatterplotSexGenotypeBatch for the Dbn1 High Density Lipopro-
tein example showing the concurrent controls. The test genotype Dbn1 data
are highlighted with red colour.

10.2.4 Assessment of model fit

Three functions are available and they focus on looking at residual behaviour.
The mixed model methodology has an additional two (qqplotRandomEffects
and qqplotRotatedResiduals) which are not relevant to this framework as they
assess the assumptions around batch when treated as a random effect. A
residual, is the difference between the estimated dependent variable from the
final model estimates and the actual measured dependent variable response.
A model is a good fit, when the residuals are normally distributed and there
is no systematic pattern in the distribution of the residuals relative to the
dependent variable.

The vectorOutput function includes statistical tests for normality on the
residuals for the wildtype and residuals for the knockout (see section 8.2).
These normality tests are provide to assist in the building automated tools
for assessing model fit, however when there is a lot of data (e.g. in a dataset
where the wildtype arises from a high throughput program with a running
baseline), the statistical test can be overall sensitive to departures from nor-
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mality and when the number of data points is low (e.g. in many knockout
groups), the test can lack ability to detect deviations from normality.

• qqplotGenotype

This function assesses the normality of the residuals are assessed for
each genotype through plotting a normal Q-Q plot. Q-Q plots are a
means of comparing two distributions. To test normality, we plot the
residuals against a normal distribution and see if they match. If the
two distributions are similar the points on a QQ plot will fall along
the y=x line (unity). Thus we are looking for a random distribution
of points along the lines. Looking at the Dbn1 High Density Lipopro-
tein example, the residuals on the both the wildtype and heterozygous
knockout group are near perfect showing the model is fitting this data
well.

> qqplotGenotype(result)

Figure 39: qqplotGenotype function for Dbn1 High Density Lipoprotein ex-
ample.

• boxplotResidualBatch

This function allows visualisation to assist the user to assess whether
the deviation in the residual is consistent across all the batches and
similar in size between the wildtype and knockout line. For the Dbn1
High Density Lipoprotein example, we can see that the variation in
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residual is consistent across all the batches. It is higher in the knock-
out dataset which is why the final fitted model did not assume equal
variance.

> boxplotResidualBatch(result)

Figure 40: boxplotResidualBatch function for Dbn1 High Density Lipoprotein
example.

• plotResidualPredicted

This function plots the residuals against the predicted readings for both
genotypes. The predicted readings are the values the model would
estimate for the dependent variable. As a user, you are looking to
see that the model is fitting the data well over the entire data range.
Looking at the Dbn1 High Density Lipoprotein data, we can see that
there spread of the residuals is fairly consistent, suggesting the model
is a good fit for all the data points.

> plotResidualPredicted(result)
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Figure 41: plotResidualPredicted function for Dbn1 High Density Lipoprotein
example.

10.3 PhenStat RR framework Usage Example

The following dataset, provided by Wellcome Trust Sanger Institute (WTSI)
Mouse Genetics Project (MGP) is Dual-energy X-ray absorptiometry data
obtained for a study on gene knockout mice carrying Akt2<tm1Wcs> tar-
geted allele which were created by blastocyst injection of targeted ES cells,
and bred on the 129S5/SvEvBrd genetic background. Data was collected do-
ing a standardized high throughput phenotyping pipeline following a multi-
batch workflow, where regular control animals are collected and knockout
animals of the correct age are issued to the pipeline as they arise.

See Table 13.

10.3.1 Loading the data and initial steps of analysis

Initial steps focus on loading the data, using the PhenStat tools to generate
the PhenList object, and then the result object. We can then explore the
data and fitted results using the visualisation and output functions.

> file <- system.file("extdata", "test_Akt2.csv", package="PhenStat")

> DEXAdata <- read.csv(file)

> test <- PhenList(dataset=DEXAdata,

testGenotype="Akt2/Akt2",
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refGenotype="WT",

dataset.colname.batch="dateOfExperiment",

dataset.values.female="female",

dataset.values.male="male",

dataset.colname.genotype="Genotype",

dataset.colname.sex="Gender")

> result <- testDataset(test,

depVariable="Lean.Mass",

method="RR")

10.3.2 Visualisation of data

The function categoricalBarplot has been provided to visualise the categor-
ical data formed from the RR framework as summary percentage data. It
reports the percentage of each classification observed for up to three datasets:
all data, male only and female only. It is important to note that percentage
accuracy is very dependent on the number of readings so it is important to
consider the dataset size when interpreting these graphs. Therefore tables
showing both the percentage and count values are included in the summary-
Output.

> categoricalBarplot(result)

Figure 42: categoricalBarplot function for Akt2 Lean Mass example.
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10.3.3 Understanding the summaryOutput

> summaryOutput(result)

Test for dependent variable:

*** Lean.Mass ***

Method:

*** Reference Ranges Plus framework ***

1) High vs Normal/Low

All Females only Males only

p-value 1.0000 1.0000 1.0000

ES 3% 3% 3%

2) Low vs Normal/High

All Females only Males only

p-value 0.0000 0.0000 0.0000

ES 59% 72% 47%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - significant in males (Low), females (Low)

and in combined dataset (Low)

----------------------------------------------------------------------------

Thresholds

----------------------------------------------------------------------------

Natural variation: 95

Min control points: 60

Normal values ’males only’: 18.10925 to 30.0315

Normal values ’females only’: 14.38975 to 23.52675

----------------------------------------------------------------------------

Count Matrices

----------------------------------------------------------------------------

All

WT Akt2/Akt2

Low 30 16

Normal/High 1116 10

All

WT Akt2/Akt2

High 30 0

Normal/Low 1116 26

Females only

WT Akt2/Akt2
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Low 15 9

Normal/High 559 3

Males only

WT Akt2/Akt2

Low 15 7

Normal/High 557 7

Females only

WT Akt2/Akt2

High 15 0

Normal/Low 559 12

Males only

WT Akt2/Akt2

High 15 0

Normal/Low 557 14

The first two lines of summaryOutput indicate the statistical framework used
and the dependent variable studied.

The next section ”Model Output” reports the summary table of statistical
assessment for two classifications: high and low. Three datasets are assessed:
All, Females only and Males only. Two measures are provided for each
dataset considered:

1. A test of statistical significance (p-value) assessed using a Fisher Exact
Test.

2. A measure of biological significance, the maximum effect size change
(ES)

In the case of Reference Range framework classification tag means not sexual
dimorphism classification, but rather the overall estimation of the signals
significance across the different datasets.

The signal is significant in all three tested datasets and the direction of the
signal is the same – Low, so classification tag ”significant in males (Low), fe-
males (Low) and in combined dataset (Low)” is assigned (see Table 8).

The section titled ‘Thresholds’ indicates how the reference range methodol-
ogy has been configured.

• ”Natural variation” indicates how much of the data was used to define
normal. This defaults to 95%.

• ”Min control points” indicates how many data points were required as
a minimum to build a reference range.
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• The thresholds for defining normal are reported for the male and female
for this variable. Data is analysed as a male only, a female only and all.
In the all classification, the male and female classifications are combined
but please note the classification of normal, low or high are run on a
sex specific basis. In the situation where only one sex is present the
output is returned in the all category.

The final section of the output provides tables showing the counts calculated
for each group and possible level.

The following is reported for dependent variable lean mass for the Akt2
dataset and we can see that for all datasets, there is a statistically signif-
icant change of the values for knockout animals towards low classification
with a large effect size.

10.3.4 Understanding the maximum effect size reported

The effect size reported is the maximum percentage change seen in the low
or high classification. For each trait level (i.e. the observed phenotype), the
change in percentage effect size is seen by subtracting the percentage observed
in the knockout from the wildtype. Then across the low and high levels, the
maximum percentage change is selected after ignoring the direction of the
change.

> for (i in seq_along(analysisResults(result))) {

val <- analysisResults(result)[[i]]

if (analysedSubset(val)=="males"){

print(getPercentageMatrix(val))

}

}

WT Akt2/Akt2

Low 2.622378 50

Normal/High 97.377622 50

WT Akt2/Akt2

High 2.622378 0

Normal/Low 97.377622 100

Thus in the Akt2 example, the maximum effect size would be 47% for the
male data as the increase in classification of low (|3− 50| = 47%) was larger
than the change in the high classification (|3− 0| = 3%).
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10.4 PhenStat FE framework Usage Example

The following dataset, provided by Wellcome Trust Sanger Institute (WTSI)
Mouse Genetics Project (MGP) of high resolution X-ray data obtained from
a study on gene knockout mice carrying the Aff3tm1a(EUCOMM)Wtsi tar-
geted allele which were created by blastocyst injection of targeted ES cells,
and bred on the B6N genetic background. Data was collected on a standard-
ized high throughput phenotyping pipeline following a multi-batch workflow,
where regular control animals are collected and knockout animals of the cor-
rect age are then issued to the pipeline as they arise. At WTSI, batch to
batch variation has not been found to be significant for these rare event cat-
egorical variables. Consequently, we ignore batch and combine data for the
same genetic background when collected with the same protocol and housing
and husbandry conditions. This increases the sensitivity of the analysis as
we have more accuracy on the estimate of the prevalence of the condition in
the wildtype population.

Genotype Sex Number Animals Number Batches

Aff3 /Aff3
Female 7 4
Male 6 4

wildtype
Female 446 70
Male 451 70

Table 15: Number of animals and number of batches in the Aff3 dataset

10.4.1 Loading the data and initial steps of analysis

Initial steps focus on loading the data, using the PhenStat tools to generate
the PhenList object, and then the result object. We can then explore the
data and fitted results using the visualisation and output functions.

> file <- system.file("extdata", "test_categorical.csv", package="PhenStat")

> dataset_cat <- read.csv(file)

> test <- PhenList(dataset=dataset_cat,

testGenotype="Aff3/Aff3",

refGenotype="+/+",

dataset.colname.batch="Assay.Date")

> result <- testDataset(test, depVariable="Thoracic.Processes", method="FE")
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10.4.2 Visualisation of data

The categoricalBarplot function is used to visualise the categorical data as
summary percentage data. It reports the percentage of each classification
observed for up to three datasets: all data, male only and female only. It is
important to note that percentage accuracy is very dependent on the number
of readings so it is important to consider the dataset size when interpreting
these graphs. Therefore tables showing both the percentage and count values
are included in the summaryOutput.

> categoricalBarplot(result)

Figure 43: categoricalBarplot function for Aff3 example.

10.4.3 Understanding the summary output

The first two lines of summaryOutput indicate the dependent variable studied
and the statistical framework used. The next section, titled ”Model output”,
reports the summary of statistical assessment. Three datasets are assessed:
All, Females only and Males only. Two measures are provided for each
dataset considered:

1. A test of statistical significance (p-value) assessed using a Fisher Exact
Test.

2. A measure of biological significance, the maximum effect size (ES)
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In the case of Fisher Exact Test classification tag means not sexual dimor-
phism classification, but rather the overall estimation of the signals signifi-
cance across the different datasets.

The signal is significant in all three tested datasets, so classification tag
”significant in males, females and in combined dataset” is assigned (see Table
8).

The final section provides tables showing the counts calculated for each tested
dataset.

> summaryOutput(result)

Test for dependent variable:

*** Thoracic.Processes ***

Method:

*** Fisher Exact Test framework ***

----------------------------------------------------------------------------

Model Output (’*’ highlights results with p-values less than threshold 0.01)

----------------------------------------------------------------------------

All

* p-value: 0.0000

* Effect size: 76%

Males only

* p-value: 0.0003

* Effect size: 70%

Females only

* p-value: 0.0000

* Effect size: 81%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - significant in males, females and in combined dataset

----------------------------------------------------------------------------

Count Matrices

----------------------------------------------------------------------------

All

+/+ Aff3/Aff3

Abnormal 142 12

Normal 753 1

Males only

+/+ Aff3/Aff3
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Abnormal 59 5

Normal 390 1

Females only

+/+ Aff3/Aff3

Abnormal 83 7

Normal 363 0

10.4.4 Understanding the maximum effect size reported

The maximum effect size is the maximum percentage change seen for an
observation type. Below is a table showing an artificial example where the
majority of the wildtype are normal but the abnormality is spread across
multiple levels in the knockout. For each trait level (i.e. the observed phe-
notype), the change in percentage effect size is seen by subtracting the per-
centage observed in the knockout from the wildtype. Then across all the
observed levels, the maximum percentage change is selected after ignoring
the direction of the change. Thus in the example below, the maximum effect
size would be 86.5% which indicates that there has been 86.5% change in
how often a level is observed.

Trait level
wildtype knockout

Effect size calculation Effect size
count % count %

Normal 198 99 1 12.5 99-12.5 86.5
Abnormal left eye 0 0 0 0 0 0
Abnormal right eye 1 0.5 4 50 0.5-50 49.5
Abnormal both eye 1 0.5 3 37.5 0.5-37.5 37

Table 16: Number of animals and number of batches in the Aff3 dataset

10.4.5 A dependent variable with little variation

Within the IMPC pipeline, there are a number of dependent variables which
have little variation but are numeric. For example, no of digits, or number of
caudal vertebrae etc. If you try to process these variables through a mixed
model framework the analysis will stop and an error will report that there is
insufficient variability in the data.

For our example dataset, the number of ribs is a dependent variable with
little variation as shown by plotting the data with the categoricalBarplot
function.
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Figure 44: categoricalBarplot function for Aff3 example with number of ribs
as dependent variable.

If we try and process this variable through a mixed model framework the
following output is obtained:

> result <- testDataset(test,depVariable="Number.Of.Ribs.Left",method="MM")

Warning:

Weight column is not present in dataset.

Equation ’withWeight’ can’t be used in such a case and has been replaced to ’withoutWeight’.

Error:

Insufficient variability in dependent variable ’Number.Of.Ribs.Left’ for MM/TF framework.

Fisher Exact Test can be better way to do the analysis.

Instead the dependent variable should be treated as a categorical variable
which each numeric output possible treated as a level allowing a statistical
comparison of how the levels are distributed between the knockout and wild-
type groups. Thus for our example the following summary output and count
table is obtained:

> result <- testDataset(test,depVariable="Number.Of.Ribs.Left",method="FE")

...

> summaryOutput(result)

Test for dependent variable:

*** Number.Of.Ribs.Left ***

Method:

*** Fisher Exact Test framework ***

----------------------------------------------------------------------------

Model Output (’*’ highlights results with p-values less than threshold 0.01)

----------------------------------------------------------------------------
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All

p-value: 1.0000

Effect size: 0%

Males only

p-value: 1.0000

Effect size: 0%

Females only

p-value: 1.0000

Effect size: 0%

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

Not significant

----------------------------------------------------------------------------

Count Matrices

----------------------------------------------------------------------------

All

+/+ Aff3/Aff3

12 1 0

13 893 13

14 1 0

Males only

+/+ Aff3/Aff3

12 1 0

13 448 6

14 0 0

Females only

+/+ Aff3/Aff3

12 0 0

13 445 7

14 1 0

10.5 PhenStat LR framework Usage Example

The following dataset, provided by Wellcome Trust Sanger Institute (WTSI)
Mouse Genetics Project (MGP) of high resolution X-ray data obtained from a
study on gene knockout mice carrying the Aff3tm1a(EUCOMM)Wtsi targeted
allele which were created by blastocyst injection of targeted ES cells, and bred
on the B6N genetic background. Data was collected on a standardized high
throughput phenotyping pipeline following a multi-batch workflow, where
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regular control animals are collected and knockout animals of the correct
age are then issued to the pipeline as they arise. At WTSI, batch to batch
variation has not been found to be significant for these rare event categorical
variables. Consequently, we ignore batch and combine data for the same
genetic background when collected with the same protocol and housing and
husbandry conditions. This increases the sensitivity of the analysis as we
have more accuracy on the estimate of the prevalence of the condition in the
wildtype population.

10.5.1 Loading the data and initial steps of analysis

Initial steps focus on loading the data, using the PhenStat tools to generate
the PhenList object, recoding the variables to the (0: normal, 1: abnormal)
that is required for this framework and then generating the result object.
We can then explore the data and fitted results using the visualisation and
output functions.

> file <- system.file("extdata", "test_categorical.csv", package="PhenStat")

> dataset_cat <- read.csv(file)

> test <- PhenList(dataset=dataset_cat, testGenotype="Aff3/Aff3",

refGenotype="+/+",

dataset.colname.batch="Assay.Date")

> test <- LRDataset(test, depVariable="Thoracic.Processes",

abnormalValues="Abnormal")

> result <- testDataset(test, depVariable="Thoracic.Processes", method="LR")

10.5.2 Visualisation of data

The categoricalBarplot function is used to visualise the categorical data as
summary percentage data. It reports the percentage of each classification
observed for up to three datasets: all data, male only and female only.

> categoricalBarplot(result)
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Figure 45: categoricalBarplot function for Akt2 Thoracic Processes example
after recoding to 0 and 1 for Logistic Regression analysis.

10.5.3 Understanding the summary output

> summaryOutput(result)

Test for dependent variable:

*** Thoracic.Processes ***

Method:

*** Logistic Regression ***

----------------------------------------------------------------------------

Model Output

----------------------------------------------------------------------------

Final fitted model: Thoracic.Processes ~ Genotype + Sex

Was batch significant? FALSE

Genotype p-value: 1.943939e-09

Genotype effect: 3.7983 +/- 0.9034

Was there evidence of sexual dimorphism? no (p-value 5.441219e-01)

----------------------------------------------------------------------------

Classification Tag

----------------------------------------------------------------------------

With phenotype threshold value 0.01 - both sexes equally
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----------------------------------------------------------------------------

Model Output Summary

----------------------------------------------------------------------------

Value Std.Error ci.lower ci.upper p-value

(Intercept) -1.4646494 0.1209814 -1.7077333 -1.23321580 0.000000e+00

GenotypeAff3/Aff3 3.7983232 0.9033813 2.3619588 6.02332990 1.943939e-09

SexMale -0.4251768 0.1840563 -0.7891747 -0.06661705 2.002838e-02

The first two lines of summaryOutput function results indicate the statistical
framework used and the dependent variable studied.

The next section, titled “Model output”, of the output clarifies the final fitted
model details and global findings. As the ”LR” framework is an optimisation
process exploring the data to fit the best model to the data, the final fitted
model details will vary. The “Final fitted model” tells us that the final model
includes both genotype and sex as sex was found to be a significant source of
variation. The validation test to assess whether batch was significant tells us
that batch wasn’t significant. This is a positive outcome as the Biased Reduc-
tion Logistic Regression package underpinning this analysis cannot include
random effects and hence we cannot manage significant batch effects.

The “Was there evidence of sexual dimorphism?” reports the outcome of the
statistical assessment of whether there was evidence of sexual dimorphism
(i.e. the genotype effect was found to be dependent on sexes). In this case,
the statistical test of sexual dimorphism was non-significant (p-value = 0.54)
hence the final model assessed a genotype effect rather than the genotypes
for each sex separately.

The “Genotype effect” reports the statistical significance for the genotype
effect and is assessed by comparing a treatment model (final fitted model)
with a null model where a null model has no genotype effects in the model
but all other significant main effects. In this example the null model would
thus be Thoracic.Processes ∼ Sex. Looking at the output the ”Genotype
p-value” is highly statistical significant as a 1.9e − 9 value is reported. The
genotype effect is estimated at 3.79 ± 0.9. Logistic regression estimates log
odds and to relate this back to the experiment it is recommended that you
convert the estimate into an odds ratio by calculating the exponential of the
value (i.e. Eβ or exp(β)). Where an odds ratio is an indicator of the change
in odds resulting from a unit change in the predictor. In this example that
gives us an odds ratio of 44.2 which tells us that being a knockout mouse
leads to a 44.2 higher odds of being abnormal.

The section titled “Classification Tag” indicate how the genotype effect has
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been classed. In this case as the model found no evidence of sexual dimor-
phism the effect was found to effect “both sexes equally”.

Finally in the section “Model Output Summary”, the estimates from the
final model are reported.

10.6 PhenStat Example Using Cluster

If someone would like to analyse all variables in the dataset and has a cluster
available for such kind of job then here is an example of PhenStat package
usage.

First, the function that runs on each cluster’s node and stores the results in
particular directory is created. This function is based on the method getStat
of the PhenList object.

PhenStatCluster<-function(phenList,i){

# reads variable names from getStat table

datasetStat <- getStat(phenList)

variable <- as.character(datasetStat$Variables[i])

# checks if variable is continuous again by using getStat table

isContinuous <- datasetStat$Continuous[i]

# skip the analysis for Batch and Genotype variables

if (!(variable %in% c("Batch","Genotype"))){

if (isContinuous && !(variable %in% c("Weight")))

# performs MM framework for continuous data

result <- testDataset(phenList, variable, method="MM",outputMessages=FALSE)

else

if (!isContinuous){

# performs FET framework for categorical data

result <- testDataset(phenList, variable, method="FE",outputMessages=FALSE)

}

else

# performs MM framework for weight variable

result <- testDataset(phenList, variable, method="MM",equation="withoutWeight",outputMessages=FALSE)

write(vectorOutput(result),paste("./",variable,".txt",sep="")) # stores the results

}

}

We are planning to analyse every individual variable of the dataset using a
cluster. Each one cluster node has to have sourced function PhenStatCluster
and loaded PhenStat library. PhenList object with dataset to analyse should
also be available for every cluster node.
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# cluster preparation

# set the folder

setwd("/yourWorkingDirectory")

# create logs folder in it

dir.create(paste(getwd(), "/logs", sep=""))

file <- system.file("extdata", "test_Akt2.csv", package="PhenStat")

DEXAdata <- read.csv(file)

test <- PhenList(dataset=DEXAdata,

testGenotype="Akt2/Akt2",

refGenotype="WT",

dataset.colname.batch="dateOfExperiment",

dataset.values.female="female",

dataset.values.male="male",

dataset.colname.genotype="Genotype",

dataset.colname.sex="Gender")

# define tasks

tasks <- c(1:length(getVariables(test)))

# load snow

# snow creates and manages clusters

library(snow)

# create cluster

cluster = makeCluster(length(tasks), type="...") # type values: MPI, RCLOUD, etc.

# Setup cluster nodes

# set current folder on each node

clusterEvalQ(cluster, setwd("/yourWorkingDirectory"))

# create logs and forward output to the log files

clusterEvalQ(cluster, try({ fn = paste(getwd(), "/logs", Sys.info()[4], "-", Sys.getpid(), ".log", sep="");

o <- file(fn, open = "w"); sink(o); sink(o, type = "message"); }))

# test output is routed to the logs

clusterEvalQ(cluster, message("message - OK"))

clusterEvalQ(cluster, cat("cat - OK"))

# load package and source function for each node

clusterEvalQ(cluster, library(PhenStat))

clusterEvalQ(cluster, source("/pathToTheSource/PhenStatCluster.R"))

# export PhenList object to make it available for every node

clusterExport(cluster, "test")

# finally apply function for each one variable within the dataset

clusterApplyLB(cluster, tasks, function(x){ message("---------- processing ",
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getVariables(test)[x], " ----------"); try(PhenStatCluster(test,x)); })

# clean up

stopCluster(cluster)

rm(cluster)

clusterCleanup()

The output is avaialble in the specified directory: ”/yourWorkingDirectory”.
For each variable from the dataset the output file with results in vector format
is created.
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