MineICA: Independent component analysis of transcriptomic data

Anne Biton, Andrei Zinovyev, Emmanuel Barillot, François Radvanyi.

October 17, 2016

Abstract

MineICA supplies a framework for the storage and the study of a decomposition resulting from the application of independent component analysis (ICA) to transcriptomic data. It allows to integrate additional data associated with the samples (other molecular data, as well as clinical and pathological data) and data associated with the genes. It defines a new class *IcaSet* extending the class *eSet* of the package *Biobase*, which allows to store the inputs (genomic dataset and sample information) and outputs (mixing and source matrix) of ICA. *MineICA* helps the biological interpretation of the components by studying their association with variables (e.g sample annotations) and biological processes, and enables the comparison of components from different datasets using correlation-based graph. In practice, by creating interactive summarization of the results and comprehensive plots, *MineICA* makes much easier the interpretation of the numerous data resulting from the application of ICA to transcriptomic data.

1 Introduction

Unlike ICA, clustering methods and PCA are routinely applied to perform unsupervised analysis of genomic high-throughput data. Several studies highlighted the outperformance of ICA over PCA and clustering-based methods in obtaining a more realistic decomposition of the expression data into consistent patterns of coexpressed and coregulated genes Lee and Batzoglou [2003], Saidi et al. [2004], Frigyesi et al. [2006], Teschendorff et al. [2007] associated with the studied phenotypes, like histological grade or estrogen receptor status in breast cancer Teschendorff et al. [2007]. Unlike PCA, ICA does not impose an orthogonality constraints between the independent components (ICs). The less frequent use of ICA analysis in bioinformatics studies may be explained by the non-trivial interpretation of its outputs. The aim of *MineICA* is to make the most of the ICA by making available methods to make easier the interpretation of its results.

Several ICA algorithms exist and generally rely on random initializations and compute nonunique solutions. The analysis of the reproducibility of the components across datasets is thus a crucial point in the analysis by for example enabling the selection of components that do not arise from a local minima. *MineICA* implements the study of the component reproducibility among different data sets through correlation-based graphs.

ICA provides a decomposition of the expression matrix X = AS, where A, the mixing matrix, contains the activity of the components on the samples (e.g tumor samples) and S, the source matrix, provides the contribution of each feature (e.g genes) to the components. The source matrix S is thus used to biologically interpret the components by studying their contributing genes, and the matrix A is used to associate the component with sample features by studying the distribution of the samples on the components according to their characteristics (e.g clinical or molecular variables).

2 Software features

MineICA offers the following functionalities:

- **Storage of the ICA results** *MineICA* implements the class *IcaSet* whose aim is to contain and describe an ICA decomposition of high-throughput data.
- **Storage of analysis parameters** *MineICA* implements the class *MineICAParams* which aims at containing parameters required for the analysis of the ICA results.
- **Association with variables** *MineICA* proposes functions to test whether qualitative and quantitative variables (e.g sample annotations) are differently distributed on the components or differently distributed among clusters defined on the components.
- **Annotation of the features** The package also provides functions to easily describe feature (e.g gene) annotations using *biomaRt*. The resulting annotation being displayed in HTML files.
- **Association with gene sets** *MineICA* provides functions to run enrichment analysis of the contributing genes using package *GOstats*.
- **Visualization** *MineICA* provides functions to visualize heatmaps of the contributing features, distribution of the variables on the components, or correlation graph between different ICA.

3 Case study

Using microarray-based gene expression data of 200 breast cancer tumors stored in the package breastCancerMAINZ Schmidt et al. [2008], this vignette shows how *MineICA* can be used to study an ICA-based decomposition.

3.1 Loading the library and the data

We first load some dependent libraries :

```
> library(Biobase)
> library(plyr)
> library(ggplot2)
> library(foreach)
> library(xtable)
> library(biomaRt)
> library(GOstats)
> library(cluster)
> library(marray)
> library(mclust)
```

```
> library(RColorBrewer)
```

```
> library(igraph)
```

- > library(Rgraphviz)
- > library(graph)
- > library(colorspace)

```
> library(annotate)
> library(scales)
```

```
> library(gtools)
```

We then load the *MineICA* package by typing or pasting the following codes in R command line:

```
> library(MineICA)
```

3.2 Creation of an *IcaSet* object

Class *IcaSet* extends *eSet* class of package *Biobase*. The *eSet* class won't be described here, please refer to the documentation for details about the attributes of the class http://www.bioconductor.org/packages/2.12/bioc/vignettes/Biobase/inst/doc/Qviews.pdf. Reading the documentation of expressionSet class, another subclass of *eSet*, may also be very useful http://www.bioconductor.org/packages/release/bioc/vignettes/Biobase/inst/doc/ExpressionSetIntroduction.pdf.

Beside including slots of eSet class, IcaSet class includes additionnal slots in order to contain the ICA outputs A and S (slots A, S, SByGene) and information regarding the components (slots compNames, indComp, ...). You can get an overview of the structure and available methods by reading the help page:

> help(IcaSet)

IcaSet class proposes two levels of storage for the data, the "feature" and "gene" levels. The slots **S** (source matrix) and **dat** (original data) refer to the feature level, while the slots **SByGene** (source matrix indexed by genes) and **datByGene** (data indexed by genes) refer to the gene level. It allows to store at the same time the results of ICA applied to the original data indexed by features, these features speaking generally not for themselves (eg, probe set IDs), and the data indexed by annotations of these features into a more comprehensive ID (e.g gene ids).

By default, in *MineICA*, the second level of annotation is called the "gene" level but it may in fact correspond to any other annotation (e.g., isoforms, exons, ...).

In addition to the demands of the *eSet* class for object validity, validity method for *IcaSet* enforces that the sample, feature, and gene names of the slot elements are identical. For example, the row names of the phenoData (the sample annotations) and mixing matrix A must be similar to the column names of dat and datByGene. Similarly, row names of S and SByGene must be similar to row names of dat and datByGene. The number of components must also be consistent between A and S.

3.2.1 load an example of expression data

We load the eSet mainz included in the data package breastCancerMAINZ.

```
> ## load Mainz expression data and sample annotations.
> library(breastCancerMAINZ)
> data(mainz)
> show(mainz)
```

```
ExpressionSet (storageMode: lockedEnvironment)
assayData: 22283 features, 200 samples
  element names: exprs
protocolData: none
phenoData
  sampleNames: MAINZ_BC6001 MAINZ_BC6002 ... MAINZ_BC6232 (200 total)
  varLabels: samplename dataset ... e.os (21 total)
  varMetadata: labelDescription
featureData
  featureNames: 1007_s_at 1053_at ... AFFX-TrpnX-M_at (22283 total)
  fvarLabels: probe Gene.title ... GO.Component.1 (22 total)
  fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
 pubMedIds: 18593943
Annotation: hgu133a
> ## we restrict the data to the 10,000 probe sets with the highest IQR
```

```
> mainz <- selectFeatures_IQR(mainz,10000)</pre>
```

3.2.2 Run ICA

We now run the JADE algorithm to compute an ICA decomposition of the Mainz data.

```
> library(JADE)
> ## Features are mean-centered before ICA computation
> exprs(mainz) <- t(apply(exprs(mainz),1,scale,scale=FALSE))
> colnames(exprs(mainz)) <- sampleNames(mainz)
> ## run ICA-JADE
> resJade <- runICA(X=exprs(mainz), nbComp=5, method = "JADE", maxit=10000)</pre>
```

Another ICA algorithm, fastICA, is implemented in R and may be run with function runICA. FastICA relies on random initializations and the estimated components may vary between iterations. A way to alleviate this problem is to run fastICA several times, cluster the estimates, and use as the final estimates the centrotypes of the clusters. This strategy is proposed in the matlab package *icasso* Johan Himberg et al. [2004]. The function clusterFastICARuns implements this strategy and can be used to estimate the components:

```
> library(fastICA)
> ## Random initializations are used for each iteration of FastICA
> ## Estimates are clustered using hierarchical clustering with average linkage
> res <- clusterFastICARuns(X=exprs(mainz), nbComp=5, alg.type="deflation", nbIt=10,
+ funClus="hclust", method="average")</pre>
```

The returned estimates are ranked according to their Iq indices which measure the compactness of the clusters and are defined as the differences between the intra-cluster similarity and the extracluster similarity Johan Himberg et al. [2004].

3.2.3 Create a *MineICAParams* object, function buildMineICAParams

Before building an IcaSet instance, we need to create a *MineICAParams* instance that will contain a few parameters used during the analysis of the ICA decomposition.

You need to specify the directory where you would like to put the outputs of the analysis (slot resPath), the threshold applied to the projection values used to select the contributing elements (slot selCutoff), and the threshold you would like to use for statistical significance (slot pvalCutoff):

> ## build params > params <- buildMineICAParams(resPath="mainz/", selCutoff=3, pvalCutoff=0.05)</pre>

If the original data and the ICA outputs A and S were stored in files, the file names would have been included in slots annotfile, Sfile, Afile, and datfile.

3.2.4 Create an *IcaSet* instance, function buildIcaSet

Mainz data and the corresponding ICA results have now to be stored in an *IcaSet* object. This task is made easier thanks to the function buildIcaSet.

Before building the *IcaSet* object, several information (corresponding to *IcaSet* slots) regarding the feature and gene ids remain to be defined.

annotation: This slot contains the name of an annotation package for the data, if available. The Mainz data are from HG-U133A microarrays and are indexed by Affymetrix probe set ids. The corresponding annotation package is hgu133a.db and must be loaded:

> ## load annotation package
> library(hgu133a.db)

attribute typeID: The slot typeID of an *IcaSet* object includes the types of ids to be used for the annotation of the features, and the description of the feature and/or gene ids. typeID encompasses three elements to be defined:

geneID_annotation: defines the object supported by the annotation package (if provided) needed to annotate the features into genes. To see the list of the available objects in the given package:

> ls("package:hgu133a.db")

[1]	"hgu133a"	"hgu133a.db"	"hgu133aACCNUM"
[4]	"hgu133aALIAS2PROBE"	"hgu133aCHR"	"hgu133aCHRLENGTHS"
[7]	"hgu133aCHRLOC"	"hgu133aCHRLOCEND"	"hgu133aENSEMBL"
[10]	"hgu133aENSEMBL2PROBE"	"hgu133aENTREZID"	"hgu133aENZYME"
[13]	"hgu133aENZYME2PROBE"	"hgu133aGENENAME"	"hgu133aGO"
[16]	"hgu133aGO2ALLPROBES"	"hgu133aGO2PROBE"	"hgu133aMAP"
[19]	"hgu133aMAPCOUNTS"	"hgu133aOMIM"	"hgu133aORGANISM"

[22]	"hgu133aORGPKG"	"hgu133aPATH"	"hgu133aPATH2PROBE"
[25]	"hgu133aPFAM"	"hgu133aPMID"	"hgu133aPMID2PROBE"
[28]	"hgu133aPROSITE"	"hgu133aREFSEQ"	"hgu133aSYMBOL"
[31]	"hgu133aUNIGENE"	"hgu133aUNIPROT"	"hgu133a_dbInfo"
[34]	"hgu133a_dbconn"	"hgu133a_dbfile"	"hgu133a_dbschema"

Here we will use "SYMBOL" for Gene Symbols. If no annotation package is provided, this element is not useful and *biomaRt* is used to perform the annotation if required.

The two following elements are the IDs used to query biomaRt. A database of interest first needs to be specified. Here we use Ensembl for human.

```
> mart <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")</pre>
```

geneID_biomart: specifies the type of gene id, and is used for the description of the genes and features if no annotation package is provided. It must be one of the IDs available in the filters of the mart object:

> listFilters(mart)[120:125,]

	name
120	ottg
121	ottt
122	ottp
123	wikigene_id
124	wikigene_name
125 w	rith_affy_huex_1_0_st_v2
	description
120	VEGA Gene ID(s) (OTTG) [e.g. OTTHUMG00000036159]
121	VEGA Transcript ID(s) (OTTT) [e.g. OTTHUMT0000088063]
122	VEGA Protein ID(s) (OTTP) [e.g. OTTHUMP00000277309]
123	WikiGene ID(s) [e.g. 115286]
124	WikiGene Name(s) [e.g. SLC25A26]
125 w	with Affymetrix Microarray huex 1 0 st v2 probeset ID(s)

Here we will use geneID_biomart='hgnc_symbol' for Gene Symbols.

featureID_biomart: specifies the type of feature ID, must be one of the attributes available
in mart:

> listAttributes(mart)[grep(x=listAttributes(mart)[,1],pattern="affy")[1:5],]

	name	des	scription	page
107	affy_hc_g110	Affy HC G110	probeset	feature_page
108	affy_hg_focus	Affy HG FOCUS	probeset	feature_page
109	affy_hg_u133_plus_2	Affy HG U133-PLUS-2	probeset	feature_page
110	affy_hg_u133a_2	Affy HG U133A_2	probeset	feature_page
111	affy_hg_u133a	Affy HG U133A	probeset	feature_page

HG-U133A probe sets correspond to affy_hg_u133a.

The function buildIcaSet encompasses the step of feature annotation. During the annotation step (either performed using the annotation package or biomaRt) if several features are available for a same gene, the median value across those features is attributed to the gene.

Data can also be provided at the final annotation level (e.g dat and S are already indexed by gene ids), in that case please use alreadyAnnot=TRUE in the function buildIcaSet so that no annotation will be performed.

We can now build the object icaSetMainz with help of function buildIcaSet:

```
> ## Define typeID, Mainz data originate from affymetrix HG-U133a microarray
> ## and are indexed by probe sets.
> ## The probe sets are annotated into Gene Symbols
> typeIDmainz <- c(geneID_annotation="SYMBOL", geneID_biomart="hgnc_symbol",</pre>
                       featureID_biomart="affy_hg_u133a")
+
> ## define the reference samples if any, here no normal sample is available
> refSamplesMainz <- character(0)</pre>
> resBuild <- buildIcaSet(params=params, A=data.frame(resJade$A), S=data.frame(resJade$S),</pre>
                           dat=exprs(mainz), pData=pData(mainz), refSamples=refSamplesMainz,
+
                           annotation="hgu133a.db", typeID= typeIDmainz,
+
                           chipManu = "affymetrix", mart=mart)
> icaSetMainz <- resBuild$icaSet</pre>
> params <- resBuild$params</pre>
```

3.2.5 *IcaSet* basics

An instance of *IcaSet* has been built, we now explore some of the basic operations.

When printed, a brief summary of the contents of the object, based on the one available in class eSet, is displayed:

```
> icaSetMainz
```

```
Number of components: 5
Component labels: 1 2 3 4 5
IcaSet (storageMode: lockedEnvironment)
assayData: 10000 features, 200 samples
element names: dat
protocolData: none
```

```
phenoData
  sampleNames: MAINZ_BC6001 MAINZ_BC6002 ... MAINZ_BC6232 (200 total)
  varLabels: samplename dataset ... e.os (21 total)
  varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation: hgu133a.db
```

Accessing A number of accessor functions are available to extract data from an *IcaSet* instance. We will describe the most common accessor functions, most of them being inherited from class *eSet*.

You can access the phenotype data using pData:

```
> annot <- pData(icaSetMainz)</pre>
```

The columns of the phenotype data, are called the variables. The variable labels can be retrieved using the function varLabels and one variable can be accessed using \$:

```
> varLabels(icaSetMainz)[1:5]
```

```
[1] "samplename" "dataset" "series" "id" "filename"
```

```
> icaSetMainz$grade[1:5]
```

[1] 2 3 3 2 2

The feature names and their annotations (called "genes" by default), such as the sample names can respectively be retrieved using the functions featureNames, geneNames, and sampleNames:

> featureNames(icaSetMainz)[1:5] # probe set ids

[1] "1255_g_at" "1320_at" "1405_i_at" "1431_at" "1438_at"

> geneNames(icaSetMainz)[1:5] #gene symbols

```
[1] "GUCA1A" "PTPN21" "CCL5" "CYP2E1" "EPHB3"
```

```
> sampleNames(icaSetMainz)[1:5]
```

[1] "MAINZ_BC6001" "MAINZ_BC6002" "MAINZ_BC6003" "MAINZ_BC6004" "MAINZ_BC6005"

The data ICA was applied to and its annotation into genes (if available) can be accessed using the functions dat and datByGene

```
> head(dat(icaSetMainz)) #probe set level
```

> head(datByGene(icaSetMainz)) #gene level

An ICA decomposition consists of two matrices, the mixing matrix A containing the sample contributions and the source matrix S containing the feature projections. They can be retrieved from an *IcaSet* object using the methods of the same name: A and S. The method S returns matrix S at the feature level (e.g, containing projection of the features), while SByGene returns the projection values at the gene level:

```
> A(icaSetMainz)
> S(icaSetMainz)
```

```
> SByGene(icaSetMainz)
```

The number of components computed by ICA, but also their labels and indices can be extracted with nbComp, compNames, and indComp:

- > nbComp(icaSetMainz)
- > compNames(icaSetMainz)
- > indComp(icaSetMainz)

For graphical purpose, an *IcaSet* object includes a slot witGenes containing either one gene id per component (or whatever is refered as the level "gene"), or one feature id per component if the *IcaSet* object has only one level of annotation. Each "witness" is a contributor of the component and is used to denote the direction of the expression according to the direction of the component. These witnesses can be automaticall selected with the function selectWitnessGenes and are automatically defined when an *IcaSet* object is created through buildIcaSet. By default, for a given component, a witness gene corresponds to an individual having an absolute scaled projection value larger than selCutoff in at most one IC. Its sign of contribution should be the same than the majority of the selected contributing genes.

```
> witGenes(icaSetMainz)[1:5]
```

1 2 3 4 5 "IGHM" "GABRP" "CDCA8" "PICALM" "COL11A1" > ## We can for example modify the second contributing gene > witGenes(icaSetMainz)[2] <- "KRT16"

Accessing slots in different data formats Slots A, S, and SByGene are data.frame objects. A common need is to extract these data.frame in the form of a list where row names are preserved. It can be done using the functions Alist, Slist, and SlistByGene.

Setting The names of the accession functions described above, can also be used for setting the slots of an *IcaSet* object by adding operator <- and the new value. For example:

```
> compNames(icaSetMainz) <- paste("IC",1:nbComp(icaSetMainz),sep="")</pre>
```

Subsetting Subsetting an IcaSet is very similar to subsetting the expression matrix that is contained within the IcaSet to a subset of features/genes (first argument) and samples (second argument), except for a third argument that allows to subsets the components.

```
> ## select tumor samples of grade 3
> keepSamples <- sampleNames(icaSetMainz)[icaSetMainz$grade=="3"]
> ## Subset icaSetMainz to the grade-3 samples
> icaSetMainz[,keepSamples]
> ## Subset icaSetMainz to the grade-3 samples and the first five components
> icaSetMainz[,keepSamples,1:5]
> ## Subset icaSetMainz to the first 10 features
> icaSetMainz[featureNames(icaSetMainz)[1:10],keepSamples]
```

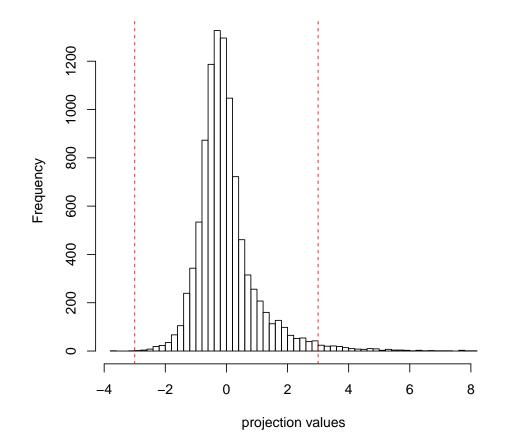
Useful basic functions Other functions which allow to extract data from an *IcaSet* object are available.

Select the contributing features or genes: When applying ICA decomposition to genomic data, for example here gene expression data, the distribution of the gene projections on the ICs is expected to be super-Gaussian: a large portion of genes follows a (super-)Gaussian centered at zero and a small portion belongs to an outgrowth located on the right and/or on the left of the distribution. In order to select the elements belonging to this outgrowth, we used the conventional way based on a threshold. The thresholds can typically be 3 or 4 standard deviations from the mean. We refer to the resulting selected genes as the "contributing genes".

Here is the histogram of the projection values for the first component.

The function **selectContrib** allows to select the contributing elements from a list of projection values.

```
> ## Extract the contributing genes
> contrib <- selectContrib(icaSetMainz, cutoff=3, level="genes")
> ## Show the first contributing genes of the first and third components
> sort(abs(contrib[[1]]),decreasing=TRUE)[1:10]
IGHM NKG7 TNFRSF17 IGK GZMK IGKC CXCL9 CXCL13
6.659809 6.463074 6.363992 5.851299 5.533274 5.505683 5.475967 5.429822
JCHAIN IGLV1-44
5.223099 5.201415
> sort(abs(contrib[[3]]),decreasing=TRUE)[1:10]
```



Distribution of feature projection on the first component

```
MMP1 CDCA8 OGN ELN SCGB1D2 MFAP4 CDC45 ACKR1
5.717376 5.477812 5.371826 5.225109 5.192641 5.162009 5.140146 5.041739
KRT14 CENPN
4.938156 4.613233
> ## One can also want to apply different cutoffs depending on the components
> ## for example using the first 4 components:
> contrib <- selectContrib(icaSetMainz[,,1:4], cutoff=c(4,4,4,3), level="genes")</pre>
```

Extract data of a specific component: The function getComp allows to extract the projection values and sample contribution of a specific component:

```
> ## extract sample contributions and gene projections of the second component
> comp2 <- getComp(icaSetMainz, level="genes", ind=2)</pre>
> ## access the sample contributions
> comp2$contrib[1:5]
MAINZ_BC6001 MAINZ_BC6002 MAINZ_BC6003 MAINZ_BC6004 MAINZ_BC6005
 -0.14515901
               0.32744737 -0.09054997 0.10447404
                                                       0.23829698
> ## access the gene projections
> comp2$proj[1:5]
     GUCA1A
                               CCL5
                                         CYP2E1
                 PTPN21
                                                       EPHB3
 0.25970790 -0.30932799 0.60651225 0.06477177 -2.51301758
```

3.3 Run global analysis

The function runAn enables to study an *IcaSet* object by calling all the functions dedicated to the analysis of an ICA decomposition in the package *MineICA*. The outputs are written in the path resPath(params), each sub-directory containing the outputs of a specific analysis.

We apply the function runAn to the object icaSetMainz:

```
> ## select the annotations of interest
> varLabels(icaSetMainz)
```

[1]	"samplename"	"dataset"	"series"	"id"
[5]	"filename"	"size"	"age"	"er"
[9]	"grade"	"pgr"	"her2"	"brca.mutation"
[13]	"e.dmfs"	"t.dmfs"	"node"	"t.rfs"
[17]	"e.rfs"	"treatment"	"tissue"	"t.os"
[21]	"e.os"			

```
> # restrict the phenotype data to the variables of interest
> keepVar <- c("age","er","grade")</pre>
> # specify the variables that should be treated as character
> icaSetMainz$er <- c("0"="ER-","1"="ER+")[as.character(icaSetMainz$er)]</pre>
> icaSetMainz$grade <- as.character(icaSetMainz$grade)</pre>
> ## Run the analysis of the ICA decomposition
> # only enrichment in KEGG gene sets are tested
> runAn(params=params, icaSet=icaSetMainz, writeGenesByComp = TRUE,
        keepVar=keepVar, dbGOstats = "KEGG")
```

The resulting plots and data are located in the main results path, which here is the "mainz/" current directory:

```
> resPath(params)
```

[1] "mainz/"

+

The sub-directories automatically created by the function **runAn** are the following:

ProjByComp/: contains the annotations of the features or genes, one file per component;

- varAnalysisOnA/: contains two directories: 'qual/' and 'quant/' which respectively contain the results of the association between components and qualitative and/or quantitative variables;
- Heatmaps/: contains the heatmaps (one pdf file per component) of the contributing genes by component;
- varOnSampleHist/: contains the histograms of the sample contributions superimposed with the histograms of the groups of samples defined by the variables of interest (e.g tumor grade).

Run analysis by calling individual functions 3.4

The functions implicitely called by **runAn** can be run individually. In this section, we will provide examples of each of these functions.

3.4.1 Write description of contributing genes or features, function writeProjByComp

Each component is a direction in the space where axis are the samples and points are genes whose locations are defined by their expression profiles across samples. In matrix S, each component is thus defined by a vector of gene projection values. When applying ICA to gene expression data, each component is typically triggered by a group of genes co-expressed on a subset of samples. These genes responsible for the existence of the component will typically have high projections, we call them the *contributing* genes.

The first way to study a component is to look at its contributing genes. The function writeProjByComp allows to describe genes with a projection value higher than a given threshold on each component.

As in PCA, the components computed by ICA are defined up to their sign. On a given component, genes with opposite projection signs are elements whose expressions are anti-correlated on the samples distributed at both ends of the component. The function writeProjByComp therefore orders genes by absolute projection values.

This function creates a HTML file per component containing the description of the contributing features or genes, and a file containing the projection values of each feature or gene across all components.

The needed information are queried through *biomaRt*. By default, the descriptors used to annotate the gene ids are their Gene Symbols, Ensembl IDs, biological description and genomic locations. If you would like to add descriptors, please fill argument typeRetrieved. Here we will content ourselves with the defaults ones. You can change the threshold used to select the genes to be described using the argument selCutoffWrite.

Here we are interested in the description of the projection values at the gene level (level=**Bgenes**).

```
> resW <- writeProjByComp(icaSet=icaSetMainz, params=params, mart=mart,
+ level='genes', selCutoffWrite=2.5)
```

> ## the description of the contributing genes of each component is contained

> ## in res\$listAnnotComp which contains the gene id, its projection value, the number and

> ## the indices of the components on which it exceeds the threshold, and its description. > head(resW\$listAnnotComp[[1]])

	hgnc_symbol	<pre>scaled_proj</pre>	nbOcc_forThreshold:3	comp_forThreshold:3	
153	IGHM	6.66	1	1	
154	IGHM	6.66	1	1	
226	NKG7	6.463	1	1	
277	TNFRSF17	6.364	1	1	
155	IGK	5.851	1	1	
102	GZMK	5.533	1	1	

description

```
immunoglobulin heavy constant mu [Source:HGNC Symbol;Acc:HGNC:5541]
153
         immunoglobulin heavy constant mu [Source:HGNC Symbol;Acc:HGNC:5541]
154
226 natural killer cell granule protein 7 [Source:HGNC Symbol;Acc:HGNC:7830]
      TNF receptor superfamily member 17 [Source:HGNC Symbol;Acc:HGNC:11913]
277
155
                                                                           <NA>
102
                                granzyme K [Source:HGNC Symbol;Acc:HGNC:4711]
       chromosome_name start_position end_position
                                                       band strand
153 CHR_HSCHR14_3_CTG1
                             105854991
                                          105865024
                                                                -1
                                          105856218 q32.33
154
                     14
                             105851708
                                                                -1
226
                     19
                              51371606
                                           51372715 q13.41
                                                                 -1
277
                                           11968068 p13.13
                    16
                              11965107
                                                                 1
155
                   <NA>
                                                  NA
                                                       <NA>
                                                                NΑ
                                    NΔ
102
                     5
                              55024253
                                           55034570 q11.2
                                                                  1
    ensembl_gene_id
153 ENSG00000282657
154 ENSG00000211899
226 ENSG00000105374
```

```
277 ENSG0000048462
```

155 <NA> 102 ENSG0000113088

```
> ## The number of components a gene contributes to is available
> ## in res$nbOccInComp
> head(resW$nbOccInComp)
```

	gene	nbOcc	components	sd_expr	1	2	3	4	5
S100A7	S100A7	2	2,4	3.86750	0.2359	-4.897	0.961	-3.699	-1.394
SCGB1D2	SCGB1D2	1	3	3.43860	-1.283	2.066	-5.184	0.4333	-0.4833
CPB1	CPB1	1	1	2.77680	-3.644	2.674	-0.8729	-1.339	0.9012
GRIA2	GRIA2	2	1,2	2.76040	-2.948	3.552	-0.2685	-0.166	-0.8901
MMP1	MMP1	2	3,5	2.64700	2.705	-0.9315	5.79	-0.3799	3.053
CYP4F8	CYP4F8	2	4,5	2.60910	-1.109	0.4198	-1.945	2.95	3.158

```
> ## The output HTML files are located in the path:
> genesPath(params)
```

[1] "mainz/ProjByComp/"

3.4.2 Plot heatmaps of the contributing elements, function plot_heatmapsOnSel

A way to visualize the pattern captured by a component is to draw the heatmap of its contributing features/genes. The function plot_heatmapsOnSel enables to plot the heatmaps of the contributing genes for each component. On those heatmap, features and samples are either ranked by their contribution value to the component, or clustered with hierarchical clustering.

Here we choose to study the data at the gene level (level="genes"), and a threshold of 3 is used for the selection of the contributing genes.

```
> ## selection of the variables we want to display on the heatmap
> keepVar <- c("er","grade")</pre>
> ## For the second component, select contributing genes using a threshold of 3
> ## on the absolute projection values,
> ## heatmap with dendrogram
> resH <- plot_heatmapsOnSel(icaSet = icaSetMainz, selCutoff = 3, level = "genes",</pre>
+
                              keepVar = keepVar,
                              doSamplesDendro = TRUE, doGenesDendro = TRUE, keepComp = 2,
+
                              heatmapCol = maPalette(low = "blue", high = "red", mid = "yellow"
+
                              file = "heatmapWithDendro", annot2col=annot2col(params))
> ## heatmap where genes and samples are ordered by contribution values
> resH <- plot_heatmapsOnSel(icaSet = icaSetMainz, selCutoff = 3, level = "genes",</pre>
                              keepVar = keepVar,
+
                              doSamplesDendro = FALSE, doGenesDendro = FALSE, keepComp = 2,
+
```

```
+ heatmapCol = maPalette(low = "blue", high = "red", mid = "yellow",
+ file = "heatmapWithoutDendro", annot2col=annot2col(params))
>
```

The heatmap where samples are ranked by sample contributions shows a group of tumors distributed at the left/negative end of the IC that strongly under-express and over-express sone of the contributing genes of the component, and whose pattern of expression is strongly anticorrelated with the tumors distributed at the opposite end of the component (Figure 1). According to the second row of the top panel displaying the tumor annotations, these tumors are preferentially ER negative.

3.4.3 Gene enrichment analysis, function runEnrich

To obtain a biological interpretation of the component, it can be useful to study the association of its contributing genes with gene sets grouping genes involved in a same biological processes or sharing a same factor of regulation. In order to identify the gene sets which are enriched in the list of selected (contributing) genes, the function runEnrich uses R GOstats package Falcon and Gentleman [2007] which makes use of a hypergeometric distribution to test the over-representation of a gene set in a given list of genes.

```
> ## run enrichment analysis on the first three components of icaSetMainz,
> ## using gene sets from the ontology 'Biological Process' (BP) of Gene Ontology (GO)
> resEnrich <- runEnrich(params=params,icaSet=icaSetMainz[,,1:3],
+ dbs=c("GO"), ontos="BP")
```

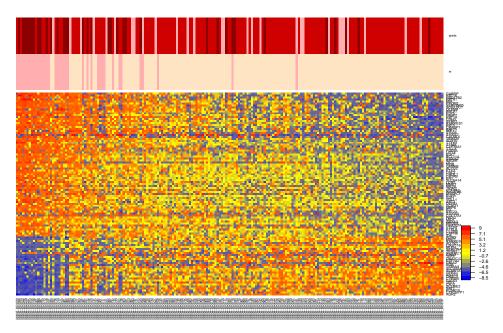
The output **resEnrich** is a list whose each element contains results obtained on each database for every component tested. For each component, three enrichment results are available, depending on how contributing genes are selected: on the absolute projection values ("both"), on the positive projection ("pos"), and on the negative projection ("neg").

We can see that the first component is associated with immune reaction, the second component with epiderm development, and the third component with cell cycle:

```
> ## Access results obtained for GO/BP for the first three components
> # First component, when gene selection was based on the negative projection values
> head(resEnrich$GO$BP[[1]]$left)
```

```
Pvalue OddsRatio ExpCount Count Size
      GOBPID
1 GD:0006955 4.133986e-16 16.11393 2.180819
                                                21
                                                    185
2 GD:0002694 3.535657e-14 10.23999 3.246918
                                                    199
                                                23
3 GD:0050867 1.059836e-11 10.34766 2.382161
                                                18
                                                    146
4 GD:0002429 2.104749e-11 13.19753 1.566352
                                                15
                                                     96
5 GD:0050863 2.964082e-11 14.54225 1.337114
                                                14
                                                     85
6 GD:0051251 3.414818e-11 14.36465 1.350438
                                                14
                                                     85
                                                                Term
1
                                                     immune response
2
                                  regulation of leukocyte activation
```

Component IC2, cutoff = 3



(a)

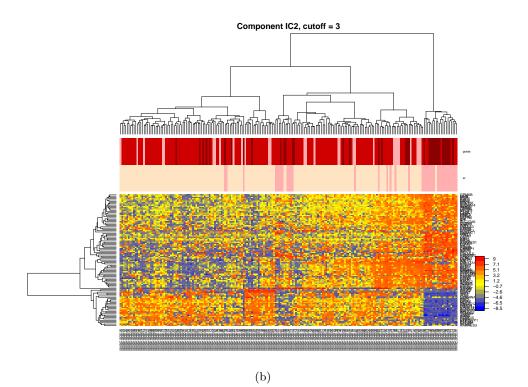


Figure 1: Heatmap of component 2. The expression matrix is restricted to the contributing genes with an absolute scaled projection exceeding 3, and each gene expression profile is centered. In heatmap (a), genes and samples are ranked by their contribution to the IC.

```
3
                                positive regulation of cell activation
4 immune response-activating cell surface receptor signaling pathway
                                       regulation of T cell activation
5
6
                         positive regulation of lymphocyte activation
            CD7, MS4A1, CD27, CTSW, GZMA, HLA-DOB, IGHD, IGHM, IGJ, IL2RG, CXCL10, LTB, LY9, CXCL9, CCL18, CXCl
1
2 AIF1,CD2,CD3D,CD3G,CD247,CD27,CD37,CD38,HLA-DQB1,LCK,PTPRC,CCL5,CCL19,XCL1,EBI3,LILRB1,PTPN22
                                 AIF1, CD2, CD3D, CD3G, CD247, CD27, CD38, HLA-DQB1, LCK, PTPRC, CCL5, CCL19
3
                                             CD3D, CD3G, CD247, CD38, HLA-DQB1, IGHG1, IGKC, IGLC1, LCK, PH
4
                                                      AIF1, CD3D, CD3G, CD247, HLA-DQB1, PTPRC, CCL5, XCL:
5
                                                      AIF1, CD3D, CD3G, CD247, CD38, HLA-DQB1, PTPRC, CCL
6
> # Second component
> head(resEnrich$GO$BP[[2]]$both, n=5)
      GOBPID
                                        ExpCount Count Size
                    Pvalue OddsRatio
1 GD:0045104 2.160448e-05 19.682018 0.36675127
                                                      5
                                                           17
2 GD:0031581 6.046162e-05 26.782609 0.23730964
                                                       4
                                                           11
3 GD:0030318 3.943872e-04 14.405351 0.36675127
                                                       4
                                                           17
4 GD:0070488 4.615930e-04
                                  Inf 0.04314721
                                                       2
                                                           2
5 GD:0072602 4.615930e-04
                                  Inf 0.04314721
                                                       2
                                                           2
6 GD:0034329 1.079591e-03 4.298411 2.09263959
                                                       8
                                                           97
                                                Term
1 intermediate filament cytoskeleton organization
2
                             hemidesmosome assembly
3
                        melanocyte differentiation
4
                            neutrophil aggregation
5
                            interleukin-4 secretion
6
                             cell junction assembly
                                  In_geneSymbols
                      DST, KRT14, KRT16, PKP1, SYNM
1
2
                         DST, COL17A1, KRT5, KRT14
3
                             EDN3,KIT,SOX10,MLPH
4
                                   S100A8, S100A9
5
                                     GATA3, VTCN1
6 DST, CDH3, COL17A1, GPM6B, KRT5, KRT14, SFRP1, UGT8
```

> # Third component, when gene selection was based on the absolute projection values
> head(resEnrich\$GO\$BP[[3]]\$both)

GOBPIDPvalueOddsRatioExpCountCountSize1GO:00482852.180659e-2416.8486543.18165337321502GO:00513017.647658e-1614.5290702.1474866521107

```
3 GD:0007067 4.855310e-12 17.087428 1.18268701
                                                      14
                                                           65
4 GD:0007076 9.304760e-06
                                                       3
                                  Inf 0.06363307
                                                            3
5 GD:0000086 1.957014e-05 8.181957 1.18781726
                                                       8
                                                           56
6 GD:0006271 5.656494e-05 27.266751 0.23332125
                                                       4
                                                           11
                                                  Term
1
                                    organelle fission
2
                                         cell division
3
                                               mitosis
4
                     mitotic chromosome condensation
5
               G2/M transition of mitotic cell cycle
6 DNA strand elongation involved in DNA replication
1 BIRC5, BUB1, CCNA2, CDK1, CDC20, CDC25A, CENPE, IGF1, KIFC1, MYBL2, NEK2, AURKA, CCNB2, KIF23, DLGAP5, NDC80
                                                                        BUB1, CCNA2, CDK1, CDC20, CDC25
2
3
4
5
6
```

The function **runEnrich** also writes these enrichment results in HTML files located in the sub-directory "GOstatsEnrichAnalysis" of the result path.

3.4.4 Association with sample variables

Recall that a component is a direction in the gene space whose axis are defined by the samples. The mixing matrix A contains the coordinates of the components on the sample axis, we call these values the sample contributions.

The association of qualitative variables (e.g sample characteristics like tumor grade) with the components can be studied by comparing the contributions of the groups of samples they define. Depending on the number of groups formed by a given variable, their distribution can be compared either using a Wilcoxon (two groups) or a Kruskall-Wallis test (at least three groups). The function qualVarAnalysis tests whether the groups of samples formed by the qualitative variables are differently distributed on the components in terms of contribution value and plots the corresponding densities or boxplots using ggplot2.

If the levels of some variables in the phenoData of your *IcaSet* object are ordered (e.g, increasing tumor stage T1 T2 T3...), we advise you to declare these variables as factors whose levels are correctly ordered.

```
> ### Qualitative variables
> ## Compute Wilcoxon and Kruskall-Wallis tests to compare the distribution
> ## of the samples according to their grade and ER status on all components.
> resQual <- qualVarAnalysis(params=params, icaSet=icaSetMainz,
+ keepVar=c("er","grade"),
+ adjustBy="none", typePlot="boxplot",
+ path="qualVarAnalysis/", filename="qualVar")
```

```
[1] "Plot distribution of samples on components according to variable er"
[1] "Comp 1"
[1] "Comp 2"
[1] "Comp 3"
[1] "Plot distribution of samples on components according to variable grade"
[1] "Comp 1"
[1] "Comp 2"
[1] "Comp 3"
[1] "Comp 5"
```

The function creates an HTML file "qualVarAnalysis/qualVar.htm", containing p-values and links toward boxplots. If you would like to plot densities rather than boxplots, please use 'typePlot=density'.

An example of boxplot is represented below for the second component and the ER status. As suggested by the heatmap, the distribution of the samples on this component is strongly associated with their ER status, the latter coming up at the positive end of the component.

When a variable is quantitative, its association with a component can be studied by computing its correlation with the sample contributions. The function quantVarAnalysis allows to compute the correlation tests and to draw the corresponding scatter plots using ggplot2.

```
> ### Quantitative variables
> ## Compute pearson correlations between variable 'age' and the sample contributions
> ## on all components.
> ## We are interested in correlations exceeding 0.3 in absolute value, and plots will only be
> ## for correlations exceeding this threshold.
> resQuant <- quantVarAnalysis(params=params, icaSet=icaSetMainz, keepVar="age",
+ typeCor="pearson", cutoffOn="cor",
+ cutoff=0.3, adjustBy="none",
+ path="quantVarAnalysis/", filename="quantVar")
```

[1] "Scatter plot of samples contributions vs variable age"
[1] "Comp 2"

The absolute correlation between age and sample contributions exceeds 0.3 only for the second component.

> resQuant\$cor[2]

[1] 0.3670033

The corresponding scatter plot is available in Figure 3. A tendency of the women whose tumors are located at the positive end of the component to be younger indeed appears.

The function creates a HTML file "quantVar.htm" containing correlations values, p-values, and links toward scatter plots.

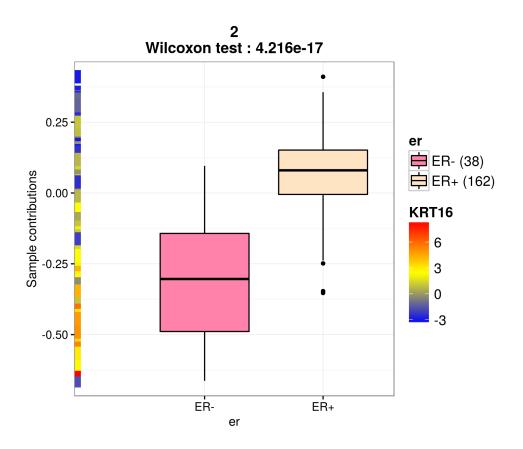


Figure 2: Example of boxplot representing the distribution of ER status on the third component. The Wilcoxon test p-value is available in the title of the plot. The legend indicates that the ER+ tumors are represented in beige while ER- are represented in light pink. The number of tumors in each group is given between brackets. The witness gene is KRT16. Each tumor sample is represented as a square point in the vertical line at the left end of the boxplots whose color denotes its amount of expression of the KRT16 gene. The scale of these colors is denoted by a legend at the upper right of the graph.

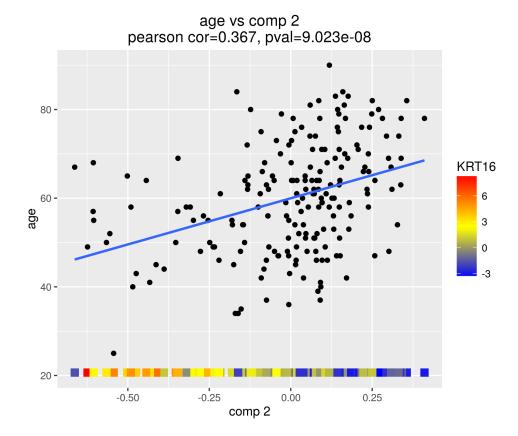


Figure 3: Scatter plot of AGE vs sample contributions. The witness gene is KRT16. At the bottom of the plot, each sample is represented by a square point whose colour denotes the expression value of the KRT16 gene. The scale of these colors is denoted by a legend at the upper right of the graph. Note that the gene expression profiles were centered to have mean zero.

3.4.5 Clustering of the samples according to each component

Selection of samples associated with a component The selection of the samples associated with a component may be needed for experimental needs. ICA provides a continuous signal describing the activity of the components on the samples through the mixing matrix A. Genes which are contributors on the components can also be selected through their projections in matrix S (using an arbitrary threshold). Since the signal is continuous the selection of the samples contributing to a component rely on some arbitrary choices regarding:

- the data on which the clustering has to be applied on: clustering in one dimension on columns of A, or clustering on the expression matrix restricted to the contributing genes of the components?
- the number of clusters to use: two clusters if it is considered as a strictly bimodal signal, or three clusters if we assume the existence of a group of samples with an average behavior?
- the method of clustering to use: k-means, clustering based on mixture Gaussian modelling, hierarchical clustering, ...

We recommend to cluster the samples by using their contributions to the component. If you would like to perform the clustering on the original data restricted to the contributing genes, please remind that they won't necessarily represent the whole pattern of expression captured by the component, the latter having been defined on all the features and not on a subset of them.

Study the bimodality of sample contributions in matrix A The distribution of the sample contributions on a component (contained in matrix A) is often bimodal, each mode corresponding to samples that over- or under-express the contributing genes of the component. The sample contributions can be visualized with histograms, overlaid by Gaussian mixtures computed, in this package, using package *mclust* Fraley and Raftery [2002, 2006]. When a strong bimodal distribution is observed, the intersection of the two Gaussian infered by function Mclust may be used to cluster the tumors. Here is an example by imposing two Gaussian on every vector of sample contributions:

> resmix <- plotAllMix(A=A(icaSetMainz), nbMix=2, nbBreaks=50)</pre>

The position of sub-groups of samples can be plotted in this histogram, in order to see if they are located at a specific end of the components. The function plotPosAnnotInComp allows to do so. The samples distributed at one end of component generally have either a strong over- or under-expression of its contributing genes.

Here is the example of the distribution of the tumors according to their ER status on the second component.

```
> ## plot the positions of the samples on the second component according to their ER status
> ## (in a file "er.pdf")
> plotPosAnnotInComp(icaSet=icaSetMainz, params=params, keepVar=c("er"), keepComp=2,
+ funClus="Mclust")
```

Again, we can see that the negative end of the IC defines a cluster of tumors almost exclusively constituted of ER- tumors, while the ER+ tumors are primarily located on its right side. The expression profile of the gene witness, KRT16, indicates that the negative side corresponds to the over-expression of this gene and its counterparts compared to the positive side.

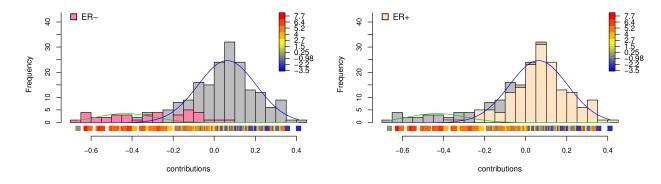


Figure 4: Distribution of ER status on the second component.. The histogram of each group is superimposed on the global histogram including contributions of all tumor samples. Two Gaussians were fitted on the distribution by mixture modeling using package *mclust*. The *p*-value at the top of the histogram provides the result of a chi-square test of association between each group and the clusters of samples formed by the two Gaussians.

Cluster samples, function clusterSamplesByComp The function clusterSamplesByComp allows to cluster the samples using either the mixing matrix A or the original data matrix restricted to the contributing individuals. The clustering can be performed using centroid-based clustering (function kmeans), hierarchical clustering (through functions hclust and agnes), Gaussian mixture models (using function Mclust or package *mclust*), or Partitioning Around Medoids (PAM) (functions pam and pamk).

The second component displays a bimodal distribution, we cluster the samples using the vector of sample contributions:

```
> ## clustering of the samples in 1-dim using the vector
> ## of sample contributions of the two first components
> ## and Gaussian mixture modeling (Mclust)
> clus1 <- clusterSamplesByComp(params=params, icaSet=icaSetMainz[,,,1:2],
+ funClus="Mclust", clusterOn="A", nbClus=2, filename="comp1Mclus
> ## The obtained clusters are written in the file "comp1Mclus.txt" of the result path.
> clus1$clus[[2]][1:5]
```

```
MAINZ_BC6001 MAINZ_BC6002 MAINZ_BC6003 MAINZ_BC6004 MAINZ_BC6005
2 2 2 2 2 2 2 2
```

It is also possible to perform several clusterings, using different algorithms or levels, with function clusterSamplesOnComp_multiple. We can for example compare the clustering performed with k-means applied to the vector of sample contributions and to the expression matrix restricted to the contributing genes:

> ## in file "comparKmeans.txt" of the result path.
>
> ## Both clustering results are stored in a common data.frame
> head(clus2\$clus)

	1_kmeans_onA	2_kmeans_onA	1_kmeans_onS	2_kmeans_onS
MAINZ_BC6001	1	1	1	1
MAINZ_BC6002	1	2	1	2
MAINZ_BC6003	1	2	2	1
MAINZ_BC6004	1	2	1	2
MAINZ_BC6005	1	2	1	2
MAINZ_BC6006	2	2	1	2

> ## Access Rand index

> clus2\$comparClus

	kmeans_onA	$kmeans_onS$
1_kmeans_onA	1.000	0.531
1_kmeans_onS	0.531	1.000
2_kmeans_onA	1.000	0.779
2_kmeans_onS	0.779	1.000

Once a sample clustering has been computed, one can be interested in its association with the qualitative variables. Function clusVarAnalysis enables to perform the chi-square tests of independence to study the association between the clustering obtained on each component and the qualitative variables. It also draws the barplot to show the distribution of the variable levels across the clusters:

```
> ## Test the association between the clustering obtained by Mclust for the first
> ## component and the variables:
> clus2var <- clusVarAnalysis(icaSet=icaSetMainz[,,1:2], params=params,
+ keepVar=c("er","grade"),
+ resClus=clus1$clus, funClus="Mclust", adjustBy="none",
doPlot=TRUE, path="clus2var/", filename="resChitests-Mcluscomp1"]
> ## Look at the filename which contains p-values and links to the barplots
> ## p-values are also contained in the ouput of the function:
> clus2var
>
```

3.4.6 Comparison of *IcaSet* objects, function runCompareIcaSets

Visualization of the correspondence between independent components with correlationbased graphs We can study the association between ICs computed on n different datasets using correlation graphs. In these graphs, each IC is represented as a node whose color indicates the dataset, and the edge thickness is proportional to the amount of correlation between the two ICs it links.

Hereafter we will denote by $C_{M,n}$ the n^{th} component from dataset M.

The relationship between the components is restricted to correlation maximum: an edge connecting a component $C_{A,i}$ to a component $C_{B,j}$ means that component $C_{A,i}$ is the most correlated component to $C_{B,j}$ among all the components $C_{A,i'(i'\neq i)}$ from the dataset A. The reciprocity of the link (i.e. the presence of an edge binding $C_{B,j}$ to $C_{A,i}$) reinforces the association between the two components.

In R, the graph can be visualized with function tkplot, using the "fruchterman.reingold" layout which attends to attribute the length of the edge according to one of its attribute, here the absolute correlation coefficient between the two components it links.

The edge thickness is also attributed according to the absolute correlation value (the higher the absolute correlation value is, the thicker the edge thickness is).

Highly reproducible components appear in the graph as a subset of n interconnected nodes of different colors (quasi-cliques). A way to highlight these quasi-cliques is obtained by coloring in black only edges linking reciprocal node pairs (a node pair is said to be reciprocal if there are edges between them in both directions). Non-reciprocal edges appear in grey. It allows to highlight the components with a high level of reproducibility.

Example: Comparison of four *IcaSet* **objects** As an example we will compare four ICA decompositions obtained on four different gene expression datasets of breast tumors (including the Mainz data used above).

We build an instance of *IcaSet* for each of the three datasets:

```
> ## load three other breast cancer datasets also based on Affymetrix HG-U133a microarray
> library(breastCancerUPP)
> library(breastCancerTRANSBIG)
> library(breastCancerVDX)
> data(upp)
> data(transbig)
> data(vdx)
> ## function to build IcaSet instances from these three datasets
 treat <- function(es, annot="hgu133a.db") {</pre>
      es <- selectFeatures_IQR(es,10000)
+
      exprs(es) <- t(apply(exprs(es),1,scale,scale=FALSE))</pre>
+
+
      colnames(exprs(es)) <- sampleNames(es)</pre>
      resJade <- runICA(X=exprs(es), nbComp=5, method = "JADE", maxit=10000)
+
      resBuild <- buildIcaSet(params=buildMineICAParams(), A=data.frame(resJade$A), S=data.frame
+
                               dat=exprs(es), pData=pData(es), refSamples=character(0),
+
                               annotation=annot, typeID= typeIDmainz,
+
                               chipManu = "affymetrix", mart=mart)
+
+
      icaSet <- resBuild$icaSet</pre>
+ }
```

```
> icaSetUpp <- treat(upp, annot="hgu133plus2.db")
> icaSetVdx <- treat(vdx)
> icaSetTransbig <- treat(transbig)</pre>
```

Each *IcaSet* was annotated at the gene level using Gene Symbols. We will therefore compute correlation between gene projection values stored in slot SByGene of each *IcaSet*.

Pearson correlation is used as a measure of association between the gene projections. The correlation graph can be build with function runCompareIcaSets:

```
> resGraph <- runCompareIcaSets(icaSets=list(icaSetMainz, icaSetUpp,
+ icaSetTransbig, icaSetVdx),
+ labAn=c("Mainz", "Upp","Transbig","Vdx"),
+ type.corr="pearson", level="genes",
+ cutoff_zval=0, fileNodeDescr="nodeDescr.txt",
+ fileDataGraph="dataGraph.txt", tkplot=TRUE)
```

Get the colors attributed to each dataset using the element nodeAttrs of resGraph:

```
> barplot(names.arg=unique(resGraph[[2]]$labAn),height=rep(1,4),
+ col=unique(resGraph[[2]]$col))
```

The Mainz dataset is represented in blue. Three cliques of four components appear in the correlationbased graph, they include the first three components of the Mainz dataset. The latter are therefore reproducible across the four datasets and thus capture coexpression patterns shared across different breast cancer cohorts. We showed that the first component was associated with the cell cycle, the second with immune reaction, and the third one with epiderm development. The third component also included EGFR and several keratins among its contributing genes, and defined a cluster of samples constituted by a subset of the ER- breast tumors. The latter typically corresponds to the subtype of breast cancer known as "basal-like".

Here we chose to base the correlation on all genes. By modifying the argument cutoff_zval, we could have chosen to base the correlations on genes with contribution values higher than a given threshold. Using cutoff_zval=1, only the projections whose scaled values are not located within the circle of radius 1 when considering a pair of components are used to compute the correlation. In practice, the function will be much faster when cutoff_zval=0, since in that case pairs of components are not treated individually.

Created files nodeDescr.txt and dataGraph.txt may be used as inputs into Cytoscape Melissa S Cline et al. [2007] which could be a way to obtain a more elegant correlation graph.

Intersection and union between contributing genes When cliques appear in the correlationbased graph, you may want to compare the genes having high projections on the components included in the clique. The function **compareGenes** allows to compare components of different icaSets and returns the common genes ordered by their median rank across the components. Intersection or union of the genes can be considered.

We study the common contributing genes of the components included in two different cliques of the graph using compareGenes:

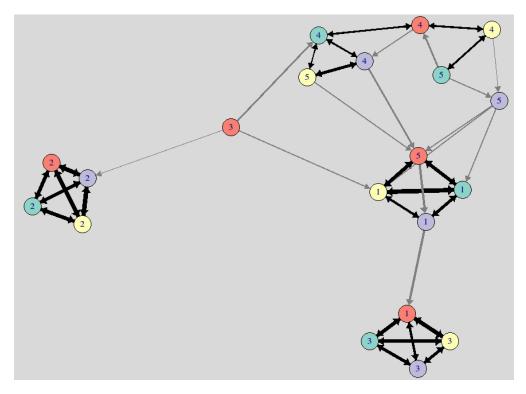


Figure 5: Correlation-based graph representing association between independent components obtained on four expression data of breast cancer samples. Each node denotes an IC and their colors represent the dataset they originate from. Edge thickness denotes the amount of correlation between the two ICs it links. Black edges denote reciprocal nodes.

```
> ## comparison of four components included in the clique of the correlation-based graph
> # that includes the second component of Mainz.
> inter <- compareGenes(keepCompByIcaSet = c(2,2,2,2),
+ icaSets = list(icaSetMainz, icaSetTransbig, icaSetUpp, icaSetVdx),
+ lab=c("Mainz", "Transbig", "Upp", "Vdx"), cutoff=3,
+ type="intersection", annotate=F)
> head(inter)
```

	min_rank	$median_rank$	ranks	scaled_proj
IGL@	1	1.0	1,1,1,1	-8.9,-9.2,9.2,-9.3
IGKV4-1	2	2.0	2,2,3,2	-8.4,-8.7,7.9,-8.9
IGLV2-23	3	3.0	3,3,4,3	-7,-8.3,7.7,-8.8
NKG7	2	5.0	5,8,2,5	-6.4,-6.1,8.4,-7.6
IGHM	4	5.5	4,7,9,4	-6.6,-6.5,6.7,-7.7
TNFRSF17	4	6.0	6,4,6,6	-6.3, -7.8, 7.1, -7.6

> ## comparison of four components included in the clique of the correlation-based graph
> # that includes the third component of Mainz.

```
> inter <- compareGenes(keepCompByIcaSet = c(3,3,3,1),</pre>
```

```
+ icaSets = list(icaSetMainz, icaSetTransbig, icaSetUpp, icaSetVdx),
+ lab=c("Mainz", "Transbig", "Upp", "Vdx"), cutoff=3,
+ type="intersection", annotate=F)
```

```
> head(inter)
```

	min_rank	median_rank	ranks	<pre>scaled_proj</pre>
GABRP	1	1.0	1,1,1,3	7.7,8.7,8.1,7.2
MIA	2	4.0	5,5,3,2	6.3,7.2,7.3,7.3
SERPINB5	5	6.5	7,7,6,5	6.2,7.1,5.9,6.5
KRT14	2	8.5	13,2,4,21	5.7,7.3,7,5.1
KRT16	2	9.5	2,15,15,4	7.3,5.8,5.4,7
KRT81	4	9.5	4,31,12,7	6.3,4.6,5.6,6.2

The common contributing genes of the first clique are strongly associated in the immune reaction and many of them are markers of lymphocytes, while the common contributing genes of the second clique include several keratins (*KRT5 KRT14*, *KRT15*, *KRT16*, *KRT17*, *KRT23*, ...) and other known markers of the basal-like breast subtype.

References

- S. Falcon and R. Gentleman. Using GOstats to test gene lists for GO term association. *Bioinformatics*, 23:257–258, Jan 2007. URL http://bioinformatics.oxfordjournals.org/cgi/content/full/23/2/257?view=long&pmid=17098774.
- C. Fraley and A. E. Raftery. Model-Based Clustering, Discriminant Analysis and Density Estimation. Journal of the American Statistical Association, 97:611–631, 2002.

- C. Fraley and A. E. Raftery. MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering. Technical Report 504, University of Washington, Department of Statistics, 2006. revised 2009.
- A. Frigyesi, S. Veerla, D. Lindgren, and M. Hoglund. Independent component analysis reveals new and biologically significant structures in micro array data. *BMC Bioinformatics*, 7:290, 2006. URL http://www.ncbi.nlm.nih.gov/pubmed/16762055.
- Johan Himberg, Aapo HyvÅd'rinen, and Fabrizio Esposito. Validating the independent components of neuroimaging time series via clustering and visualization. *Neuroimage*, 22(3):1214– 1222, Jul 2004. doi: 10.1016/j.neuroimage.2004.03.027. URL http://dx.doi.org/10.1016/j. neuroimage.2004.03.027.
- Su-In Lee and Serafim Batzoglou. Application of independent component analysis to microarrays. *Genome Biol*, 4(11):R76, 2003. doi: 10.1186/gb-2003-4-11-r76. URL http://dx.doi.org/10. 1186/gb-2003-4-11-r76.
- Melissa S Cline, Michael Smoot, Ethan Cerami, Allan Kuchinsky, Nerius Landys, Chris Workman, Rowan Christmas, Iliana Avila Campilo, Michael Creech, Benjamin Gross, Kristina Hanspers, Ruth Isserlin, Ryan Kelley, Sarah Killcoyne, Samad Lotia, Steven Maere, John Morris, Keiichiro Ono, Vuk Pavlovic, Alexander R Pico, Aditya Vailaya, Peng-Liang Wang, Annette Adler, Bruce R Conklin, Leroy Hood, Martin Kuiper, Chris Sander, Ilya Schmulevich, Benno Schwikowski, Guy J Warner, Trey Ideker, and Gary D Bader. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc, 2(10):2366–2382, 2007. doi: 10.1038/nprot.2007.324. URL http://dx.doi.org/10.1038/nprot.2007.324.
- S. A. Saidi, C. M. Holland, D. P. Kreil, D. J. MacKay, D. S. Charnock Jones, C. G. Print, and S. K. Smith. Independent component analysis of microarray data in the study of endometrial cancer. *Oncogene*, 23:6677–6683, Aug 2004.
- Marcus Schmidt, Daniel BÄühm, Christian von TÄürne, Eric Steiner, Alexander Puhl, Henryk Pilch, Hans-Anton Lehr, Jan G Hengstler, Heinz KÄülbl, and Mathias Gehrmann. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res, 68 (13):5405–5413, Jul 2008. doi: 10.1158/0008-5472.CAN-07-5206. URL http://dx.doi.org/10. 1158/0008-5472.CAN-07-5206.
- A. E. Teschendorff, M. Journee, P. A. Absil, R. Sepulchre, and C. Caldas. Elucidating the altered transcriptional programs in breast cancer using independent component analysis. *PLoS Comput. Biol.*, 3:e161, Aug 2007. URL http://www.ploscompbiol.org/article/info:doi/10.1371/ journal.pcbi.0030161.