
Gene set enrichment analysis with topGO

Adrian Alexa, Jörg Rahnenführer

October 13, 2015
http://www.mpi-sb.mpg.de/∼alexa

Contents

1 Introduction 2

2 Instalation 2

3 Quick start guide 3

3.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Performing the enrichment tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Loading genes and annotations data 8

4.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 The topGOdata object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Custom annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Predefined list of interesting genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 Using the genes score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.6 Filtering and missing GO annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Working with the topGOdata object 14

6 Running the enrichment tests 16

6.1 Defining and running the test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.2 The adjustment of p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.3 Adding a new test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4 runTest: a high-level interface for testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Interpretation and visualization of results 20

7.1 The topGOresult object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.2 Summarising the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.3 Analysing individual GOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.4 Visualising the GO structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Session Information 27

References 27

1



1 Introduction

The topGO package is designed to facilitate semi-automated enrichment analysis for Gene Ontology (GO)
terms. The process consists of input of normalised gene expression measurements, gene-wise correlation
or differential expression analysis, enrichment analysis of GO terms, interpretation and visualisation of the
results.

One of the main advantages of topGO is the unified gene set testing framework it offers. Besides providing
an easy to use set of functions for performing GO enrichment analysis, it also enables the user to easily
implement new statistical tests or new algorithms that deal with the GO graph structure. This unified
framework also facilitates the comparison between different GO enrichment methodologies.

There are a number of test statistics and algorithms dealing with the GO graph structured ready to use in
topGO. Table 1 presents the compatibility table between the test statistics and GO graph methods.

fisher ks t globaltest sum
classic
elim
weight
weight01
lea
parentchild

Table 1: Algorithms currently supported by topGO.

The elim and weight algorithms were introduced in Alexa et al. (2006). The default algorithm used by the
topGO package is a mixture between the elim and the weight algorithms and it will be referred as weight01.
The parentChild algorithm was introduced by Grossmann et al. (2007).

We assume the user has a good understanding of GO, see Consortium (2001), and is familiar with gene set
enrichment tests. Also this document requires basic knowledge of R language.

The next section presents a quick tour into topGO and is thought to be independent of the rest of this
manuscript. The remaining sections provide details on the functions used in the sample section as well as
showing more advance functionality implemented in the topGO package.

2 Instalation

This section briefly describe the necessary to get topGO running on your system. We assume that the user
have the R program (see the R project at http://www.r-project.org) already installed and its familiar with
it. You will need to have R 2.10.0 or later to be able to install and run topGO.

The topGO package is available from the Bioconductor repository at http://www.bioconductor.org To be
able to install the package one needs first to install the core Bioconductor packages. If you have already
installed Bioconductor packages on your system then you can skip the two lines below.

> source("http://bioconductor.org/biocLite.R")

> biocLite()

Once the core Bioconductor packages are installed, we can install the topGO package by

> source("http://bioconductor.org/biocLite.R")

> biocLite("topGO")



3 Quick start guide

This section describes a simple working session using topGO. There are only a handful of commands necessary
to perform a gene set enrichment analysis which will be briefly presented below.

A typical session can be divided into three steps:

1. Data preparation: List of genes identifiers, gene scores, list of differentially expressed genes or a criteria
for selecting genes based on their scores, as well as gene-to-GO annotations are all collected and stored
in a single R object.

2. Running the enrichment tests: Using the object created in the first step the user can perform enrichment
analysis using any feasible mixture of statistical tests and methods that deal with the GO topology.

3. Analysis of the results: The results obtained in the second step are analysed using summary functions
and visualisation tools.

Before going through each of those steps the user needs to decide which biological question he would like
to investigate. The aim of the study, as well as the nature of the available data, will dictate which test
statistic/methods need to used.

In this section we will test the enrichment of GO terms with differentially expressed genes using two statistical
tests, namely Kolmogorov-Smirnov test and Fisher’s exact test.

3.1 Data preparation

In the first step a convenient R object of class topGOdata is created containing all the information required
for the remaining two steps. The user needs to provide the gene universe, GO annotations and either a
criteria for selecting interesting genes (e.g. differentially expressed genes) from the gene universe or a score
associated with each gene.

In this session we will test the enrichment of GO terms with differentially expressed genes. Thus, the starting
point is a list of genes and the respective p-values for differential expression. A toy example of a list of gene
p-values is provided by the geneList object.

> library(topGO)

> library(ALL)

> data(ALL)

> data(geneList)

The geneList data is based on a differential expression analysis of the ALL(Acute Lymphoblastic Leukemia)
dataset that was extensively studied in the literature on microarray analysis Chiaretti, S., et al. (2004). Our
toy example contains just a small amount, 323, of genes and their corresponding p-values. The next data
one needs are the gene groups itself, the GO terms in our case, and the mapping that associate each gene
with one or more GO term(s). The information on where to find the GO annotations is stored in the ALL

object and it is easily accessible.

> affyLib <- paste(annotation(ALL), "db", sep = ".")

> library(package = affyLib, character.only = TRUE)

The microarray used in the experiment is the hgu95av2 from Affymetrix, as we can see from the affyLib

object. When we loaded the geneList object a selection function used for defining the list of differentially
expressed genes is also loaded under the name of topDiffGenes. The function assumes that the provided
argument is a named vector of p-values. With the help of this function we can see that there are 50 genes
with a raw p-value less than 0.01 out of a total of 323 genes.

> sum(topDiffGenes(geneList))

[1] 50



We now have all data necessary to build an object of type topGOdata. This object will contain all gene
identifiers and their scores, the GO annotations, the GO hierarchical structure and all other information
needed to perform the desired enrichment analysis.

> sampleGOdata <- new("topGOdata",

+ description = "Simple session", ontology = "BP",

+ allGenes = geneList, geneSel = topDiffGenes,

+ nodeSize = 10,

+ annot = annFUN.db, affyLib = affyLib)

The names of the arguments used for building the topGOdata object should be self-explanatory. We quickly
mention that nodeSize = 10 is used to prune the GO hierarchy from the terms which have less than 10
annotated genes and that annFUN.db function is used to extract the gene-to-GO mappings from the affyLib
object. Section 4.2 describes the parameters used to build the topGOdata in details.

A summary of the sampleGOdata object can be seen by typing the object name at the R prompt. Having all
the data stored into this object facilitates the access to identifiers, annotations and to basic data statistics.

> sampleGOdata

3.2 Performing the enrichment tests

Once we have an object of class topGOdata we can start with the enrichment analysis. We will use two
types of test statistics: Fisher’s exact test which is based on gene counts, and a Kolmogorov-Smirnov like
test which computes enrichment based on gene scores. We can use both these tests since each gene has a
score (representing how differentially expressed a gene is) and by the means of topDiffGenes functions the
genes are categorized into differentially expressed or not differentially expressed genes. All these are stored
into sampleGOdata object.

The function runTest is used to apply the specified test statistic and method to the data. It has three main
arguments. The first argument needs to be an object of class topGOdata. The second and third argument
are of type character; they specify the method for dealing with the GO graph structure and the test statistic,
respectively.

First, we perform a classical enrichment analysis by testing the over-representation of GO terms within the
group of differentially expressed genes. For the method classic each GO category is tested independently.

> resultFisher <- runTest(sampleGOdata, algorithm = "classic", statistic = "fisher")

runTest returns an object of class topGOresult. A short summary of this object is shown below.

> resultFisher

Description: Simple session

Ontology: BP

'classic' algorithm with the 'fisher' test

1043 GO terms scored: 65 terms with p < 0.01

Annotation data:

Annotated genes: 310

Significant genes: 46

Min. no. of genes annotated to a GO: 10

Nontrivial nodes: 973

Next we will test the enrichment using the Kolmogorov-Smirnov test. We will use the both the classic and
the elim method.

> resultKS <- runTest(sampleGOdata, algorithm = "classic", statistic = "ks")

> resultKS.elim <- runTest(sampleGOdata, algorithm = "elim", statistic = "ks")



GO.ID Term Annotated Significant Expected Rank in classicFisher classicFisher classicKS elimKS
1 GO:0007067 mitotic nuclear division 173 17 25.67 968 0.99839 3.2e-09 3.2e-09
2 GO:0051301 cell division 161 18 23.89 915 0.97969 4.9e-08 4.4e-07
3 GO:0032465 regulation of cytokinesis 13 3 1.93 334 0.30050 0.00120 0.0012
4 GO:0007059 chromosome segregation 77 5 11.43 960 0.99700 0.00126 0.0013
5 GO:0051726 regulation of cell cycle 128 17 18.99 636 0.78999 0.00014 0.0013
6 GO:0045931 positive regulation of mitotic cell cycl... 40 5 5.94 592 0.74532 0.00175 0.0017
7 GO:0033077 T cell differentiation in thymus 10 6 1.48 8 0.00104 0.00186 0.0019
8 GO:0002757 immune response-activating signal transd... 11 7 1.63 2 0.00021 0.00208 0.0021
9 GO:0042108 positive regulation of cytokine biosynth... 18 6 2.67 107 0.03527 0.00252 0.0025

10 GO:0090068 positive regulation of cell cycle proces... 38 3 5.64 845 0.94667 0.00283 0.0028

Table 2: Significance of GO terms according to classic and elim methods.

Please note that not all statistical tests work with every method. The compatibility matrix between the
methods and statistical tests is shown in Table 1.

The p-values computed by the runTest function are unadjusted for multiple testing. We do not advocate
against adjusting the p-values of the tested groups, however in many cases adjusted p-values might be
misleading.

3.3 Analysis of results

After the enrichment tests are performed the researcher needs tools for analysing and interpreting the results.
GenTable is an easy to use function for analysing the most significant GO terms and the corresponding p-
values. In the following example, we list the top 10 significant GO terms identified by the elim method. At
the same time we also compare the ranks and the p-values of these GO terms with the ones obtained by the
classic method.

> allRes <- GenTable(sampleGOdata, classicFisher = resultFisher,

+ classicKS = resultKS, elimKS = resultKS.elim,

+ orderBy = "elimKS", ranksOf = "classicFisher", topNodes = 10)

The GenTable function returns a data frame containing the top topNodes GO terms identified by the elim
algorithm, see orderBy argument. The data frame includes some statistics on the GO terms and the p-values
corresponding to each of the topGOresult object specified as arguments. Table 2 shows the results.

For accessing the GO term’s p-values from a topGOresult object the user should use the score functions.
As a simple example, we look at the differences between the results of the classic and the elim methods in
the case of the Kolmogorov-Smirnov test. The elim method was design to be more conservative then the
classic method and therefore one expects the p-values returned by the former method are lower bounded
by the p-values returned by the later method. The easiest way to visualize this property is to scatter plot
the two sets of p-values against each other.

> pValue.classic <- score(resultKS)

> pValue.elim <- score(resultKS.elim)[names(pValue.classic)]

> gstat <- termStat(sampleGOdata, names(pValue.classic))

> gSize <- gstat$Annotated / max(gstat$Annotated) * 4

> gCol <- colMap(gstat$Significant)

> plot(pValue.classic, pValue.elim, xlab = "p-value classic", ylab = "p-value elim",

+ pch = 19, cex = gSize, col = gCol)

We can see in Figure 1 that there are indeed differences between the two methods. Some GO terms found
significant by the classic method are less significant in the elim, as expected. However, we can visible identify
a few GO terms for which the elim p-value is less conservative then the classic p-value. We can identify these
terms and find the number of annotated genes:

> sel.go <- names(pValue.classic)[pValue.elim < pValue.classic]

> cbind(termStat(sampleGOdata, sel.go),

+ elim = pValue.elim[sel.go],

+ classic = pValue.classic[sel.go])



●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value classic

p−
va

lu
e 

el
im

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●●
●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●

●●

●●

●●●

●

●

●
●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●●●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●●●

●

●●

●●●
●●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●
●

●

●●

●●●

●

●
●

●

●●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●

●
●

●

●

●●

●●

●

●●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●● ●

●

●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

1e−10 1e−07 1e−04 1e−01

1e
−

08
1e

−
06

1e
−

04
1e

−
02

1e
+

00

log(p−value) classic

lo
g(

p−
va

lu
e)

 e
lim

Figure 1: p-values scatter plot for the classic (x axis) and elim (y axis) methods. On the right panel the p-values
are plotted on a linear scale. The left panned plots the same p-values on a logarithmic scale. The size of the dot
is proportional with the number of annotated genes for the respective GO term and its coloring represents the
number of significantly differentially expressed genes, with the dark red points having more genes then the yellow
ones.

Annotated Significant Expected elim classic

GO:0010556 95 18 14.10 0.10932311 0.12016649

GO:0019222 170 27 25.23 0.13724364 0.18374138

GO:0031323 161 26 23.89 0.10659275 0.15279320

GO:0043170 204 36 30.27 0.06840486 0.08477112

GO:0060255 156 26 23.15 0.05520249 0.08948213

GO:0080090 158 26 23.45 0.08076374 0.12281130

It is quite interesting that such cases appear. These 6 GO terms are rather general (having many annotated
genes) and their p-values are not significant at the 0.05 level. Also the difference in the significance is rather
small, bar one term. Therefore these GO terms would not appear in the list of top significant terms. More
significant GO terms are less likely to be influenced by this non monotonic behavior.

Another insightful way of looking at the results of the analysis is to investigate how the significant GO terms
are distributed over the GO graph. Figure 2 shows the the subgraph induced by the 5 most significant GO
terms as identified by the elim algorithm. Significant nodes are represented as rectangles. The plotted graph
is the upper induced graph generated by these significant nodes.

> showSigOfNodes(sampleGOdata, score(resultKS.elim), firstSigNodes = 5, useInfo = 'all')



GO:0000278
mitotic cell cycle

1.00000
22 / 180

GO:0000280
nuclear division

1.00000
17 / 173

GO:0000910
cytokinesis

0.04672
3 / 18

GO:0006996
organelle organizati...

0.86032
22 / 197

GO:0007049
cell cycle
0.25238
27 / 196

GO:0007059
chromosome segregati...

0.00126
5 / 77

GO:0007067
mitotic nuclear divi...

3.20e−09
17 / 173

GO:0008150
biological_process

1.00000
46 / 310

GO:0009987
cellular process

1.00000
46 / 310

GO:0010564
regulation of cell c...

0.01641
10 / 92

GO:0016043
cellular component o...

0.65178
29 / 221

GO:0022402
cell cycle process

0.02300
23 / 183

GO:0032465
regulation of cytoki...

0.00120
3 / 13

GO:0044699
single−organism proc...

0.99349
45 / 309

GO:0044763
single−organism cell...

0.98383
45 / 308

GO:0048285
organelle fission

1.00000
17 / 173

GO:0050789
regulation of biolog...

0.62348
37 / 243

GO:0050794
regulation of cellul...

0.63997
36 / 234

GO:0051301
cell division
4.39e−07
18 / 161

GO:0051302
regulation of cell d...

0.05331
8 / 76

GO:0051726
regulation of cell c...

0.00130
17 / 128

GO:0065007
biological regulatio...

0.58028
38 / 250

GO:0071840
cellular component o...

0.47147
30 / 222

GO:1902589
single−organism orga...

0.69073
21 / 191

GO:1903047
mitotic cell cycle p...

1.00000
19 / 175

Figure 2: The subgraph induced by the top 5 GO terms identified by the elim algorithm for scoring GO terms for
enrichment. Rectangles indicate the 5 most significant terms. Rectangle color represents the relative significance,
ranging from dark red (most significant) to bright yellow (least significant). For each node, some basic information
is displayed. The first two lines show the GO identifier and a trimmed GO name. In the third line the raw p-value
is shown. The forth line is showing the number of significant genes and the total number of genes annotated to
the respective GO term.



4 Loading genes and annotations data

4.1 Getting started

To demonstrate the package functionality we will use the ALL(Acute Lymphoblastic Leukemia) gene expres-
sion data from Chiaretti, S., et al. (2004). The dataset consists of 128 microarrays from different patients
with ALL measured using the HGU95aV2 Affymetrix chip. Additionally, custom annotations and artificial
datasets will be used to demonstrate specific features.

We first load the required libraries and data:

> library(topGO)

> library(ALL)

> data(ALL)

When the topGO package is loaded three environments GOBPTerm, GOMFTerm and GOCCTerm are created and
bound to the package environment. These environments are build based on the GOTERM environment from
package GO.db. They are used for fast recovering of the information specific to each of the three ontologies:
BP, MF and CC. In order to access all GO groups that belong to a specific ontology, e.g. Biological Process
(BP), one can type:

> BPterms <- ls(GOBPTerm)

> head(BPterms)

[1] "GO:0000001" "GO:0000002" "GO:0000003" "GO:0000011" "GO:0000012" "GO:0000017"

Usually one needs to remove probes/genes with low expression value as well as probes with very small
variability across samples. Package genefilter provides tools for filtering genes. In this analysis we choose
to filter as many genes as possible for computational reasons; working with a smaller gene universe allows us
to exemplify more of the functionalities implemented in the topGO package and at the same time allows this
document to be compiled in a relatively short time. The effect of gene filtering is discussed in more details
in Section 4.6.

> library(genefilter)

> selProbes <- genefilter(ALL, filterfun(pOverA(0.20, log2(100)), function(x) (IQR(x) > 0.25)))

> eset <- ALL[selProbes, ]

The filter selects only 4101 probesets out of 12625 probesets available on the hgu95av2 array.

The gene universe and the set of interesting genes
The set of all genes from the array/study will be referred from now on as the gene universe. Having the
gene universe, the user can define a list of interesting genes or to compute gene-wise scores that quantify the
significance of each gene. When gene-wise scores are available the list of interesting genes is defined to be
the set of gene with a significant score. The topGO package deals with these two cases in a unified way once
the main data container, the topGOdata object, is constructed. The only time the user needs to distinguish
between these two cases is during the construction of the data container.

Usually, the gene universe is defined as all feasible genes measured by the microarray. In the case of the ALL
dataset we have 4101 feasible genes, the ones that were not removed by the filtering procedure.

4.2 The topGOdata object

The central step in using the topGO package is to create a topGOdata object. This object will contain all
information necessary for the GO analysis, namely the list of genes, the list of interesting genes, the gene
scores (if available) and the part of the GO ontology (the GO graph) which needs to be used in the analysis.
The topGOdata object will be the input of the testing procedures, the evaluation and visualisation functions.

To build such an object the user needs the following:



� A list of gene identifiers and optionally the gene-wise scores. The score can be the t-test statistic (or
the p-value) for differential expression, correlation with a phenotype, or any other relevant score.

� A mapping between gene identifiers and GO terms. In most cases this mapping is directly available in
Bioconductor as a microarray specific annotation package. In this case the user just needs to specify
the name of the annotation to be used. For example, the annotation package needed for the ALL
dataset is hgu95av2.db.

Of course, Bioconductor does not include up-to-date annotation packages for all platforms. Users who
work with custom arrays or wish to use a specific mapping between genes and GO terms, have the
possibility to load custom annotations. This is described in Section 4.3.

� The GO hierarchical structure. This structure is obtained from the GO.db package. At the moment
topGO supports only the ontology definition provided by GO.db.

We further describe the arguments of the initialize function (new) used to construct an instance of this
data container object.

ontology: character string specifying the ontology of interest (BP, MF or CC)

description: character string containing a short description of the study [optional].

allGenes: named vector of type numeric or factor. The names attribute contains the genes identifiers. The
genes listed in this object define the gene universe.

geneSelectionFun: function to specify which genes are interesting based on the gene scores. It should be
present iff the allGenes object is of type numeric.

nodeSize: an integer larger or equal to 1. This parameter is used to prune the GO hierarchy from the terms
which have less than nodeSize annotated genes (after the true path rule is applied).

annotationFun: function which maps genes identifiers to GO terms. There are a couple of annotation
function included in the package trying to address the user’s needs. The annotation functions take
three arguments. One of those arguments is specifying where the mappings can be found, and needs
to be provided by the user. Here we give a short description of each:

annFUN.db this function is intended to be used as long as the chip used by the user has an annotation
package available in Bioconductor.

annFUN.org this function is using the mappings from the ”org.XX.XX”annotation packages. Currently,
the function supports the following gene identifiers: Entrez, GenBank, Alias, Ensembl, Gene
Symbol, GeneName and UniGene.

annFUN.gene2GO this function is used when the annotations are provided as a gene-to-GOs mapping.

annFUN.GO2gene this function is used when the annotations are provided as a GO-to-genes mapping.

annFUN.file this function will read the annotationsof the type gene2GO or GO2genes from a text
file.

...: list of arguments to be passed to the annotationFun

4.3 Custom annotations

This section describes how custom GO annotations can be used for building a topGOdata object.

Annotations need to be provided either as gene-to-GOs or as GO-to-genes mappings. An example of such
mapping can be found in the ”topGO/examples” directory. The file ”geneid2go.map” contains gene-to-GOs
mappings. For each gene identifier are listed the GO terms to which this gene is specifically annotated. We
use the readMappings function to parse this file.

> geneID2GO <- readMappings(file = system.file("examples/geneid2go.map", package = "topGO"))

> str(head(geneID2GO))



List of 6

$ 068724: chr [1:5] "GO:0005488" "GO:0003774" "GO:0001539" "GO:0006935" ...

$ 119608: chr [1:6] "GO:0005634" "GO:0030528" "GO:0006355" "GO:0045449" ...

$ 049239: chr [1:13] "GO:0016787" "GO:0017057" "GO:0005975" "GO:0005783" ...

$ 067829: chr [1:16] "GO:0045926" "GO:0016616" "GO:0000287" "GO:0030145" ...

$ 106331: chr [1:10] "GO:0043565" "GO:0000122" "GO:0003700" "GO:0005634" ...

$ 214717: chr [1:7] "GO:0004803" "GO:0005634" "GO:0008270" "GO:0003677" ...

The object returned by readMappings is a named list of character vectors. The list names give the genes
identifiers. Each element of the list is a character vector and contains the GO identifiers annotated to the
specific gene. It is sufficient for the mapping to contain only the most specific GO annotations. However,
topGO can also take as an input files in which all or some ancestors of the most specific GO annotations are
included. This redundancy is not making for a faster running time and if possible it should be avoided.

The user can read the annotations from text files or they can build an object such as geneID2GO directly
into R. The text file format required by the readMappings function is very simple. It consists of one line for
each gene with the following syntax:

gene_ID<TAB>GO_ID1, GO_ID2, GO_ID3, ....

Reading GO-to-genes mappings from a file is also possible using the readMappings function. However, it
is the user responsibility to know the direction of the mappings. The user can easily transform a mapping
from gene-to-GOs to GO-to-genes (or vice-versa) using the function inverseList:

> GO2geneID <- inverseList(geneID2GO)

> str(head(GO2geneID))

List of 6

$ GO:0000122: chr "106331"

$ GO:0000139: chr [1:6] "133103" "111846" "109956" "161395" ...

$ GO:0000166: chr [1:10] "067829" "157764" "100302" "074582" ...

$ GO:0000186: chr "181104"

$ GO:0000209: chr "159461"

$ GO:0000228: chr "214717"

4.4 Predefined list of interesting genes

If the user has some a priori knowledge about a set of interesting genes, he can test the enrichment of GO
terms with regard to this list of interesting genes. In this scenario, when only a list of interesting genes is
provided, the user can use only tests statistics that are based on gene counts, like Fisher’s exact test, Z score
and alike.

To demonstrate how custom annotation can be used this section is based on the toy dataset, the geneID2GO

data, from Section 4.3. The gene universe in this case is given by the list names:

> geneNames <- names(geneID2GO)

> head(geneNames)

Since for the available genes we do not have any measurement and thus no criteria to select interesting genes,
we randomly select 10% genes from the gene universe and consider them as interesting genes.

> myInterestingGenes <- sample(geneNames, length(geneNames) / 10)

> geneList <- factor(as.integer(geneNames %in% myInterestingGenes))

> names(geneList) <- geneNames

> str(geneList)

Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 2 1 1 ...

- attr(*, "names")= chr [1:100] "068724" "119608" "049239" "067829" ...



The geneList object is a named factor that indicates which genes are interesting and which not. It should
be straightforward to compute such a named vector in a real case situation, where the user has his own
predefined list of interesting genes.

We now have all the elements to construct a topGOdata object.

To build the topGOdata object, we will use the MF ontology. The mapping is given by the geneID2GO list
which will be used with the annFUN.gene2GO function.

> GOdata <- new("topGOdata", ontology = "MF", allGenes = geneList,

+ annot = annFUN.gene2GO, gene2GO = geneID2GO)

The building of the GOdata object can take some time, depending on the number of annotated genes and on
the chosen ontology. In our example the running time is quite fast given that we have a rather small size
gene universe which also imply a moderate size GO ontology, especially since we are using the MF ontology.

The advantage of having (information on) the gene scores (or better genes measurements) as well as a way
to define which are the interesting genes, in the topGOdata object is that one can apply various group testing
procedure, which let us test multiple hypothesis or tune with different parameters.

By typing GOdata at the R prompt, the user can see a summary of the data.

> GOdata

------------------------- topGOdata object -------------------------

Description:

-

Ontology:

- MF

100 available genes (all genes from the array):

- symbol: 068724 119608 049239 067829 106331 ...

- 10 significant genes.

89 feasible genes (genes that can be used in the analysis):

- symbol: 068724 119608 049239 067829 106331 ...

- 8 significant genes.

GO graph (nodes with at least 1 genes):

- a graph with directed edges

- number of nodes = 238

- number of edges = 308

------------------------- topGOdata object -------------------------

One important point to notice is that not all the genes that are provided by geneList, the initial gene
universe, can be annotated to the GO. This can be seen by comparing the number of all available genes,
the genes present in geneList, with the number of feasible genes. We are therefore forced at this point to
restrict the gene universe to the set of feasible genes for the rest of the analysis.

The summary on the GO graph shows the number of GO terms and the relations between them of the
specified GO ontology. This graph contains only GO terms which have at least one gene annotated to them.

4.5 Using the genes score

In many cases the set of interesting genes can be computed based on a score assigned to all genes, for example
based on the p-value returned by a study of differential expression. In this case, the topGOdata object can
store the genes score and a rule specifying the list of interesting genes. The advantage of having both the



scores and the procedure to select interesting genes encapsulated in the topGOdata object is that the user
can choose different types of tests statistics for the GO analysis without modifying the input data.

A typical example for the ALL dataset is the study where we need to discriminate between ALL cells delivered
from either B-cell or T-cell precursors.

> y <- as.integer(sapply(eset$BT, function(x) return(substr(x, 1, 1) == 'T')))

> table(y)

There are 95 B-cell ALL samples and 95 T-cell ALL samples in the dataset. A two-sided t-test can by applied
using the function getPvalues (a wraping function for the mt.teststat from the multtest package). By
default the function computes FDR (false discovery rate) adjusted p-value in order to account for multiple
testing. A different type of correction can be specified using the correction argument.

> geneList <- getPvalues(exprs(eset), classlabel = y, alternative = "greater")

geneList is a named numeric vector. The gene identifiers are stored in the names attribute of the vector.
This set of genes defines the gene universe.

Next, a function for specifying the list of interesting genes must be defined. This function needs to select
genes based on their scores (in our case the adjusted p-values) and must return a logical vector specifying
which gene is selected and which not. The function must have one argument, named allScore and must
not depend on any attributes of this object. In this example we will consider as interesting genes all genes
with an adjusted p-value lower than 0.01. This criteria is implemented in the following function:

> topDiffGenes <- function(allScore) {

+ return(allScore < 0.01)

+ }

> x <- topDiffGenes(geneList)

> sum(x) ## the number of selected genes

With all these steps done, the user can now build the topGOdata object. For a short description of the
arguments used by the initialize function see Section 4.4

> GOdata <- new("topGOdata",

+ description = "GO analysis of ALL data; B-cell vs T-cell",

+ ontology = "BP",

+ allGenes = geneList,

+ geneSel = topDiffGenes,

+ annot = annFUN.db,

+ nodeSize = 5,

+ affyLib = affyLib)

It is often the case that many GO terms which have few annotated genes are detected to be significantly
enriched due to artifacts in the statistical test. These small sized GO terms are of less importance for the
analysis and in many cases they can be omitted. By using the nodeSize argument the user can control the
size of the GO terms used in the analysis. Once the genes are annotated to the each GO term and the true
path rule is applied the nodes with less than nodeSize annotated genes are removed from the GO hierarchy.
We found that values between 5 and 10 for the nodeSize parameter yield more stable results. The default
value for the nodeSize parameter is 1, meaning that no pruning is performed.

Note that the only difference in the initialisation of an object of class topGOdata to the case in which we
start with a predefined list of interesting genes is the use of the geneSel argument. All further analysis
depends only on the GOdata object.

4.6 Filtering and missing GO annotations

Before going further with the enrichment analysis we analyse which of the probes available on the array can
be used in the analysis.



Variance

Lo
g 

of
 p

−
va

lu
es

−60

−50

−40

−30

−20

−10

0

0 2 4 6

●

●●●●
●
●

●
● ●● ●●● ● ●● ●●● ●●●● ●● ● ● ●●●● ●● ●● ●●●

●
● ● ● ●●●● ● ●●●● ●●

●
●●●● ●

●
●● ●● ● ●●● ●● ●●●

●
●● ●● ●●●

●
●●● ●●●●●●●● ●● ●●●● ●● ●●

●
● ●●●●

●
● ●●●● ●●● ●●● ●●● ● ● ●● ●● ● ●● ●●● ●● ●●

●
● ● ●● ●●● ●● ●●●●● ●●

●

● ●●● ● ● ●● ●●●●●●● ●●● ● ●● ●●●● ●●● ●● ●● ● ●●●●● ●● ●● ●●●
●
●●●●●●● ●● ●●●●

●
●● ●●●

●
●

●
● ●●● ●●●● ●● ●●● ●● ●●●

●
●●● ● ●● ● ●●● ●● ●● ●●●●● ●●●● ●●

●
●●● ● ●● ●● ● ●● ●● ●●● ●●●●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●●●●● ●● ● ●● ●● ●● ● ●●●● ●●●●●● ● ●●●● ●

●
● ●● ●●● ●●●● ●●●● ●● ●● ● ● ●● ●●●●●

●●
●●●●●●●●●●●● ●●●● ●●● ● ●● ●● ●● ● ●● ●●● ● ●● ● ●● ●●●● ●●●●●● ●●● ●●

●
●●● ●●●●

●
●● ●● ●●● ● ●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●● ● ●● ● ● ●●● ●●● ●●● ●●● ●●●

●
●●●● ●●●●●● ●●● ●● ●●●●●● ●●● ● ●●

●
● ●● ● ●●●●●●●●

●

● ●●● ●●● ●●●● ●●● ●● ●●● ●●●
●

●●● ● ●●●● ●●
●
●●

● ●●● ●●● ●● ●● ●●● ●● ●● ●●● ●
●
●●●●●● ●● ● ●● ●●●●
●
●● ●● ●●● ●● ● ●●●● ●●●●● ●●● ●●● ●●●●● ●● ●● ●●● ●
●

● ● ●● ●●

●

●●●● ●●
●
● ●●●●●●● ● ● ●●●●● ●● ● ●● ●● ●● ●● ●● ●●●●

●
●●

●
●● ●● ●●● ●
●

●●● ●●●●

●
●

●● ●
●

●● ●
●

●●●●●● ●●
●

● ● ●● ● ●● ● ●●●● ●●●●● ●●●
● ●

● ●●●●●●● ●●● ● ●●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●
●

●●● ●● ●●●●●● ●●●
●
●●●●●●

●

● ● ●● ●● ●● ●●● ●●● ●●●● ●● ●●●● ●●● ●● ●●●●●
●

●● ●●●●● ●● ●●
●

●● ●

●

● ● ●●●●●●●● ●●●● ● ●● ● ●●● ●● ● ●● ●● ●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●
●

●●●● ●●●● ●● ● ● ●●●●●●●●●● ●● ●● ● ●
●

●● ●●● ●● ●●●● ●● ●● ●●●
●

●
●

●● ●●●●● ●
●

●
●

●●

●

●●● ●●●●●
●
● ●

● ●
●

●
● ●● ●●● ● ●●● ●● ●●● ●●●●●● ●●●

●
●●●● ● ●●●●●●●●● ●● ● ●●●●●●●● ●●● ●● ● ●● ●●●● ●● ●● ●●●●● ●●● ●●●●●●●

● ●● ● ●● ●● ●● ● ●
●

●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●● ● ●● ●
●● ●●●● ●●● ●

●
●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●●●● ●●●●● ●● ●●● ●●●●●● ●●●●

●
●

●
● ● ●● ●● ● ●● ●● ●●

●
●●● ●● ●

●● ●●● ●●●● ●●●●

●

●●● ●●
●
●●●● ●● ●●● ● ●●

●
● ●●
●

●● ● ●●● ●● ●●●●●●●● ● ●●● ●●●●● ●●●●●● ●● ●●●●● ●●● ●●● ● ●●●
● ●● ●● ●● ●●●●

●
●●●●● ●●●●

●
●● ●● ● ●●●● ●● ●● ●●●

●●● ●● ●●● ●● ●● ●
●

●●●●● ●● ● ●●● ●●● ●●●●● ●●● ●●
●

●●● ●●●●●●●●●● ●● ●
●

●●●● ●●●●●●●●● ●●● ●● ●●●
●

●●● ●●
●●
● ●●●●● ●●●●● ●●● ● ●●
●

●●●●● ●●●● ●●●● ●●
●

●●● ●● ●●● ● ●●● ●● ●● ●●● ●●●● ●●●●
●●● ● ●●●●
●

●●
●

●● ● ●●●● ●

●

●●
●

●● ●● ●● ● ●●●● ●●●●●●●●●●● ●● ●● ● ● ●●●● ●●●
●

●●● ●●● ●●● ●●● ●● ●●●
●

●●● ● ●● ●●● ●
●●●●● ●● ●●● ●●●

●

●●● ● ●●●● ●●●●
●
●●●● ●●● ●● ● ●

●
●● ●●●●● ●●●● ●●● ●●● ●●

●
● ● ●●●● ●●●●●●●●●●●●●● ●● ●● ●

●
●● ●●● ●●●●● ●●●● ●●● ●●
●
● ●● ●●●●● ●●●●● ●●●● ●●●●● ●●

●
●●● ●● ● ● ●●●● ●● ●● ●● ●● ● ● ● ●●● ● ● ●● ●● ● ● ●● ●●●●

●
●
●

●● ●● ●● ● ●● ●●●● ●● ●●●●● ●●● ● ●●● ●●●● ●
● ●● ●● ● ●●●●● ●●

●
●

●

●●●
●

●●● ●●●● ●● ●● ● ● ●●●●●●●●●● ●● ●●●●● ●●● ●● ●
●
●●●●●

●
●●●● ●●●● ●● ●●● ● ●●● ●●● ●●●

● ●●●● ●●●●● ●●●● ● ●●●●●●●● ●● ●● ● ●●●●● ●●●●●●●●●
●

●●●●
●
● ●● ●● ●● ●●● ●●●● ●● ● ●●● ●●●●● ●●

●●
● ●●● ● ●● ●

●
● ●● ●●●● ●●●●● ●

●
●● ●●●●● ●● ●● ●● ●●● ●●●● ●●●●●● ●●●●●●●●● ●● ●●●●

●
●

●
● ●●● ●

●
●●● ●● ●● ●●●● ●●● ● ●●● ●● ●● ● ●●● ●●●●●● ●●●● ●●● ●●●● ● ●●● ●●●● ●● ●●● ●●●

●

●● ● ●
●

● ●
●

● ●● ●●● ●● ●●●● ●●●● ●●●● ●●●●●●● ●●●● ●●
●

●
●●

● ●● ●●●●●
●

●

●● ●●●● ●● ● ●● ● ●●●●● ●● ● ●●●●●●
●
●

●
● ●●●● ● ●●●● ●● ●● ●●● ●● ●● ●● ●

●

●●●● ● ● ●
●

●● ●●● ●●● ●● ● ●●● ●●●● ●●● ●● ●●●●● ●●●
●

●●●●● ●●●●●●
●

●● ● ●● ● ●●● ●
●●

● ●●●●●

●

●● ●●●● ● ●●● ● ● ●● ●●● ● ●●●●●●●●● ●● ●●●●●
●

●
●

● ●●● ●●●● ● ●
●●● ●●●●●●● ● ●● ●●●● ●●● ●●●● ●● ●● ● ● ● ●●●●● ●● ●● ●● ●●● ●●

●
●●● ●●●● ●
●●●●● ● ●●● ● ● ●● ●● ●●●●● ●●●●●●● ●● ●●● ●●● ●●● ●●●●●●● ●

●
● ●●●●● ● ●●● ●

●● ●● ●●●● ●●●● ●●●● ●●● ●●
●

●●● ●●● ●● ●
●

●● ● ●●● ●● ●●
●
● ●●● ●●●● ●●●●●● ● ●● ●●●● ●
●

●●
● ●●

● ● ●● ●●●●●
●

●●●
●

●●●●●●●
●

● ● ●●● ●●● ●●●● ●● ●●●● ● ●●● ●●●
●

● ●● ●● ● ●●● ●● ●●
●

●●●● ●●
●

● ●● ●● ●● ● ●● ●●

●

●● ● ●● ●●●● ●●●●●●●●●●● ●● ●● ● ●

●

●● ● ●●●●●● ●●● ● ●
●

● ●●●● ●●● ● ●●
●●

●
●
●

●
● ●●● ●●● ●●● ●●● ●● ●●● ●● ●●●●● ●●●●● ●● ●●●●● ●●●●●● ●● ●●● ●●●● ●● ●●

●
●

●
● ●●● ●● ●

●
● ●●● ●●●● ●●● ● ●●● ●●●●●● ●●●●

●
● ● ● ●● ●

●

● ●●●● ● ●● ● ●●
●

●●
●

●●● ●● ●●●● ● ●●● ●●●● ●●

●

●●●● ●●●● ●●●●● ●●●●●●● ●●● ●● ●●●● ●●●● ●
●

●●● ●●● ● ●●●● ● ● ●● ●●●● ●● ●●● ● ●●● ●●●● ●●●●●●
●

●●● ● ●●● ●●●●● ●●●● ●● ●●● ●●●● ●● ● ●●●● ●●● ●● ●●● ●●● ●
●

● ●
●

●●●● ●● ●●●● ●● ●●

●

●●●●● ●
●

● ●●●●●●● ● ●●●●● ●●● ●● ●●● ●●
●

● ●●●●● ●● ●● ●●●●●
●

● ● ●● ●●● ●● ●

●

● ●●●● ●
●

●● ●● ● ●●● ●●●● ●●

●

●● ●●● ●
●

●● ●●●●● ●●●● ●●●● ●●● ●● ●● ●●●●●●
●

●●●● ●
●

● ●●
●

● ●●● ●●● ●●
●

●●●●● ●●● ●
●

●●● ●
●

●●
●

● ●●●●● ●●●● ●

●
●

● ●●● ●●●● ●●●● ● ●●●
●

● ●● ●●●
●

●●●● ● ●●●●
●

●
● ●● ●●●●●●●●●

●
●●● ● ●●● ● ●●●●● ●●●●●● ●●● ●●● ●
●

● ●
●
●● ●●● ●●● ●●● ● ●●●● ●●●● ●●● ●● ●● ● ●●● ●●●● ●●●●●●

●
● ●● ●●●● ●●● ●● ●●●● ● ●●● ●●●● ● ● ●● ●● ●

●
●●●●●● ●● ●●● ●● ●●●

●
●

●
●●● ●● ● ●● ●● ●● ●●● ●● ●●

●
●● ●● ●●●●●●

●
● ●●● ●●● ● ●

●
●● ●●●●●● ●● ●●● ● ●●●●●● ●●● ●● ●●

●
●● ●● ●●●●● ●●● ●● ●●●●● ●●

●● ●●●●● ●●
●

●●●● ●
●
●●●●●
●

● ●●●●●●

●

●● ●● ●●●●●● ● ●● ●●● ●● ● ●● ●●● ●● ●●● ●● ● ●
●

● ●●● ●●●● ●●● ●●
●

● ●● ●● ●● ●●●
●

●
● ●● ●● ●●● ● ●● ● ●●●●●●
●

●
●

●●
●

●●●●● ●●● ●● ●●●● ● ●●●● ●●●●●
●
● ●●● ●●● ●●● ● ●●●●●●●● ●●●● ● ●●●● ●●

●●
●●● ●● ●●●●●● ●

●
●

● ●●● ●
●

●● ● ●●● ●●● ●

Used
●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●● ●●●● ●● ●● ● ●●●●●●●●●
●

●●● ●●●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●● ● ● ●●● ●●●●●●●●● ●●

●

●
●
● ●●● ●●●●●● ● ●●●●● ●●● ●● ●●●●●

●●● ●●●● ●●●● ● ●●●●● ●● ●●● ● ●●●●●●●●●●●●●●● ●●●
●
●●●● ●●● ●●● ●●●●●● ● ●●●●● ●● ●●●● ●● ●●● ● ●● ●●●● ●●●●●● ●● ●● ●● ●●

Not annotated

−60

−50

−40

−30

−20

−10

0●●●●●● ●●●●● ●● ●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●● ●● ● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●● ●●●●●●● ●●● ●●●●●●●●● ●●● ●● ●●

●●●●●●●● ● ●●● ●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●● ●● ●●● ●● ●
●
●●●●● ●●●●● ● ●●●●●●●●●●●● ●●●● ●●
●
●●●●●●●●●●●● ●●● ●●

●
●●●● ●● ●●●●●●● ●●●● ●● ●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●

●
●●●●● ●● ●●●●●●● ● ●●●●●●● ●●● ●●●●● ●● ●●●●●●● ●

●
●● ●●●● ● ●

●
●●●●● ●●●●●●●●●●●●● ●●●

●
●●● ●●●●●●●● ● ●●●●●●●●

●
●●●
●

●●● ●●●●●● ●●● ●●●●●●●● ● ●●
●

●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●

●

●● ●●●●● ●●●●● ●●●●● ●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●●●●●●● ●●● ●● ● ●●●●●●●●●●●
●

●●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●●● ●● ● ●●●● ●● ●● ●●●● ●●●

●

● ●●●●●●●●●●● ●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●● ●
●

●●●
●

● ●●●●●
● ●●●●●● ●●●

●
●●●●

●● ●●● ●●● ●●● ●● ●●●● ● ●●●●●● ●● ●●● ●●●●● ● ●●●● ●●● ●●●●●●●● ●●●●● ●● ●● ●● ●●●● ●●● ● ●●●● ●●●●●●●● ●●
●
●●●● ●●●●●●● ●● ●●●●● ●●●●●
●

● ●●●●●●●●● ●●● ●●●●●●
●
●● ● ●●●●●● ●●●●
●

●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●
●

●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●● ●●●●● ●●●●●●
●
●●

●●●●●●●●●
●●● ●

●

● ●●●●●●
●●

● ●● ●●
●

●●●● ●●●● ●●
●

●● ●●● ●●●●● ●●●
●

●●●●●●●● ●●●●●●●● ●●● ●●●●●● ●●
●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●
●

●● ●●●●●●●●●●●●●●●●●●● ●●
●
●● ●●●● ●●●● ●● ●●●●●● ●● ● ●●●●

●
●●

●
●●●

●
●

●
● ●●●●● ● ●●●●● ●●●●● ●●●● ●● ●●●● ●● ●●● ●● ●● ●●●●● ●● ●●● ●●●●
●

●●● ●●●●●●●● ●●
●●● ●●●●●● ●

●●●●● ●● ●
●●

●● ●●● ●●●●
●
●●●●●● ●●●●●●●● ●●●

●

●●●●● ●●●●●●●●
●
●●●●● ● ●●● ●●●●●●●●

●

●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●
●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●● ●●●●●● ●●● ●●●

●
●
●● ●● ●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●●● ●● ●● ●●●● ●●●●●● ●●●●● ●

●
●●● ●●●

●

●●●●●●● ●●●●●●●●●●●● ●●● ●●
●
●●

●
● ●
●
●● ●● ●●●● ●●●●● ●●●● ●●●● ●●● ●

●
●

●

●● ●●●●●●● ●
●

●

●●●●●● ●●
●

●● ●●● ●●●●● ●●●
●●

●●● ●●●●●●●● ●●●●●● ●●● ●● ●● ●●●●●●●●● ●● ●●●●●
●●●●●●●●●●●●●●●

●
●●● ●●●●●●●●
●

●●
●

● ● ●●●●●●
●

●●●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●
●

● ●●●●●●●● ●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●

●
●●●●●● ●●●●● ●●●●●● ●●●●● ●●●●● ●

●

●●●●●●●●●●●●●● ●● ●●● ●●●
●

● ●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●●●●●●●●●●●●
●

●●● ●● ●●●●● ●●●●●●● ●● ●
●
●●●●●●●● ●● ●
●●
●●●

●●
●●●●

●

●●●● ●●●●●●
●

● ●●●●●●●●● ● ●●● ●● ●●●●●
●

●●●● ●
●

●●●● ●
●

●● ●●●●
●

● ●●● ● ●●●●●●● ●●●●●●●● ●●●● ●●●●●●● ●●
●

● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●
●

●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●● ●●●●●●●●●● ●●
●
●●●●●●●●●●●●●● ●●●● ●●●●●● ●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●● ●●●●●

●
●●●●●●●●●●●●● ●●●● ●

●
● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●
●

●●● ●●●●
●
●●●●●●●

●
●●●●●●●●●● ●●● ●●●●●● ●● ●●● ●●●● ●●●●● ●● ●●●● ●● ●● ● ●●●●● ●●

●
●

●● ●●● ●● ●●●●●● ● ●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●
●
● ●●●● ●●●●●●●●●●●●●●● ●●●● ●●● ●●●●● ●● ●● ●●●●●
●
●●●●●●●●●

●
●●

●
●●

●
●●●●●●● ●●●●●●●●●●●●●

●
●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●● ●●
●

●●●●●●● ●●●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●● ●●●●●●●●●●●● ●●● ●● ●●●●●● ●● ●●● ●● ●●●●●●●●●●●●●
●

●●●●●●●● ●● ●●●●●
● ●●●●● ●●●●● ●●●●●●●
●

●●
●●

●● ●● ●● ●
●

●●● ●●
●

●● ●●● ●● ●● ●●●● ●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●
●
●●●●●●●●●●●● ●●●●●●●

●
●●●●●●●● ●●

●
●●● ●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●
●
●
●
●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●
●

●●●●●
●● ● ●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●

●● ●●●●● ●●● ●●●●●●●●●
●

●●● ●● ●● ●● ●●●● ● ●
●
●●● ●●● ●●●●●● ●●● ●●

● ●●● ●●● ●●●
●

● ●● ●●● ●● ●● ●
●

● ●●●●
●
●●● ●● ● ●● ●

●
●●●

●
● ●●●●●●●● ●●●● ●●● ●● ●● ●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●
●●●●●
●

● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●
●

●●●●●●●●
●

● ●●●●●●
●
● ●●●● ●●●● ●●●
●
●●●
●

●●●●●●●●●●●●●●●
●
●●●●●● ●●●●● ● ●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●

●
●●● ●

●
●●●●●●●
●
●●● ●●

●
● ●●●●●● ●● ●●

●
● ●●●●●

●
●●●●●●● ●●●●●● ●●●●●●●● ● ●●● ●●●● ●●●●● ●● ●● ●●●

●
●●●● ●●● ●● ●
●

●●●● ●●●
●

● ●● ●●●●● ●●●●

●

●●●●●●
●

● ●●●●●● ● ●●●●● ●● ●●● ●
●

●●●●●●●●●●●●●●●●●●●●
●
● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●● ●● ●●●● ●●●●
●
●●●● ●●●●●●

●
●●●●●●

●
●●●● ●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●
●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●● ●●

●●
●●●●●●●●●●
●

●●●●● ●●●●●●●●● ●●●●●●●
●
●●●●●●●●● ●● ●●● ●●●● ● ●●● ●●●●●●●●●● ●●● ●● ●●●● ● ●●●

●●
●●● ●● ●●●●

●

●●● ●●● ● ●●
●
●●●●● ●● ●●●● ● ●●●●● ●● ●●● ●● ●● ●●●● ●●●●●●●●

●

●●● ●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●

●

●●●●●●●
●

●● ●●● ●●●●● ●● ●●●●●●●●●
●

●●●● ●●●●●● ●●●●●● ●●●●●●● ●●●●
●
●●●

●
●●●●● ●● ●●●● ●●●● ●●●● ●●●●●●●●●● ●● ●●●●● ●
●●● ●●● ●●●●●●●●

●

●●●●●
●

● ●●●●● ●●●●●●● ●●●● ●●● ●●●● ●●● ●
●
●● ● ●●●●●●● ●●●●

●

●● ●●●● ●● ●●●● ●●●● ●●●●●●●●●
●

● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●
●

●●● ●●●●●●●●●●● ●●●●●●●●●●● ● ●●●●●●
●

●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●
●●●
●●●
●●

●●●●●●●●●
●
● ● ●●●●●●●●● ●●● ● ●● ●●●●●●●●●●● ●●●● ●●● ● ●●● ●● ●●● ●●●● ● ●●●● ●● ●●●● ●●●●● ●●

●
●
●

●● ●●●● ● ●
●●

●●●●●● ●●●●●●● ●● ●●●●● ●
●

●●● ●●●● ●● ●●●● ● ●● ●●●●●●●●● ●● ●● ●●●●
●

● ●
●

●●●●
●

● ●● ●●●●●
●●

●●●●●●● ●●●●●●●●●
●
● ●●●
●
●●●●●●●●●●●● ●

●●● ●
●

●● ●● ●●●● ●●●●●●● ●● ●●●● ●●●●● ●●●●
●

●●●●● ●●● ●●● ●● ●●●● ●●●● ●●●● ●●●●●●●● ●●
●
●●●● ●●

●

●●●●
●
●● ●● ●

●
●●●●

●

●● ●
●

●●●●● ●● ●●●● ●●●●●
●

● ● ●●●●●● ●● ●●

●

● ●● ●●●●● ●●● ●●
●

●●●●
●

●● ●●●●●● ●● ●● ●● ●● ●● ●●●●●● ●●●● ●● ●●●●●●
●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●
●
●●●●
●

●●●●●● ●●●●
●● ●●●● ●●●●●● ●●●●●●

●
● ●●● ●●●● ●●● ●●

●

● ●● ●●●●
●

●●●●●●● ● ●
●

●● ●●● ●●●● ●●●●●●●●●●●
●
●●●● ●● ●

●
●●

●

●
●
●●●● ●●●●
●
●● ●●● ●●●●●●●●
●

●●● ●● ●●● ●●● ●
●●

●●● ●●●●
●

● ●●●● ● ●●●● ●● ●●● ●● ●●●● ●●●●●
●

●●●●●●●●● ●●●● ●●●●●●●
●

●●●●
●

●●●●●● ●●●●●●● ●●●●●●● ●● ●● ●

●

●●●●●● ●●
●
●● ●
●●●●●●● ●●●●●

●
●●●●●●●●●●

●
●●● ●●●●

●●
●●●● ●●●●

●
●●●

●
●●● ●● ●●●●● ●●●● ●●● ●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●

●

● ●
●

● ●●●●● ●● ●●
●

●●●
●

● ● ●●●● ●
●

●● ●●●●●●●

●

● ●●●● ●● ●● ●●●●● ●●● ●● ●
●

●●●● ●
●

●●●●●●●●● ●●●●● ●●●●●●●●●●●●
●●●● ●●
●
●● ●●●

●
●●●●● ● ●

●
●●● ●● ●●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●
●●

●

●
● ●●●●● ●●

●
●●● ●●●● ●●●● ●●● ●●●●●●●●●●● ●●● ●●●

●
●●●●

●
●● ●●● ●●●●●● ●●● ●● ●●●●● ● ●●● ● ●●●●● ●● ●● ●● ●● ●●
●

●●●●
●

●● ●
●

● ●●●● ●●● ●●
●

● ●●● ●
●
● ●●●● ●● ●● ●●● ●●●●●●●

●
●●

●
●●●
●

●●●
●

●●
●

●●●● ●●
●

●●●●●●●●●●●●● ● ●●●●●●●●●●
●

●●●●●● ●
●

●● ●●●● ●● ●●●●● ●●●●●●●●●
●
●●●●● ●●●●●●

●
● ●● ●
●
● ●●

●
●●●

●
●●● ●● ●●● ●●●●●●●●●● ●●●● ●●●●●● ●● ●● ●●● ●●●● ●●● ●●●●●
●

●●●● ●●●●●
●

●●●●●●●●● ●●

●

●●●● ●●●●●

●

●●●●
●

●●●● ●●● ●●● ●●● ● ●●●●● ●●●●● ●● ●● ●●●● ●● ●●●●● ●●●●● ●●●● ●● ●●●●●● ●●● ●●●
●

●
●●

●

●●●●●●● ●●● ●
●
●●●●●●●●●●●●● ●
● ●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ●●●

●
●●

●
●●
● ●

●●●●
●

● ●● ● ●●●●
●
●● ●●●● ●●●●●●●●●●● ●●

●
●●●●●●●● ●●●●●● ●●●
●

●● ●●●●● ●●
●●●

●
● ●● ●
●

●●●●●
●

● ●●●●●●
●

●●●●●●● ●● ●●
●

● ●●●●● ●●●●●●●●●● ● ●●●● ●●●●●●● ●●
●

● ●●●●●●●●●●●●●●●
●● ●●●●●●●

●●●●●●●●●●●●● ●●●●●● ●●●●
●

●●● ●● ●● ●●●●●●●● ●●●● ● ●●●●●●
●
●●

●

●

●

● ●● ●
●●

●●● ● ●●●● ●●●●●●● ●●●●●●●● ●●● ●●●● ●●●●●● ●● ●●● ●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●● ●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●● ●●
●
●●● ●●●●●●
●

●●●●● ●●●●●●●● ●
●●

●●●
●

● ●●●●●

●

●● ●●●● ●●●●● ●●●●●●●●●
●

●●●● ●●●
●
● ●●●● ●●●

●

●●●●●
●
●●●●●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●

●
●●●●● ●●●●●●● ●● ●●● ●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●●● ●●●●

● ●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●● ●●● ●●● ●● ● ●

●
●●●●

●
●●●

●
●●●● ●● ● ●●●●● ●
●
● ●●●

●
●●●●●●●●●●● ●●●●●●● ●●●● ●●●● ●●●●●● ●● ●● ●●●●● ●●● ● ●●●●●● ●● ● ●

●●● ●●
●●
●● ●●●●●●● ● ●●●●●●●

●
●●●●●●●●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●
●

●●● ●●●●●●●●●●
●

●●●●●●●●●●●●●● ●●●● ●● ●●●●
●
●●

●
●● ●●●●

●
●●●●●●● ●● ●● ●●

●
●

●
●●●●
●
●●●●●●●

● ●
●●●●●●● ●● ●●● ●●● ● ●

●

●
●

●●●
●

●●● ●●●●● ●●●●● ● ●● ●● ●●●●●●●● ●●●●● ●●●●●● ●●● ●●●●●● ●● ●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●

●

●●●● ●●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●
●

●●●
●

●
●

●●●●● ●●●● ●●●●● ●●
●

●●●●●●●●●●●●
●

●●●●●●●●●●● ●●● ●●● ●●●●●● ●●●●●●

●

● ●●● ●●●●● ●●●● ●●●●● ●●

●

●● ●●●● ●●●● ●●●●●● ●
●

●●●●● ●●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●● ●●

●

●● ●●●●
●

●●● ● ●●●●●
●

● ●
●
●●●●●●● ●● ●

●
●●●● ●●●● ●●●●●●● ●

●
●●●●●● ● ●●●● ●● ●●●●● ●● ●●● ●●●● ●● ●

●
●●●● ●●●●●●●● ● ●●● ●● ●●●●●● ●●●
●
● ●●●●●●
●
● ●●●● ●●●●●●●●●●●●●● ●●●●● ●●

●
●● ●●●● ●●●●●●●

●
● ●●●● ●●●

●
●● ●●●●
●

● ● ●
●

● ●●●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●● ●●●●●●●● ●● ●●●●● ●●●●●●●●
●

● ●●
●

●●●
●
●●●●●●●●● ●●●●●●● ●●● ●●●●●●● ●
●
●●●●

●
●●●●●● ●

●
●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ● ●●

● ●
●● ●● ●● ●●● ●●●●●●● ● ●●●●● ●●●

●
●●●●● ●●●●●● ● ●●●●● ●●●● ● ●●

●
●●● ●●●●●●●●●●●●●●●●● ●● ●●●

●
●●●●●●●●●● ●●●●

●
●●●●● ●●●●●● ●●●●●● ●●●●● ●

●

●●●● ●●●●●●●● ●●●●●●●● ●●●● ●● ●●●● ●●●●● ●●●●
●

●●●●● ● ●●
●

● ●●●●
●

● ●●●●●● ●●● ●● ●●●● ● ●●● ●●●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●●● ●● ●●● ●●●
●
●●●●● ●●●●●●●●●● ●●●●● ●●●● ●●●●●● ●● ●●●●● ●●● ●● ●●
●

●●●●●●● ●● ●●●
●●

●●

●

●●● ●●●
●●●●●●● ●● ●●●●●●●●●

●
●●
●

● ●● ●●●●● ●●● ●●●
●

●●●●●●● ●●●●●●●
●

● ●● ●● ●●●●● ●●●●●● ●●●●
●●●●●

●
●● ●●●● ●●●● ●●● ●● ●●●● ●●●●●● ●

●
●●●● ●●●●●● ●●●●●●●●●● ●●●● ●

●
●●●●● ●●●●●●●● ●●● ●● ●●● ●● ●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●● ● ●●●●● ●●●●●●● ●●●

●

●●●●●● ●●●● ● ●● ●●● ●●●●●●●●● ●● ●●●●●●
●

●●●●●●
●

●
●

● ●●●● ●●● ●●● ●●●●●
●
●●●●●●●●●●●● ●●●● ●● ●●● ●●●

●
●● ●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●

●

●● ●●●●●●● ●● ●●●● ●●●● ●●●●●●●●●●● ●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●
●

●● ●●●●●● ●●●●● ●
● ●●●●●● ●●● ●●●●● ●●● ●●● ●●● ●●●●●●● ●●

●
●●●●●●● ●●● ●●●●● ●● ●●● ●●● ●● ●●●●● ●● ●●●●● ●●●● ● ●● ●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●

Filtered

Used (#3849)
Not annotated (#252)
Filtered (#8524)

●

●

●

Figure 3: Scatter plot of FDR adjusted p-values against variance of probes. Points below the horizontal line are
significant probes.

We want to see if the filtering performed in Section 4.1 removes important probes. There are a total of 12625
probes on the hgu95av2 chip. One assumes that only the noisy probes, probes with low expression values
or small variance across samples are filtered out from the analysis.

The number of probes have a direct effect on the multiple testing adjustment of p-values. Too many probes
will result in too conservative adjusted p-values which can bias the result of tests like Fisher’s exact test.
Thus it is important to carefully analyse this step.

> allProb <- featureNames(ALL)

> groupProb <- integer(length(allProb)) + 1

> groupProb[allProb %in% genes(GOdata)] <- 0

> groupProb[!selProbes] <- 2

> groupProb <- factor(groupProb, labels = c("Used", "Not annotated", "Filtered"))

> tt <- table(groupProb)

> tt

groupProb

Used Not annotated Filtered

3849 252 8524

Out of the filtered probes only 94% have annotation to GO terms. The filtering procedure removes 8524
probes which is a very large percentage of probes (more than 50%), but we did this intentionally to reduce
the expression set for computational purposes.

We perform a differential expression analysis on all available probes and we check if differentially expressed
genes are leaved out from the enrichment analysis.

> pValue <- getPvalues(exprs(ALL), classlabel = y, alternative = "greater")

> geneVar <- apply(exprs(ALL), 1, var)

> dd <- data.frame(x = geneVar[allProb], y = log10(pValue[allProb]), groups = groupProb)

> xyplot(y ~ x | groups, data = dd, groups = groups)



Figure 3 shows for the three groups of probes the adjusted p-values and the gene-wise variance. Probes with
large changes between conditions have large variance and low p-value. In an ideal case, one would expect
to have a large density of probes in the lower right corner of Used panel and few probes in this region in
the other two panels. We can see that the filtering process throws out some significant probes and in a
real analysis a more conservative filtering needs to be applied. However, there are also many differentially
expressed probes without GO annotation which cannot be used in the analysis.

5 Working with the topGOdata object

Once the topGOdata object is created the user can use various methods defined for this class to access the
information encapsulated in the object.

The description slot contains information about the experiment. This information can be accessed or
replaced using the method with the same name.

> description(GOdata)

> description(GOdata) <- paste(description(GOdata), "Object modified on:", format(Sys.time(), "%d %b %Y"), sep = " ")

> description(GOdata)

Methods to obtain the list of genes that will be used in the further analysis or methods for obtaining all gene
scores are exemplified below.

> a <- genes(GOdata) ## obtain the list of genes

> head(a)

[1] "1000_at" "1005_at" "1007_s_at" "1008_f_at" "1009_at" "100_g_at"

> numGenes(GOdata)

[1] 3849

Next we describe how to retrieve the score of a specified set of genes, e.g. a set of randomly selected genes.
If the object was constructed using a list of interesting genes, then the factor vector that was provided at
the building of the object will be returned.

> selGenes <- sample(a, 10)

> gs <- geneScore(GOdata, whichGenes = selGenes)

> print(gs)

If the user wants an unnamed vector or the score of all genes:

> gs <- geneScore(GOdata, whichGenes = selGenes, use.names = FALSE)

> print(gs)

> gs <- geneScore(GOdata, use.names = FALSE)

> str(gs)

The list of significant genes can be accessed using the method sigGenes().

> sg <- sigGenes(GOdata)

> str(sg)

> numSigGenes(GOdata)

Another useful method is updateGenes which allows the user to update/change the list of genes (and their
scores) from a topGOdata object. If one wants to update the list of genes by including only the feasible ones,
one can type:



> .geneList <- geneScore(GOdata, use.names = TRUE)

> GOdata ## more available genes

> GOdata <- updateGenes(GOdata, .geneList, topDiffGenes)

> GOdata ## the available genes are now the feasible genes

There are also methods available for accessing information related to GO and its structure. First, we want
to know which GO terms are available for analysis and to obtain all the genes annotated to a subset of these
GO terms.

> graph(GOdata) ## returns the GO graph

A graphNEL graph with directed edges

Number of Nodes = 5320

Number of Edges = 12350

> ug <- usedGO(GOdata)

> head(ug)

[1] "GO:0000002" "GO:0000003" "GO:0000018" "GO:0000027" "GO:0000028" "GO:0000038"

We further select 10 random GO terms, count the number of annotated genes and obtain their annotation.

> sel.terms <- sample(usedGO(GOdata), 10)

> num.ann.genes <- countGenesInTerm(GOdata, sel.terms) ## the number of annotated genes

> num.ann.genes

> ann.genes <- genesInTerm(GOdata, sel.terms) ## get the annotations

> head(ann.genes)

When the sel.terms argument is missing all GO terms are used. The scores for all genes, possibly annotated
with names of the genes, can be obtained using the method scoresInTerm().

> ann.score <- scoresInTerm(GOdata, sel.terms)

> head(ann.score)

> ann.score <- scoresInTerm(GOdata, sel.terms, use.names = TRUE)

> head(ann.score)

Finally, some statistics for a set of GO terms are returned by the method termStat. As mentioned previously,
if the sel.terms argument is missing then the statistics for all available GO terms are returned.

> termStat(GOdata, sel.terms)

Annotated Significant Expected

GO:1900373 35 0 3.00

GO:0019373 5 1 0.43

GO:0009145 31 1 2.66

GO:0050774 8 0 0.69

GO:0008585 27 4 2.31

GO:0022602 25 4 2.14

GO:1903309 22 0 1.89

GO:0021548 10 0 0.86

GO:0043200 36 1 3.09

GO:0010522 41 2 3.52



6 Running the enrichment tests

In this section we explain how we can run the desired enrichment method once the topGOdata object is
available.

topGO package was designed to work with various test statistics and various algorithms which take the GO
dependencies into account. At the base of this design stands a S4 class mechanism which facilitates defining
and executing a (new) group test. Three types of enrichment tests can be distinguish if we look at the data
used by the each test.

� Tests based on gene counts. This is the most popular family of tests, given that it only requires the
presence of a list of interesting genes and nothing more. Tests like Fisher’s exact test, Hypegeometric
test and binomial test belong to this family. Draghici et al. (2006)

� Tests based on gene scores or gene ranks. It includes Kolmogorov-Smirnov like tests (also known as
GSEA), Gentleman’s Category, t-test, etc. Ackermann and Strimmer (2009)

� Tests based on gene expression. Tests like Goeman’s globaltest or GlobalAncova separates from the
others since they work directly on the expression matrix. Goeman and Bühlmann (2007)

There are also a number of strategies/algorithms to account for the GO topology, see Table 1, each of them
having specific requirements.

For each test type described above and for each algorithm there is S4 class defined in the package. The
main idea is to have a class (container) which can store, for a specified gene set(GO category), all data
necessary for computing the desired test statistic, and a method that will iterate over all GO categories. In
such a design the user needs to instantiate an object from the class corresponding to the chosen method(test
statistic and algorithm) and then run the iterator function on this object.

The defined S4 classes are organised in a hierarchy which is showed in Figure 4.

There are two possibilities(or interfaces) for applying a test statistic to an object of class topGOdata. The
basic interface, which provides the core of the testing procedure in topGO, offers more flexibility to the
experienced R user allowing him to implement new test statistics or new algorithms. The second interface is
more user friendly but at the same time more restrictive in the choice of the tests and algorithms used. We
will further explain how these two interfaces work.

Figure 4: The test statistics class structure.



6.1 Defining and running the test

The main function for running the GO enrichment is getSigGroups() and it takes two arguments. The first
argument is an instance of class topGOdata and the second argument is an instance of class groupStats or
any of its descendents.

To better understand this principle consider the following example. Assume we decided to apply the classic
algorithm. The two classes defined for this algorithm are classicCount and classicScore. If an ob-
ject of this class is given as a argument to getSigGroups() than the classic algorithm will be used. The
getSigGroups() function can take a while, depending on the size of the graph (the ontology used), so be
patient.

The groupStats classes

Next we show how an instance of the groupStats class can represent a gene set and how the test statistic
is performed.

We compute the enrichment of cellular lipid metabolic process (GO:0044255) term using Fisher’s exact test.
In order to do this we need to define the gene universe, to obtain the genes annotated to GO:0044255, and
to define the set of significant genes.

> goID <- "GO:0044255"

> gene.universe <- genes(GOdata)

> go.genes <- genesInTerm(GOdata, goID)[[1]]

> sig.genes <- sigGenes(GOdata)

Now we can instantiate an object of class classicCount. Once the object is constructed we can get the 2×2
contingency table or apply the test statistic.

> my.group <- new("classicCount", testStatistic = GOFisherTest, name = "fisher",

+ allMembers = gene.universe, groupMembers = go.genes,

+ sigMembers = sig.genes)

> contTable(my.group)

sig notSig

anno 29 240

notAnno 301 3279

> runTest(my.group)

[1] 0.1118831

The slot testStatistic contains the function (or to be more precise, the method) which computes the test
statistic. We used the GOFisherTest function which is available in the topGO package and as the name states
it implements Fisher’s exact test. The user can define his own test statistic function and then apply it using
the preferred algorithm. The function, however, should use the methods defined for the groupStats class
to access the data encapsulated in such an object. (For example a function which computes the Z score can
be easily implemented using as an example the GOFisherTest method.)

The runTest method is defined for the groupStats class and its used to run/compute the test statistic,
by calling the testStatistic function. The value returned by the runTest method in this case is the
value returned by GOFisherTest method, which is the Fisher’s exact test p-value. The contTable method,
showed in the example above, is only defined for the classes based on gene counts and its used to compile
the two-dimensional contingency table based on the object.

To show how the same interface is used for the classes based on gene counts we next build an instance for
the elimCount class. We randomly select 25% of the annotated genes as genes that should be removed.



> set.seed(123)

> elim.genes <- sample(go.genes, length(go.genes) / 4)

> elim.group <- new("elimCount", testStatistic = GOFisherTest, name = "fisher",

+ allMembers = gene.universe, groupMembers = go.genes,

+ sigMembers = sig.genes, elim = elim.genes)

> contTable(elim.group)

sig notSig

anno 24 178

notAnno 301 3279

> runTest(elim.group)

[1] 0.06118273

We see that the interface accounts for the genes that need to be eliminated, once the object is instantiated.
The same mechanism applies for the other hierarchy of classes (the score based and expression based classes),
except that each hierarchy has its own specialised methods for computing statistics from the data.

Please note that the groupStats class or any descendent class does not depend on GO, and an object of
such a class can be instantiated using any gene set.

Performing the test

According to the mechanism described above, one first defines a test statistic for the chosen algorithm,
meaning that an instance of object specific for the algorithm is constructed in which only the test statistic
must be specified, and then calls a generic function (interface) to run the algorithm.

According to this mechanism, one first defines a test statistic for the chosen algorithm, in this case classic and
then runs the algorithm (see the second line). The slot testStatistic contains the test statistic function.
In the above example GOFisherTest function which implements Fisher’s exact test and is available in the
topGO package was used. A user can define his own test statistic function and then apply it using the classic
algorithm. (For example a function which computes the Z score can be implemented using as an example the
GOFisherTest method.)

> test.stat <- new("classicCount", testStatistic = GOFisherTest, name = "Fisher test")

> resultFisher <- getSigGroups(GOdata, test.stat)

A short summary on the used test and the results is printed at the R console.

> resultFisher

Description: GO analysis of ALL data; B-cell vs T-cell Object modified on: 13 Oct 2015

Ontology: BP

'classic' algorithm with the 'Fisher test' test

5320 GO terms scored: 107 terms with p < 0.01

Annotation data:

Annotated genes: 3849

Significant genes: 330

Min. no. of genes annotated to a GO: 5

Nontrivial nodes: 3774

To use the Kolmogorov-Smirnov (KS) test one needs to provide the gene-wise scores and thus we need to
instantiate an object of a class which is able to deal of the scores. Such a class is the classicScore class,
see Figure 4 which will let us run the classic algorithm.

> test.stat <- new("classicScore", testStatistic = GOKSTest, name = "KS tests")

> resultKS <- getSigGroups(GOdata, test.stat)



The mechanism presented above for classic also hold for elim and weight. The user should pay attention
to the compatibility between the chosen class and the function for computing the test statistic, since no
incompatibility test are made when the object is instantiated. For example the weight algorithm will not
work with classes based on gene-wise scores. To run the elim algorithm with KS test one needs to type:

> test.stat <- new("elimScore", testStatistic = GOKSTest, name = "Fisher test", cutOff = 0.01)

> resultElim <- getSigGroups(GOdata, test.stat)

Similarly, for the weight algorithm with Fisher’s exact test one types:

> test.stat <- new("weightCount", testStatistic = GOFisherTest, name = "Fisher test", sigRatio = "ratio")

> resultWeight <- getSigGroups(GOdata, test.stat)

6.2 The adjustment of p-values

The p-values return by the getSigGroups function are row p-values. There is no multiple testing correction
applied to them, unless the test statistic directly incorporate such a correction. Of course, the researcher
can perform an adjustment of the p-values if he considers it is important for the analysis. The reason for
not automatically correcting for multiple testing are:

� In many cases the row p-values return by an enrichment analysis are not that extreme. A FDR/FWER
adjustment procedure can in this case produce very conservative p-values and declare no, or very few,
terms as significant. This is not necessary a bad thing, but it can happen that there are interesting
GO terms which didn’t make it over the cutoff but they are omitted and thus valuable information
lost. In this case the researcher might be interested in the ranking of the GO terms even though no
top term is significant at a specify FDR level.

� One should keep in mind that an enrichment analysis consist of many steps and there are many
assumptions done before applying, for example, Fisher’s exact test on a set of GO terms. Performing
a multiple testing procedure accounting only on the number of GO terms is far from being enough to
control the error rate.

� For the methods that account for the GO topology like elim and weight, the problem of multiple
testing is even more complicated. Here one computes the p-value of a GO term conditioned on the
neighbouring terms. The tests are therefore not independent and the multiple testing theory does not
directly apply. We like to interpret the p-values returned by these methods as corrected or not affected
by multiple testing.

6.3 Adding a new test

Example for the Category test ....

6.4 runTest: a high-level interface for testing

Over the basic interface we implemented an abstract layer to provide the users with a higher level interface
for running the enrichment tests. The interface is composed by a function, namely the runTest function,
which can be used only with a predefined set of test statistics and algorithms. In fact runTest is a warping
function for the set of commands used for defining and running a test presented in Section 6.1.

There are three main arguments that this function takes. The first argument is an object of class topGOdata.
The second argument, named algorithm, is of type character and specifies which method for dealing with
the GO graph structure will be used. The third argument, named statistic, specifies which group test
statistic will be used.

To perform a classical enrichment analysis by using the classic method and Fisher’s exact test, the user needs
to type:



> resultFis <- runTest(GOdata, algorithm = "classic", statistic = "fisher")

Various algorithms can be easily combine with various test statistics. However not all the combinations
will work, as seen in Table 1. In the case of a mismatch the function will throw an error. The algorithm

argument is optional and if not specified the weight01 method will be used. Bellow we can see more examples
using the runTest function.

> weight01.fisher <- runTest(GOdata, statistic = "fisher")

> weight01.t <- runTest(GOdata, algorithm = "weight01", statistic = "t")

> elim.ks <- runTest(GOdata, algorithm = "elim", statistic = "ks")

> weight.ks <- runTest(GOdata, algorithm = "weight", statistic = "ks") #will not work!!!

The last line will return an error because we cannot use the weight method with the Kolmogorov-Smirnov
test. The methods and the statistical tests which are accessible via the runTest function are available via
the following two functions:

> whichTests()

[1] "fisher" "ks" "t" "globaltest" "sum" "ks.ties"

> whichAlgorithms()

[1] "classic" "elim" "weight" "weight01" "lea" "parentchild"

There is no advantage of using the runTest() over getSigGroups() except that it is more user friendly and it
gives cleaner code. However, if the user wants to define his own test statistic or implement a new algorithm
based on the available groupStats classes, then it would be not possible to use the runTest function.

Finally, the function can pass extra arguments to the initialisation method for an groupStats object. Thus,
one can specify different cutoffs for the elim method, or arguments for the weight method.

7 Interpretation and visualization of results

This section present the available tools for analysing and interpreting the results of the performed tests.
Both getSigGroups and runTest functions return an object of type topGOresult, and most of the following
functions work with this object.

7.1 The topGOresult object

The structure of the topGOresult object is quite simple. It contains the p-values or the statistics returned by
the test and basic informations on the used test statistic/algorithm. The information stored in the topGOdata
object is not carried over this object, and both of these objects will be needed by the diagnostic tools.

Since the test statistic can return either a p-value or a statistic of the data, we will refer them as scores!

To access the stored p-values, the user should use the function score. It returns a named numeric vector,
were the names are GO identifiers. For example, we can look at the histogram of the results of the Fisher’s
exact test and the classic algorithm.

By default, the score function does not warranty the order in which the p-values are returned, as we can
see if we compare the resultFis object with the resultWeight object:

> head(score(resultWeight))

GO:0048812 GO:0048813 GO:0070669 GO:0048814 GO:0009755 GO:0043367

0.94696536 1.00000000 0.08724093 1.00000000 0.70636985 1.00000000



> pvalFis <- score(resultFis)

> head(pvalFis)

GO:0000002 GO:0000003 GO:0000018 GO:0000038 GO:0000041 GO:0000060

0.62743518 0.94727242 0.49384072 0.01683679 0.82769986 0.68701548

> hist(pvalFis, 50, xlab = "p-values")

Histogram of pvalFis

p−values

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00

However, the score method has a parameter, whichGO, which takes a list of GO identifiers and returns the
scores for these terms in the specified order. Only the scores for the terms found in the intersection between
the specified GOs and the GOs stored in the topGOresult object are returned. To see how this work lets
compute the correlation between the p-values of the classic and weight methods:

> pvalWeight <- score(resultWeight, whichGO = names(pvalFis))

> head(pvalWeight)

GO:0000002 GO:0000003 GO:0000018 GO:0000038 GO:0000041 GO:0000060

0.62743518 0.99671781 1.00000000 0.01683679 0.81909450 0.86111013

> cor(pvalFis, pvalWeight)

[1] 0.5458098

Basic information on input data can be accessed using the geneData function. The number of annotated
genes, the number of significant genes (if it is the case), the minimal size of a GO category as well as the
number of GO categories which have at least one significant gene annotated are listed:

> geneData(resultWeight)

Annotated Significant NodeSize SigTerms

3849 330 5 3774

7.2 Summarising the results

We can use the GenTable function to generate a summary table with the results from one or more tests
applied to the same topGOdata object. The function can take a variable number of topGOresult objects
and it returns a data.frame containing the top topNodes GO terms identified by the method specified with
the orderBy argument. This argument allows the user decide which p-values should be used for ordering the
GO terms.



GO.ID Term Annotated Significant Expected Rank in classic classic KS weight
1 GO:0048935 peripheral nervous system neuron develop... 7 5 0.60 6 8.2e-05 0.00287 8.2e-05
2 GO:0036109 alpha-linolenic acid metabolic process 5 4 0.43 16 0.00025 0.00252 0.00025
3 GO:0043651 linoleic acid metabolic process 5 4 0.43 17 0.00025 0.00252 0.00025
4 GO:0033077 T cell differentiation in thymus 51 13 4.37 18 0.00025 0.00034 0.00025
5 GO:0042474 middle ear morphogenesis 9 5 0.77 23 0.00042 0.01721 0.00042
6 GO:0042102 positive regulation of T cell proliferat... 41 11 3.52 24 0.00047 0.03277 0.00047
7 GO:0042473 outer ear morphogenesis 6 4 0.51 31 0.00069 0.01622 0.00069
8 GO:0045086 positive regulation of interleukin-2 bio... 6 4 0.51 32 0.00069 0.01294 0.00069
9 GO:0045588 positive regulation of gamma-delta T cel... 6 4 0.51 33 0.00069 0.01294 0.00069

10 GO:0050852 T cell receptor signaling pathway 80 19 6.86 2 2.9e-05 0.00215 0.00070
11 GO:0050850 positive regulation of calcium-mediated ... 11 5 0.94 41 0.00135 0.00144 0.00135
12 GO:0010863 positive regulation of phospholipase C a... 33 9 2.83 43 0.00136 0.01517 0.00136
13 GO:0016126 sterol biosynthetic process 16 6 1.37 46 0.00145 0.00034 0.00145
14 GO:0006929 substrate-dependent cell migration 12 5 1.03 54 0.00215 0.00725 0.00215
15 GO:0050857 positive regulation of antigen receptor-... 12 5 1.03 55 0.00215 0.00023 0.00215
16 GO:0022028 tangential migration from the subventric... 8 4 0.69 62 0.00281 0.02935 0.00281
17 GO:0035335 peptidyl-tyrosine dephosphorylation 38 9 3.26 69 0.00391 0.08597 0.00391
18 GO:0006739 NADP metabolic process 9 4 0.77 74 0.00472 0.09201 0.00472
19 GO:0045987 positive regulation of smooth muscle con... 9 4 0.77 75 0.00472 0.00281 0.00472
20 GO:0016925 protein sumoylation 54 11 4.63 78 0.00517 0.00324 0.00517

Table 3: Significance of GO terms according to different tests.

> allRes <- GenTable(GOdata, classic = resultFis, KS = resultKS, weight = resultWeight,

+ orderBy = "weight", ranksOf = "classic", topNodes = 20)

Please note that we need to type the full names (the exact name) of the function arguments: topNodes,
rankOf, etc. This is the price paid for flexibility of specifying different number of topGOresults objects. The
table includes statistics on the GO terms plus the p-values returned by the other algorithms/test statistics.
Table 3 shows the informations included in the data.frame.

7.3 Analysing individual GOs

Next we want to analyse the distribution of the genes annotated to a GO term of interest. In an enrichment
analysis one expects that the genes annotated to a significantly enriched GO term have higher scores than
the average gene’ score of the gene universe.

One way to check this hypothesis is to compare the distribution of the gene scores annotated to the specified
GO term with the distribution of the scores of the complementary gene set (all the genes in the gene universe
which are not annotated to the GO term). This can be easily achieved using the showGroupDensity function.
For example, lets look at the distribution of the genes annotated to the most significant GO term w.r.t. the
weight algorithm.

> goID <- allRes[1, "GO.ID"]

> print(showGroupDensity(GOdata, goID, ranks = TRUE))

Gene's rank

D
en

si
ty

0.000

0.002

0.004

0.006

0.008

−200 0 200 400 600 800 1000

●● ●●● ●●● ● ●● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●● ● ● ● ●●●●● ● ● ●●● ●●● ● ● ●●● ●● ●●●● ● ●● ● ●● ●● ● ● ●●●● ●●● ●●● ●●● ● ● ●● ●●●●● ●● ●● ●● ●● ●●●● ● ●● ●● ●●●● ●●● ●●● ● ●●● ●● ● ●●● ●●● ●● ●● ●● ●●● ●● ●●●● ●● ●●● ● ●●● ●● ● ● ●● ●●● ● ●●● ●● ●●● ●●●●●● ● ●● ● ● ●●● ● ●● ●● ●● ●●● ●●●●●● ●●●● ● ●●● ●● ●● ●● ●● ● ●● ● ● ●●●● ●● ●● ●● ● ●●● ● ●● ●●●● ● ● ●● ●● ● ●● ●● ● ●●● ●●● ●● ●● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ●●● ●● ●●● ●● ● ●● ● ●● ●● ●●● ●● ● ●●● ●●● ●● ● ●● ●●● ● ● ●● ●●● ● ●● ●●● ●● ●●● ●● ●● ● ●● ●● ●● ●● ●● ●●●● ● ●●●● ●● ● ●● ●●● ●● ●● ● ●●● ● ●● ●● ●● ●● ●● ●●● ● ●● ●● ●●● ●● ● ● ● ●● ● ●● ●●● ● ●● ●● ●● ● ● ●● ●● ●●● ●●● ●●● ● ●● ● ●●● ●● ●●● ●● ●● ● ●● ●● ●● ● ●●● ●● ●● ●● ●●●● ●● ●●●● ● ●●● ●● ● ●● ●●●● ●● ●●● ● ●● ● ●●●● ●● ● ● ●●● ● ●●● ●● ● ●● ●●●● ● ●● ●● ●● ●●●● ● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●●● ●●●● ●●●●●● ●●●● ●● ● ●●● ●●● ●● ●●● ●● ●●● ●● ● ●● ●●● ● ● ●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●●● ●● ●●● ● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●●● ● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ●●● ● ●● ● ●●● ●●● ● ●●● ●● ●●● ●●● ●● ● ●● ●●● ● ● ●●●● ●● ●●● ● ●●●● ● ●● ●● ●● ●● ●●● ●●● ●● ●●●● ● ●● ●● ● ●●●●● ● ● ● ●● ● ●●

complementary  (824)

0.000

0.002

0.004

0.006

0.008

● ●●●●

GO:0048935  (5)

Figure 5: Distribution of the gene’ rank from GO:0048935, compared with the null distribution.



We can see in Figure 5 that the genes annotated to GO:0048935 have low ranks (genes with low p-value of
the t-test). The distribution of the ranks is skewed on the left side compared with the reference distribution
given by the complementary gene set. This is a nice example in which there is a significant difference in the
distribution of scores between the gene set and the complementary set, and we see from Table 3 that this
GO is found as significantly enriched by all methods used.

In the above example, the genes with a p-value equal to 1 were omitted. They can be included using the
value FALSE for the rm.one argument in the showGroupDensity function.

Another useful function for analysing terms of interest is printGenes. The function will generate a table
with all the genes/probes annotated to the specified GO term. Various type of identifiers, the gene name
and the p-values/statistics are provided in the table.

> goID <- allRes[10, "GO.ID"]

> gt <- printGenes(GOdata, whichTerms = goID, chip = affyLib, numChar = 40)

The data.frame containing the genes annotated to GO:0050852 is shown in Table 4. One or more GO
identifiers can be given to the function using the whichTerms argument. When more than one GO is specified,
the function returns a list of data.frames, otherwise only one data.frame is returned. The function has a
argument file which, when specified, will save the results into a file using the CSV format.

For the moment the function will work only when the chip used has an annotation package available in
Bioconductor. It will not work with other type of custom annotations.

7.4 Visualising the GO structure

An insightful way of looking at the results of the analysis is to investigate how the significant GO terms are
distributed over the GO graph. We plot the subgraphs induced by the most significant GO terms reported
by classic and weight methods. There are two functions available. The showSigOfNodes will plot the induced
subgraph to the current graphic device. The printGraph is a warping function of showSigOfNodes and will
save the resulting graph into a PDF or PS file.

> showSigOfNodes(GOdata, score(resultFis), firstSigNodes = 5, useInfo = 'all')

> showSigOfNodes(GOdata, score(resultWeight), firstSigNodes = 5, useInfo = 'def')

> printGraph(GOdata, resultFis, firstSigNodes = 5, fn.prefix = "tGO", useInfo = "all", pdfSW = TRUE)

> printGraph(GOdata, resultWeight, firstSigNodes = 5, fn.prefix = "tGO", useInfo = "def", pdfSW = TRUE)

In the plots, the significant nodes are represented as rectangles. The plotted graph is the upper induced
graph generated by these significant nodes. These graph plots are used to see how the significant GO terms
are distributed in the hierarchy. It is a very useful tool to realize behaviour of various enrichment methods
and to better understand which of the significant GO terms are really of interest.

We can emphasise differences between two methods using the printGraph function:

> printGraph(GOdata, resultWeight, firstSigNodes = 10, resultFis, fn.prefix = "tGO", useInfo = "def")

> printGraph(GOdata, resultElim, firstSigNodes = 15, resultFis, fn.prefix = "tGO", useInfo = "all")



Chip ID LL.id Symbol.id Gene name raw p-value
38319 at 38319 at 915 CD3D CD3d molecule, delta (CD3-TCR complex) < 1e-30
33238 at 33238 at 3932 LCK LCK proto-oncogene, Src family tyrosine ... < 1e-30

2059 s at 2059 s at 3932 LCK LCK proto-oncogene, Src family tyrosine ... < 1e-30
38949 at 38949 at 5588 PRKCQ protein kinase C, theta < 1e-30
37078 at 37078 at 919 CD247 CD247 molecule 2.69e-29
1498 at 1498 at 7535 ZAP70 zeta-chain (TCR) associated protein kina... 7.08e-21

32794 g at 32794 g at 28639 TRBC1 T cell receptor beta constant 1 4.89e-14
40511 at 40511 at 2625 GATA3 GATA binding protein 3 1.47e-12
36808 at 36808 at 26191 PTPN22 protein tyrosine phosphatase, non-recept... 4.09e-12
39319 at 39319 at 3937 LCP2 lymphocyte cytosolic protein 2 (SH2 doma... 2.42e-11
40688 at 40688 at 27040 LAT linker for activation of T cells 1.60e-10
36277 at 36277 at 916 CD3E CD3e molecule, epsilon (CD3-TCR complex) 1.04e-08
40518 at 40518 at 5788 PTPRC protein tyrosine phosphatase, receptor t... 4.33e-07
34351 at 34351 at 5335 PLCG1 phospholipase C, gamma 1 5.43e-07
41654 at 41654 at 100 ADA adenosine deaminase 1.66e-06
32793 at 32793 at 28639 TRBC1 T cell receptor beta constant 1 7.04e-06

32153 s at 32153 s at 7314 UBB ubiquitin B 1.18e-05
1323 at 1323 at 7314 UBB ubiquitin B 9.41e-05

40520 g at 40520 g at 5788 PTPRC protein tyrosine phosphatase, receptor t... 0.000758
907 at 907 at 100 ADA adenosine deaminase 0.013935

32202 at 32202 at 10616 RBCK1 RanBP-type and C3HC4-type zinc finger co... 0.035167
32203 at 32203 at 10616 RBCK1 RanBP-type and C3HC4-type zinc finger co... 0.056658
38865 at 38865 at 9402 GRAP2 GRB2-related adaptor protein 2 0.071521
41059 at 41059 at 11314 CD300A CD300a molecule 0.420765
33770 at 33770 at 1147 CHUK conserved helix-loop-helix ubiquitous ki... 0.629161

1085 s at 1085 s at 5336 PLCG2 phospholipase C, gamma 2 (phosphatidylin... 1.000000
1106 s at 1106 s at NA 1.000000
1271 g at 1271 g at 5970 RELA v-rel avian reticuloendotheliosis viral ... 1.000000

1295 at 1295 at 5970 RELA v-rel avian reticuloendotheliosis viral ... 1.000000
1366 i at 1366 i at 7316 UBC ubiquitin C 1.000000
1367 f at 1367 f at 7316 UBC ubiquitin C 1.000000

1377 at 1377 at 4790 NFKB1 nuclear factor of kappa light polypeptid... 1.000000
1378 g at 1378 g at 4790 NFKB1 nuclear factor of kappa light polypeptid... 1.000000

1461 at 1461 at 4792 NFKBIA nuclear factor of kappa light polypeptid... 1.000000
1660 at 1660 at 7334 UBE2N ubiquitin-conjugating enzyme E2N 1.000000
172 at 172 at 3635 INPP5D inositol polyphosphate-5-phosphatase D 1.000000

1768 s at 1768 s at 1445 CSK c-src tyrosine kinase 1.000000
2039 s at 2039 s at 2534 FYN FYN proto-oncogene, Src family tyrosine ... 1.000000
32029 at 32029 at 5170 PDPK1 3-phosphoinositide dependent protein kin... 1.000000
32035 at 32035 at 3126 HLA-DRB4 major histocompatibility complex, class ... 1.000000

32334 f at 32334 f at 7316 UBC ubiquitin C 1.000000
32335 r at 32335 r at 7316 UBC ubiquitin C 1.000000

32593 at 32593 at 23180 RFTN1 raftlin, lipid raft linker 1 1.000000
32629 f at 32629 f at 11119 BTN3A1 butyrophilin, subfamily 3, member A1 1.000000

32773 at 32773 at 3117 HLA-DQA1 major histocompatibility complex, class ... 1.000000
33261 at 33261 at NA 1.000000
33627 at 33627 at 5293 PIK3CD phosphatidylinositol-4,5-bisphosphate 3-... 1.000000
33705 at 33705 at 5142 PDE4B phosphodiesterase 4B, cAMP-specific 1.000000
34380 at 34380 at 30968 STOML2 stomatin (EPB72)-like 2 1.000000
34570 at 34570 at 6233 RPS27A ribosomal protein S27a 1.000000

Table 4: Genes annotated to GO:0050852.



GO:0001775

cell activation

0.020725

50 / 442

GO:0002253

activation of immune...

0.147988

31 / 299

GO:0002376

immune system proces...

0.673242

87 / 1050

GO:0002429

immune response−acti...

0.047335

27 / 227

GO:0002520

immune system develo...

0.028161

41 / 357

GO:0002521

leukocyte differenti...

0.002122

33 / 232

GO:0002682

regulation of immune...

0.229746

61 / 650

GO:0002684

positive regulation ...

0.118322

46 / 453

GO:0002694

regulation of leukoc...

0.001453

30 / 200

GO:0002757

immune response−acti...

0.160500

30 / 291

GO:0002764

immune response−regu...

0.115475

37 / 355

GO:0002768

immune response−regu...

0.035032

35 / 301

GO:0006955

immune response

0.657523

60 / 727

GO:0007154

cell communication

0.437678

153 / 1763

GO:0007155

cell adhesion

0.029756

53 / 483

GO:0007159

leukocyte cell−cell ...

0.000299

37 / 243

GO:0007165

signal transduction

0.470791

140 / 1620

GO:0007166

cell surface recepto...

0.570606

82 / 967

GO:0007275

multicellular organi...

0.987597

106 / 1449

GO:0008150

biological_process

1.000000

330 / 3849

GO:0009987

cellular process

0.937089

308 / 3656

GO:0016337

single organismal ce...

0.007181

40 / 318

GO:0022407

regulation of cell−c...

0.000514

28 / 171

GO:0022610

biological adhesion

0.033046

53 / 486

GO:0023052

signaling

0.443871

149 / 1718

GO:0030097

hemopoiesis

0.019300

39 / 328

GO:0030098

lymphocyte different...

0.000617

26 / 156

GO:0030154

cell differentiation

0.917994

89 / 1161

GO:0030155

regulation of cell a...

0.024277

31 / 253

GO:0030217

T cell differentiati...

2.92e−05

25 / 123

GO:0032501

multicellular organi...

0.984136

144 / 1891

GO:0032502

developmental proces...

0.997996

120 / 1681

GO:0034109

homotypic cell−cell ...

0.001404

37 / 263

GO:0034110

regulation of homoty...

3.41e−05

28 / 147

GO:0042110

T cell activation

9.86e−05

36 / 222

GO:0044699

single−organism proc...

0.998947

271 / 3370

GO:0044700

single organism sign...

0.436031

149 / 1716

GO:0044707

single−multicellular...

0.974718

142 / 1848

GO:0044763

single−organism cell...

0.996903

252 / 3153

GO:0044767

single−organism deve...

0.998174

118 / 1660

GO:0045321

leukocyte activation

0.006593

42 / 336

GO:0046649

lymphocyte activatio...

0.002613

39 / 291

GO:0048513

organ development

0.919820

72 / 956

GO:0048518

positive regulation ...

0.826219

146 / 1792

GO:0048534

hematopoietic or lym...

0.031177

39 / 339

GO:0048583

regulation of respon...

0.479982

107 / 1238

GO:0048584

positive regulation ...

0.665342

65 / 788

GO:0048731

system development

0.959056

101 / 1339

GO:0048856

anatomical structure...

0.996463

108 / 1518

GO:0048869

cellular development...

0.932614

92 / 1207

GO:0050776

regulation of immune...

0.183039

47 / 482

GO:0050778

positive regulation ...

0.115475

37 / 355

GO:0050789

regulation of biolog...

0.568280

238 / 2785

GO:0050794

regulation of cellul...

0.679112

224 / 2650

GO:0050851

antigen receptor−med...

0.000405

20 / 104

GO:0050852

T cell receptor sign...

2.87e−05

19 / 80

GO:0050863

regulation of T cell...

9.88e−06

28 / 138

GO:0050865

regulation of cell a...

0.002334

30 / 206

GO:0050896

response to stimulus

0.903076

190 / 2339

GO:0051249

regulation of lympho...

0.000173

30 / 177

GO:0051716

cellular response to...

0.475368

172 / 1994

GO:0065007

biological regulatio...

0.711876

245 / 2900

GO:0070486

leukocyte aggregatio...

0.000189

36 / 229

GO:0070489

T cell aggregation

9.86e−05

36 / 222

GO:0071593

lymphocyte aggregati...

0.000108

36 / 223

GO:0098602

single organism cell...

0.018384

40 / 337

GO:0098609

cell−cell adhesion

0.002967

44 / 341

GO:1903037

regulation of leukoc...

2.99e−05

28 / 146

Figure 6: The subgraph induced by the top 5 GO terms identified by the classic algorithm for scoring GO terms
for enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging
from dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and
red arrows part-of relationships.



GO:0001676

long−chain fatty aci...

GO:0001775

cell activation

GO:0002376

immune system proces...

GO:0002520

immune system develo...

GO:0002521

leukocyte differenti...

GO:0006082

organic acid metabol...

GO:0006629

lipid metabolic proc...

GO:0006631

fatty acid metabolic...

GO:0007155

cell adhesion

GO:0007159

leukocyte cell−cell ...

GO:0007275

multicellular organi...

GO:0007399

nervous system devel...

GO:0007422

peripheral nervous s...

GO:0007423

sensory organ develo...

GO:0008150

biological_process

GO:0008152

metabolic process

GO:0009653

anatomical structure...

GO:0009790

embryo development

GO:0009887

organ morphogenesis

GO:0009987

cellular process

GO:0016337

single organismal ce...

GO:0019752

carboxylic acid meta...

GO:0022008

neurogenesis

GO:0022610

biological adhesion

GO:0030097

hemopoiesis

GO:0030098

lymphocyte different...

GO:0030154

cell differentiation

GO:0030182

neuron differentiati...

GO:0030217

T cell differentiati...

GO:0032501

multicellular organi...

GO:0032502

developmental proces...

GO:0032787

monocarboxylic acid ...

GO:0033077

T cell differentiati...

GO:0033559

unsaturated fatty ac...

GO:0034109

homotypic cell−cell ...

GO:0036109

alpha−linolenic acid...

GO:0042110

T cell activation

GO:0042471

ear morphogenesis

GO:0042474

middle ear morphogen...

GO:0043436

oxoacid metabolic pr...

GO:0043583

ear development

GO:0043651

linoleic acid metabo...

GO:0044237

cellular metabolic p...

GO:0044238

primary metabolic pr...

GO:0044255

cellular lipid metab...

GO:0044281

small molecule metab...

GO:0044699

single−organism proc...

GO:0044707

single−multicellular...

GO:0044710

single−organism meta...

GO:0044763

single−organism cell...

GO:0044767

single−organism deve...

GO:0045321

leukocyte activation

GO:0046649

lymphocyte activatio...

GO:0048468

cell development

GO:0048513

organ development

GO:0048534

hematopoietic or lym...

GO:0048562

embryonic organ morp...

GO:0048568

embryonic organ deve...

GO:0048598

embryonic morphogene...

GO:0048666

neuron development

GO:0048699

generation of neuron...

GO:0048731

system development

GO:0048856

anatomical structure...

GO:0048869

cellular development...

GO:0048934

peripheral nervous s...

GO:0048935

peripheral nervous s...

GO:0070486

leukocyte aggregatio...

GO:0070489

T cell aggregation

GO:0071593

lymphocyte aggregati...

GO:0071594

thymocyte aggregatio...

GO:0071704

organic substance me...

GO:0090596

sensory organ morpho...

GO:0098602

single organism cell...

GO:0098609

cell−cell adhesion

Figure 7: The subgraph induced by the top 5 GO terms identified by the weight algorithm for scoring GO terms
for enrichment. Boxes indicate the 5 most significant terms. Box color represents the relative significance, ranging
from dark red (most significant) to light yellow (least significant). Black arrows indicate is-a relationships and
red arrows part-of relationships.



8 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4, utils

� Other packages: ALL 1.11.0, AnnotationDbi 1.32.0, Biobase 2.30.0, BiocGenerics 0.16.0, DBI 0.3.1,
GO.db 3.2.2, IRanges 2.4.0, RSQLite 1.0.0, Rgraphviz 2.14.0, S4Vectors 0.8.0, SparseM 1.7,
genefilter 1.52.0, graph 1.48.0, hgu95av2.db 3.2.2, lattice 0.20-33, multtest 2.26.0, org.Hs.eg.db 3.2.3,
topGO 2.22.0, xtable 1.7-4

� Loaded via a namespace (and not attached): MASS 7.3-44, XML 3.98-1.3, annotate 1.48.0,
splines 3.2.2, survival 2.38-3, tools 3.2.2

References

Ackermann, M. and Strimmer, K. (2009). A general modular framework for gene set enrichment analysis.
BMC Bioinformatics, 10:47. 10.1186/1471-2105-10-47.

Alexa, A., Rahnenführer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene
expression data by decorrelating go graph structure. Bioinformatics (Oxford, England), 22:1600–1607.
10.1093/bioinformatics/btl140.

Chiaretti, S., et al. (2004). Gene expression profile of adult T-cell acute lymphocytic leukemia identifies
distinct subsets of patients with different response to therapy and survival. Blood, 103(7):2771–2778.

Consortium, G. O. (2001). Creating the Gene Ontology Resource: Design and Implementation. Genome
Research, 11:1425–1433. Cold Spring Harbor Laboratory Press.

Draghici, S., Sellamuthu, S., and Khatri, P. (2006). Babel’s tower revisited: a universal resource for
cross-referencing across annotation databases. Bioinformatics (Oxford, England), 22:btl372v1–2939.
10.1093/bioinformatics/btl372.

Goeman, J. J. and Bühlmann, P. (2007). Analyzing gene expression data in terms of gene sets: methodological
issues. Bioinformatics (Oxford, England), 23:980–987. 10.1093/bioinformatics/btm051.

Grossmann, S., Bauer, S., Robinson, P. N., and Vingron, M. (2007). Improved detection of overrepresentation
of gene-ontology annotations with parent child analysis. Bioinformatics, 23:3024. 10.1093/bioinformat-
ics/btm440.

Yon Rhee, S., Wood, V., Dolinski, K., and Draghici, S. (2008). Use and misuse of the gene ontology
annotations. Nature reviews. Genetics, advanced online publication:509–515. 10.1038/nrg2363.


