
spliceR: An R package for classification of alternative splicing

and prediction of coding potential from RNA-seq data

Kristoffer Knudsen, Johannes Waage

5 Dec 2013

1

Contents

1 Introduction 3
1.1 Alternative splicing classes . 3

2 Cufflinks workflow 3
2.1 Cufflinks gene annotation problem . 4

3 GRanges workflow 5

4 preFiltering 6

5 SpliceR 7

6 PTC-annotation 7

7 GTF export 8

8 Visualizations 9

2

1 Introduction

spliceR is an R package that allows for full isoform classification of transcripts generated by
RNA-seq assemblers such as Cufflinks. spliceR outputs information about classes of alterna-
tive splicing, susceptibility of transcripts to the nonsense mediated decay mechanism (NMD),
and provides functions for export of data to the GTF format for viewing in genome browsers,
and a few plotting functions. spliceR lies at the end of a typical RNA-seq workflow, using
full devoncoluted isoforms generated by assemblers, and supports output of genomic locations
of spliced elements, facilitating downstream analyses on sequence elements.

spliceR stores transcript information in the SpliceRList object, constisting of two
GRanges, ’transcript features’ and ’exon features’. The ’transcript features’ GRanges object
contains meta-columns with additional information about each isoform, including parent gene,
and expression values. The ’exon features’ GRanges contains all exons, with a isoform ID col-
umn, refering back to ’transcript features’. Such a SpliceRList can be generated from a
Cufflinks workflow by using the built-in prepareCuff function, directly reading from a cuffDB
object created by Cufflinks auxiliary package cummeRbund. Alternatively, a SpliceRList can
be generated manually from user-supplied transcript and exon information generated by any
RNA-seq assembler.

Additionally, spliceR provides annotation of transcripts with nonsense mediated decay
susceptibility via annotatePTC(), visualization via spliceRPlot(), generation of GTF files
for genome browsers via generateGTF(), and a few other auxilliary functions.

1.1 Alternative splicing classes

spliceR annotates the ’transcript features’ GRanges with the following splice classes:

� Single exon skipping/inclusion (ESI)

� Multiple exon skipping/inclusion (MESI)

� Intron retention/inclusion (ISI)

� Alternative 5’/3’ splice sites (A5 / A3)

� Alternative transcription start site (ATSS) / transcription termination site (ATTS)

� Mutually exclusive exons (MEE)

2 Cufflinks workflow

Cufflinks is part of the Tuxido suite, a well-documented and well-supported array of tools
for mapping, assembly and quantification of RNA-seq data. At the end of a Tuxido suite
workflow often lies analysis with the cummeRbund package, that converts the output of Tuxido
RNA-seq assembler Cufflinks with the analysis and visualisation power of R. spliceR provides
the prepareCuff() function for easy conversion of cummeRbunds cuffSet class to spliceRs
SpliceRList class. As spliceR requires full information about isoforms and the genomic
coordinate of their constituting exons, the transcript GTF file output by Cufflinks must be
supplied when generating cuffSet object. Here, we use the built-in data set supplied with
cummeRbund to generate a SpliceRList:

3

> library("spliceR")

> dir <- tempdir()

> extdata <- system.file("extdata", package="cummeRbund")

> file.copy(file.path(extdata, dir(extdata)), dir)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> cuffDB <- readCufflinks(dir=dir,

+ gtf=system.file("extdata/chr1_snippet.gtf", package="cummeRbund"),genome="hg19" ,rebuild=TRUE)

> cuffDB_spliceR <- prepareCuff(cuffDB)

The SpliceRList is a list, containing two GRanges objects, transcript_features and
exon_features, containing information about the genomic coordinates and transcript and
gene identifiers of transcripts and their constituent exons, respectively. Using prepareCuff()

creates additional metacolumns in the transcript_features GRanges object, allowing for
further filtering later in the spliceR workflow. In addition, the SpliceRList object contains
information about the sample names, the source of the data, any filters applied, and other
data used by spliceR.

A number of helper functions are provided to extract the transcript and exon GRanges,
as well as the sample names:

> myTranscripts <- transcripts(cuffDB_spliceR)

> myExons <- exons(cuffDB_spliceR)

> conditions(cuffDB_spliceR)

[1] "iPS" "hESC" "Fibroblasts"

Once the have the SpliceRList object ready, it can be further annotated with alternative
splicing classes, using, spliceR(), or with information about the coding potential of each
transcript with annotatePTC()

2.1 Cufflinks gene annotation problem

Cufflinks uses an internal ’gene id’. This gene id is, according to the official manual, ’a
unique identifier describing the gene’ . But upon investigation we have found that many
Cufflinks gene ids actually contain multiple annotated genes. To our knowledge this problem
is most visible when running Cufflinks/Cuffdiff with the Ensembl/Gencode as reference tran-
scriptome, using an unstranded RNA-seq experiment. Under these conditions we find that
200-400 (2-4 percent of all) cuffgenes consists of multiple annotated genes. Our hypothesis is,
that the problem arises because there are long Ensembl transcripts spanning the intragenic
regions between these genes, thereby tricking Cufflinks into thinking that all transcripts,
which originates from this region, must belong to the same gene. The global effect of the
Cufflinks annotation problem is that the expression levels of all these individual genes are
wrong, since the expression level is an average over a couple of genes. This in turns also af-
fects the differential expression analysis of the genes. The Cufflinks annotation problem does
however only affect the expression level of genes, meaning that both transcript expression
levels and differential expression tests of these are unaffected by this problem.

4

Our (crude) solution to this problem is to: 1) Identify all affected genes 2) Create a new
cuffgene for each real annotated gene within the cuffgenes 3) Recalculate the gene expression
according to the new assignment of transcript 4) Set significance test to be negative

This should correct gene expression and remove false positive differentially expressed
genes. This setting (The ’fixCufflinksAnnotationProblem’ setting in prepareCuff()) is on by
default.

3 GRanges workflow

For RNA-seq data from other transcripts assemblers than Cufflinks, a SpliceRList can easily
be manually created, by supplying the class constructor with transcript and exon GRanges.
In the following example, a public available transcript and exon model set is downloaded, and
expression and p-values between samples are set to faux values to simulate generic RNA-seq
assembled data.

First, the UCSC knownGene transcript table is downloaded from the UCSC repository:

> session <- browserSession("UCSC")

> genome(session) <- "hg19"

> query <- ucscTableQuery(session, "knownGene")

> tableName(query) <- "knownGene"

> cdsTable <- getTable(query)

Next, we download the kgXref table from UCSC, contaning the link between transcript
IDs and gene IDs.

> tableName(query) <- "kgXref"

> kgXref <- getTable(query)

The GRanges containing the transcript features is created (setting faux gene expression,
fold change and p values), fetching the gene names from the kgXref table:

> knownGeneTranscripts <- GRanges(

+ seqnames=cdsTable$"chrom",

+ ranges=IRanges(

+ start=cdsTable$"txStart",

+ end=cdsTable$"txEnd"),

+ strand=cdsTable$"strand",

+ spliceR.isoform_id = cdsTable$"name",

+ spliceR.sample_1="placeholder1",

+ spliceR.sample_2="placeholder2",

+ spliceR.gene_id=kgXref[match(cdsTable$"name", kgXref$"kgID"),

+ "geneSymbol"],

+ spliceR.gene_value_1=1,

+ spliceR.gene_value_2=1,

+ spliceR.gene_log2_fold_change=log2(1/1),

+ spliceR.gene_p_value=1,

+ spliceR.gene_q_value=1,

5

+ spliceR.iso_value_1=1,

+ spliceR.iso_value_2=1,

+ spliceR.iso_log2_fold_change=log2(1/1),

+ spliceR.iso_p_value=1,

+ spliceR.iso_q_value=1

+)

The GRanges containing the exon features is created:

> startSplit <- strsplit(as.character(cdsTable$"exonStarts"), split=",")

> endSplit <- strsplit(as.character(cdsTable$"exonEnds"), split=",")

> startSplit <- lapply(startSplit, FUN=as.numeric)

> endSplit <- lapply(endSplit, FUN=as.numeric)

> knownGeneExons <- GRanges(

+ seqnames=rep(cdsTable$"chrom", lapply(startSplit, length)),

+ ranges=IRanges(

+ start=unlist(startSplit)+1,

+ end=unlist(endSplit)),

+ strand=rep(cdsTable$"strand", lapply(startSplit, length)),

+ spliceR.isoform_id=rep(knownGeneTranscripts$"spliceR.isoform_id",

+ lapply(startSplit, length)),

+ spliceR.gene_id=rep(knownGeneTranscripts$"spliceR.gene_id",

+ lapply(startSplit, length))

+)

Finally, a SpliceRList object is created from both GRanges, setting assembly, source,
and coditions :

> knownGeneSpliceRList <- SpliceRList(

+ transcript_features=knownGeneTranscripts,

+ exon_features=knownGeneExons,

+ assembly_id="hg19",

+ source="granges",

+ conditions=c("placeholder1", "placeholder2")

+)

4 preFiltering

Datasets produced by e.g. Cufflinks in multi-sample setups can quickly become very large, as
all pairwise combinations are considered. Many genes and transcripts reported by Cufflinks
are based on reference GTF files provided at run time, and may not be expressed in any or
all samples.

Similarly, Cufflinks may not have confidence in all reported transcripts, marking these
models as ’FAIL’ or ’LOW DATA’. Filtering these genes and transcripts out of the SpliceRList
before running spliceR() and downstream analyses may decrease runtimes considerably.

Given here is an example of a prefiltering step, using standard filters. For more on these
filters, refer to the help page for spliceR(). NB: Note that preSpliceRFilter() reports the

6

number of total pairwise comparison, while spliceR() reports the total number of unique
isoforms.

> #cuffDB_spliceR_filtered <- preSpliceRFilter(

> # cuffDB_spliceR,

> # filters=c("expressedIso", "isoOK", "expressedGenes", "geneOK")

> #)

5 SpliceR

spliceR() takes a SpliceRList object and annotates the isoforms contained within with
classes of alternative splicing, as well as a few other metacolumns - data could be generated
either by prepareCuff() or manually, via a GRanges object. The compareTo parameter,
set to either ’preTranscript’ or a given sample, tells spliceR() how to sort out isoform
comparisons when classifying events. Using the ’preTranscript’ parameter, spliceR() creates
a hypothetical pre-RNA based on all isoforms for each unique gene id, aggregating all exon
information. Each isoform is then compared to this construct when classifying. Giving a
sample name urges spliceR() to consider the major isoform (in terms of isoform expression
relative to the total gene expression) of that sample as the primary RNA, comparing each
isoform to this reference when classifying.

spliceR() can be given a number of filters to reduce the overall data size and running
time. Most of these filters are only relevant when running on data from cufflinks, as this
software generates additional information for each transcript and gene, indicating the overall
robustness and confidence in the models. A typical call to spliceR() is shown below, setting
common filters and setting the reference to the pre-RNA. For details on all the filters, refer
to the help page for spliceR().

> #Commented out due to problems with vignettes and progress bars.

> mySpliceRList <- spliceR(

+ cuffDB_spliceR,

+ compareTo="preTranscript",

+ filters=c("expressedGenes","geneOK", "isoOK", "expressedIso", "isoClass"),

+ useProgressBar=F

+)

Typical runtime for < 100.000 transcripts for 4 samples on a contemporary workstation
should be in the vicinity of 1.5-2 hours. After spliceR() is done, the transcriptFeatures

GRanges is populated with several additional columns. These include columns for isoform
fraction values (IF) and delta IF. Each splicing class gets a column, indicating how many
events of a given class was detected for the respective transcripts. Finally, the ”analyzed”
columned indicates whether this transcript was carried through filtering.

6 PTC-annotation

annotatePTC() takes a SpliceRList object, a BSGenome sequence object and a CDSList

object. The BSGenome sequence object can be downloaded and installed from Bioconductor,

7

and the assembly and chromosome names herein should match the assembly used for mapping
with Cufflinks or any other RNA-seq assembler (e.g. BSgenome.Hsapiens.UCSC.hg19 or
BSgenome.Mmusculus.UCSC.mm9). The CDSList object is generated using getCDS(), which
takes a assembly and gene track names, and automatically retrieves CDS information from the
UCSC Genome Browser table (internet connection required). Alternatively, a CDSList object
can be created manually with a CDS table of choice (refer to ?CDSList for more information).
Using the CDSList and the BSGenome object, annotatePTC() retrieves genomic sequence for
all the exons contained in the SpliceRList exon_features GRanges, and iterates over each
transcript in the transcript_features GRanges, concatenating exons, and translating the
transcript with a compatible CDS. If more than one compatible CDS is found, the most
upstream is used. For each transcript, the transcript_features GRanges is annotated with
stop codon position (in mRNA coordinates), stop codon exon (where 0 is the last exon, -1
is the second last exon and so forth), distance to the final exon-exon junction (in mRNA
coordinates), and the genomic location of the used CDS. If no CDS is found, the columns are
set to NA. Finally, transcripts are annotated with TRUE/FALSE with respect to nonense
mediated decay (NMD) sensitivity; this parameter is set to a default of 50 (meaning, that
transcripts with STOPs falling more than 50 nt from the final exon-exon junction, and not
in the final exon), but can be changed at runtime. Here follows a typical workflow for
annotatePTC():

> ucscCDS <- getCDS(selectedGenome="hg19", repoName="UCSC")

> require("BSgenome.Hsapiens.UCSC.hg19",character.only = TRUE)

> #Commented out due to problems with vignettes and progress bars.

> #PTCSpliceRList <- annotatePTC(cuffDB_spliceR, cds=ucscCDS, Hsapiens,

> # PTCDistance=50)

7 GTF export

After running assembly with cufflinks or another assembler, and perhaps spliceR() and/or
annotatePTC(), visualization of trancripts in genome browsers is often helpful. To facilitate
this, spliceR provides the generateGTF function. generateGTF() generates a GTF for each
sample, and allows for filtering of transcripts, identical to the filters used in spliceR() and
annotatePTC(). Furthermore, generateGTF() color codes transcripts according to expres-
sion. The exact scoring method is set by the parameter scoreMethod - ”local” scores tran-
scripts relative to the transcript most highly expressed within each unique gene identifier, and
”global” scores transcripts in relation to the whole sample. A typical call to generateGTF()

could look like this:

> generateGTF(mySpliceRList, filters=

+ c("geneOK", "isoOK", "expressedGenes", "expressedIso"),

+ scoreMethod="local",

+ useProgressBar=F)

GTF-files are output to the current working directory, and are names according to sample
names, with the filePrefix argument added to each file.

8

8 Visualizations

After running spliceR(), annotating the spliceRlist object with information about alterna-
tive splicing events. the spliceRPlot() function can be used for initial data exploration.
spliceRPlot() generates a range of Venn diagrams, with one circle per condition, analyzing
different aspects of the data.

The spliceRPlot() function have two layers of control. Firstly the user can control
what data is used for the plots by the two parameters expressionCutoff and filters. Since the
fundamental purpose of the Venn diagrams is to distinguish between transcripts expressed
in the different conditions, the expressionCutoff parameter is used to control at what cutoff
is regarded as being expressed. Next spliceRPlot() have, like the other core functions of
spliceR, a filtering argument, accessed by the filters parameter, which allows for selective
subsetting of the data.

Since filtering data preparation and conversion might take a couple of minutes, spliceR-
Plot() returns a spliceRlist object, where intermediate data structures have been stored,
which enables the user to skip this step if another plot is made. If the user which to change
the expressionCutoff or the filters parameter, the reset argument should be set to TRUE.

The second layer of control is to determine what is actually plotted. There are a number of
options available through the evaluate parameter, ranging from the number of genes expressed
in each of the condition, to the average number of alternative splicing events found in the
transcripts expressed in the different conditions. Furthermore the ”asType” parameter allows
the user to specify a subtype of alternative splicing to evaluate.

> #Plot the average number of transcripts pr gene

> mySpliceRList <- spliceRPlot(mySpliceRList,

+ evaluate="nr_transcript_pr_gene")

9

1.96

1.14

1

1.13

1.2

1.17

1.14

iPS hESC

Fibroblasts

Number of transcript per gene

spliceR venn diagram

> #Plot the average number of Exon skipping/inclucion evens pr gene

> mySpliceRList <- spliceRPlot(mySpliceRList, evaluate="mean_AS_transcript",

+ asType="ESI")

10

0.35

0.5

0.4

0.88

0.41

0.59

0.46

iPS hESC

Fibroblasts

Average number of ESI AS events per transcript

spliceR venn diagram

> #Plot the average number of Exon skipping/inclucion evens pr gene,

> #but only using transcripts that are significantly differntially expressed

> mySpliceRList <- spliceRPlot(mySpliceRList, evaluate="mean_AS_transcript",

+ asType="ESI", filters="sigIso",reset=TRUE)

11

0.21

0.38

0

1.5

0.36

0.15

0.44

iPS hESC

Fibroblasts

Average number of ESI AS events per transcript

spliceR venn diagram

> sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid stats4 parallel stats graphics grDevices utils

[8] datasets methods base

other attached packages:

[1] BSgenome.Hsapiens.UCSC.hg19_1.4.0 BSgenome_1.38.0

12

[3] Biostrings_2.38.0 XVector_0.10.0

[5] spliceR_1.12.0 plyr_1.8.3

[7] RColorBrewer_1.1-2 VennDiagram_1.6.16

[9] futile.logger_1.4.1 cummeRbund_2.12.0

[11] Gviz_1.14.0 rtracklayer_1.30.0

[13] GenomicRanges_1.22.0 GenomeInfoDb_1.6.0

[15] IRanges_2.4.0 S4Vectors_0.8.0

[17] fastcluster_1.1.16 reshape2_1.4.1

[19] ggplot2_1.0.1 RSQLite_1.0.0

[21] DBI_0.3.1 BiocGenerics_0.16.0

loaded via a namespace (and not attached):

[1] SummarizedExperiment_1.0.0 VariantAnnotation_1.16.0

[3] splines_3.2.2 lattice_0.20-33

[5] colorspace_1.2-6 GenomicFeatures_1.22.0

[7] XML_3.98-1.3 survival_2.38-3

[9] foreign_0.8-66 BiocParallel_1.4.0

[11] lambda.r_1.1.7 matrixStats_0.14.2

[13] stringr_1.0.0 zlibbioc_1.16.0

[15] munsell_0.4.2 gtable_0.1.2

[17] latticeExtra_0.6-26 Biobase_2.30.0

[19] biomaRt_2.26.0 AnnotationDbi_1.32.0

[21] proto_0.3-10 Rcpp_0.12.1

[23] acepack_1.3-3.3 scales_0.3.0

[25] Hmisc_3.17-0 Rsamtools_1.22.0

[27] gridExtra_2.0.0 digest_0.6.8

[29] stringi_0.5-5 biovizBase_1.18.0

[31] tools_3.2.2 bitops_1.0-6

[33] magrittr_1.5 RCurl_1.95-4.7

[35] dichromat_2.0-0 Formula_1.2-1

[37] cluster_2.0.3 futile.options_1.0.0

[39] MASS_7.3-44 rpart_4.1-10

[41] GenomicAlignments_1.6.0 nnet_7.3-11

13

