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1 Before you start

If you are completely new to the R/Bioconductor [1] packages dealing with Next-Generation Sequencing,
you might want to start by doing the tutorial available in the RnaSeqTutorial vignette in the data package
RnaSqTutorial . The same holds true if you’re interested in understanding the details behind the content
of the present vignette. If neither nor, just go ahead.

Moreover, if you find easyRNASeq useful and apply it in the frame of your research for a publication,
please cite it:

easyRNASeq: a bioconductor package for processing RNA-Seq data
Nicolas Delhomme; Ismael Padioleau; Eileen E. Furlong; Lars M. Steinmetz
Bioinformatics 2012; doi: 10.1093/bioinformatics/bts477

2 Changes to the vignette

The last changes are reported in red.

1.8.4 Converted an existing paragraph on annotation warning(s) into a section to add additional details
- see section 4.2 (page 7). Extended the first use case on synthetic transcript generation - see section 7.1
(page 25) - to introduce how to check for annotation overlaps. Added another section detailing input file
characteristics and their impact on counting - see section 4.4 (page 8). Finally, started a FAQ section - see
section 8 (page 35).

1.8.2 Added a use case that describes how to create a set of ”gene models” in a manner more efficient
than the current implementation within the package. As ”gene model” can actually have different mean-
ings depending on the context, I switched to call these synthetic transcripts; i.e. what we create really
are synthetic transcripts combining all exons of their corresponding gene. See the use case in section
7.1 (page 25) for how this is performed. This example was first introduced at the EMBO 2013 Prac-
tical Course: Analysis of High Throughput Sequencing Data, see http://www.ebi.ac.uk/training/course/
embo-practical-course-analysis-high-throughput-sequencing-data-1 for the lectures (there are links in the
time-table) and here for my materials: https://umu.box.com/s/f37nl4u1p0fj4m58dxxm.

1.3.14 A new section: 6 was added describing foreseen changes to the package, see page 24. Additional
changes to the vignette use-case where made thanks to Richard Friedman’s suggestions, see section 7.2,
page 27.

1.3.10 - 1.3.13 Some vignette discrepancies have been corrected. Thanks to Richard Friedman for
spotting them, see paragraph 4.2, page 7. Some additional information about the ’gtf’ and ’gff’ format
has been added after fixing the bug reported by Tomasz Kulinski. See section 4.1, page 6.

1.3.9 Not much change to the vignette, but for the fact that the easyRNASeq application note got
published in Bioinformatics [2].

http://bioconductor.org/packages/release/data/experiment/html/RnaSqTutorial.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://www.ebi.ac.uk/training/course/embo-practical-course-analysis-high-throughput-sequencing-data-1
http://www.ebi.ac.uk/training/course/embo-practical-course-analysis-high-throughput-sequencing-data-1
https://umu.box.com/s/f37nl4u1p0fj4m58dxxm
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
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1.3.5 - 1.3.8 The vignette has been updated to report function call changes to the easyRNASeq function:

• the format argument defaults to bam
• the chr.sizes can be derived from the bam file header
• the addition of the knownOrganisms function
• support for variable length reads
• read files can be processed in parallel

Sections affected are: 4.1 (page 6), 4.3 (page 8), 4.3 (page 8), 4.5 (page 11), 4.10 (page 19),7.2 (page
27),7.3 (page 31)

1.3.1 - 1.3.4 The vignette has been updated to:

• first: enhance its readability.
• second: introduce a new Use Case section

Sections affected are: 4 (page 6), 4.1 (page 6), 4.4 (page 9), 4.6 (page 12), 5.1 (page 20), 7 (page 25)
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3 Introduction

The present document describes the use of the easyRNASeq package to ease the processing of RNA-seq
data in R/Bioconductor . RNA-seq [3] was introduced as a new method to perform Gene Expression Anal-
ysis, using the advantages of the high throughput of Next-Generation Sequencing (NGS) machines.

The goal of this vignette is, first, to show an example of the easyRNASeq function that generates a count
table for the selected genic features of interest, i.e. exons, transcripts, gene models, etc. using the read
data and the genic and genomic annotations. This overall process is described in figure 1, page 5. Shortly,
the genomic and genic annotation will be retrieved from the selected/preferred source and converted into
a RangedData object. In parallel, the sequenced reads’ information (e.g. chromosome, position, strand,
etc.) will be retrieved from the alignment file and, similarly, converted to a GRanges object. Then, reads
contained in the reads GRanges object are summarized per genic annotation contained in the annotation
RangedData object, which give raise to a count table that, finally, can be corrected or normalized using
additional R packages.

Second, the easyRNASeq function arguments are detailed and additional information given on how to cor-
rect data for visualization, using RPKM (Reads Per Kilobase of feature per Million reads in the library)
counts. Normalization can be performed by using appropriate statistical models implemented e.g. in the
DESeq or edgeR packages. comment: For the reasons why I call RPKM a correction and not a normaliza-
tion, see [4].

In a third part, more advanced pre-processing is described, i.e. de-multiplexing. Note that this step has
become a standard procedure in most sequencing facilities and hence is bound to be deprecated as a func-
tion in the easyRNASeq package in a few release cycles.

Finally, additional post-processing such as exporting the count table as bed and wig formatted file, to be
visualized into the UCSC genome browser or a stand alone genome browser are described in the vignette of
the companion data package RnaSqTutorial . Note that the information in this tutorial is getting quickly
outdated given the pace of evolution of the NGS field in general. The basic information it contains are
perfectly correct though. A newer version of that tutorial is in preparation.

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/data/experiment/html/RnaSqTutorial.html
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Figure 1: easyRNAseq Overview. The R packages used for the different steps are emphasized in bold face.
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4 easyRNASeq

Throughout this vignette, the data present in the RnaSeqTutorial data package will be used to demonstrate
functionalities. Refer to its documentation for more details; but shortly, it contains different Drosophila
melanogaster RNA-Seq dataset saved in different format as well as the related annotation retrieved from
FlyBase [5].

The main function of the easyRNASeq package is easyRNASeq. That should be the only processing
method you need to know about when using the package. It is essentially a wrapper around other func-
tions performing the different tasks described in Figure 1. These functions are also exported, if you feel
you need to have a look at them. The easyRNASeq package defines an RNAseq class for holding the
necessary information used during the processing. The easyRNASeq function instantiates an object of that
class and although most arguments to this function are optional, it is advised to set them - especially
the readLength and the organismName - to document your analysis. The organismName argument is
actually mandatory if you want to retrieve genomic annotation using biomaRt; in which case, you need
to provide the name as specified in the corresponding BSgenome package, i.e. “Dmelanogaster” for the
BSgenome.Dmelanogaster.UCSC.dm3 package.

warning: As there are numerous RNA-Seq protocol, each with its own specificities, the easyRNASeq function
has a large number of arguments to cope with these. This number of arguments, with only a few defaults
values might be intimidating but we are in the process of consolidating them. Meanwhile, please refer to
the documentation and the examples in this vignette and the RnaSqTutorial one to get familiar with them.
Do not hesitate to ask on the Bioconductor mailing list if the purpose of some argument were still unclear.

4.1 usage

Initial example In the following, the easyRNASeq function is called with an almost minimal set of
parameters - a few optional ones too. . . The sequencing reads’ excerpts used here were obtained from 4
fruit-fly samples subjected to a 36 cycles sequencing on an Illumina GAIIx machine. The annotation were
retrieved from FlyBase and converted into an “Rdata” object.
Here, we’re interested in retrieving the count table of these 4 samples for every exon in the genome.

> library(easyRNASeq)

> library(RnaSeqTutorial)

> count.table <- easyRNASeq(filesDirectory=system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ pattern="[A,C,T,G]{6}\\.bam$",

+ readLength=30L,

+ organism="Dmelanogaster",

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons"

+ )

Checking arguments...

Fetching annotations...

http://bioconductor.org/packages/release/data/experiment/html/RnaSeqTutorial.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/release/data/experiment/html/RnaSqTutorial.html
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Summarizing counts...

Processing ACACTG.bam

Processing ACTAGC.bam

Processing ATGGCT.bam

Processing TTGCGA.bam

Preparing output

> head(count.table)

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

CG11023:1 0 0 0 0

CG11023:2 0 0 0 0

CG11023:3 0 0 0 1

CG2671:1 0 0 0 0

CG2671:2 1 0 0 1

CG2671:3 13 8 11 12

> dim(count.table)

[1] 69306 4

In this usage of the easyRNASeq function, we’re reading bam files (the default format argument), present
in the directory passed as first argument to the function (the filesDirectory argument) using a regular
expression to match the file names (pattern argument). The system.file function retrieves the actual
path on your file system where the RnaSeqTutorial package was installed and in that particular case of its
“extdata” sub-directory. The pattern used to retrieve the files is similar to that of the base functions dir

and grep. Here we look up files, which name contains 6 times one of the“A”,“C”,“G”or“T”letter, followed
by the“.bam”extension. comment: Note the use of the $ sign at the end of the regular expression to signify
that the filename to be matched has to end after ’.bam’. This way we prevent fetching the BAI (the BAM
index) files. Additionally, the number of sequencing cycles (readLength) and the organism that sample
originates from, both optional here are detailed. Then the genomic and genic information is provided: the
exons’ annotation (annotationFile argument), which were already processed into an “RData” file (the
annotationMethod argument). Finally, we precise that we want the sequenced reads to be summarized
by “exons”; i.e. we want to get a read count value per exon and per sample.
And that is all. In that one command, you got the exon count table for your 4 samples!

4.2 warnings

warning: As you could see when running the previous example, warnings were emitted and quite rightly
so.

1. about the annotation: The annotation used here is redundant at two levels. First, some exons
overlap; these are alternative exons from splice variants. Second, the annotation contains every
splice variants, hence some exons are duplicated. Therefore counting by exons or transcripts using
this annotation results in counting several reads many times and for that reason a warning is emitted,
as multiple countingmay be a very significant source of error. The ideal solution is to provide an
annotation object that contains no overlapping features, see the use case in section 7.1 (page 25) for
an approach to reduce/control these annotation related issues. Consult as well the section 4.4 (page
8) for related counting issues.

2. about potential naming issue in the input file: It is not infrequent that sequencing facilities use
variable naming conventions for chromosomes in comparison to those generally globally accepted for
the corresponding organism. Therefore, is it not infrequent that the globally available annotation
uses different chromosome names than those reported in the alignment files.

http://bioconductor.org/packages/release/data/experiment/html/RnaSeqTutorial.html
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These warnings are there to inform you about these potential issues, as they affect the accuracy of asso-
ciating reads with genic or genomic features. As often misconceived, read count is not an easy task; see
section 4.4 (page 8) and [6] for more details.

4.3 arguments

Going back to the easyRNASeq function, more arguments can be set to fine tune it, depending on the
input at hand, the desired output, etc. Most will be detailed in the following, but not all, so check out
?easyRNASeq for more. One such argument is: filenames, that offers the possibility to give actual
filenames rather than using a pattern matching approach to find the alignment files. For example, if you’re
only interested in two samples out of the four previously used ones, you could do:

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam"))

Several arguments influence the easyRNASeq function. These can be grouped in 5 categories concerning:

• the input
• the annotations
• the counts summarization
• the output
• the optional correction/normalization

Input Using the format argument, reads can be loaded from BAM files (default) or any format supported
by the ShortRead [7] package. The SAM/BAM format [8] is becoming a de-facto standard for storing
NGS aligned data. Gapped alignment can be read from BAM files, set the gapped argument to“TRUE”for
that. comment: Note that as BAM is now the standard for storing read alignments, easyRNASeq support
of other formats - through the use of ShortRead will be abandoned in a few release cycles.

4.4 Critical information regarding the input

warning: As previously mentioned, associating reads with features is not straightforward, and numerous
factors have to be taken into account that affect the counting accuracy. First, it is critical to know what
alignments where reported by the aligner used. Does the alignment file contains multi-mapping reads; i.e.
are reads aligning to numerous loci reported? Second, it is also critical to understand the gene’s annotation
in detail. Is it from a well-established model organism? Are there many splicing isoforms reported per
gene? How do these differ; do they have different exons, different UTRs, etc. ? Understanding pitfalls
and caveats from both will help you decide what settings are required within the frame of your experiment.
In most common RNA-Seq experiment, the goal is to look for differential expression between 2 conditions
within one organism. The most stringent approach to that is:

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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1. to use only uniquely mapping reads and discarding others - this is the approach taken by e.g. HTSeq;
see http:// www-huber.embl.de/ users/ anders/ HTSeq/ doc/ overview.html.

2. to ensure that reads can be assigned to a single feature only - i.e. when a read cannot be confidently
assign to a feature; e.g. if a read locus overlap two genes either neighbouring or on opposite strand
- discard them. This can be achieved by 2 means, either by assigning reads to features first and then
filtering the results or filtering the annotation prior to assigning the reads to prevent any such feature
overlap.

As of now, it is important to know that easyRNASeq just reports warnings if these conditions are unmet.
Obtaining the correct set of alignments for your analysis is specific to your aligner of choice and hence
cannot be described here. Obtaining a set of synthetic transcripts that would fully remove or diminish the
occurence of ambiguous read assignment is detailed in the first use case of this vignette, see section 7.1
(page 25).

Annotation The easyRNASeq function currently accepts the following annotationMethods:

• “biomaRt” use the biomaRt [9] package to retrieve the annotation
• “env” use a RangedData or GRangesList class object present in the environment - see page 30 for a

use case.
• “gff” reads in a gff version 3 file
• “gtf” reads in a gtf file as provided by Ensembl [10]
• “rda” load an RData object. The object needs to be named gAnnot and of class RangedData or

GRangesList. See the use case page 29 to prepare such an object using the GenomicFeatures. “.rda”
is the filename extension of serialized R data object (i.e. object written to disk using the save

function). The filename extension for these files used to be and still is sometimes“.RData”. The
actual filename extension used is of no importance to easyRNASeq - see page 29 for a use case.

The structure of the RangedData object that has to be provided when using the “rda” or “env” annota-
tionMethods is described in the section 4.6 (page 12). For using a GRangesList, see the use case page
29. More details on the gff3 and gtf format can be obtained from:

• gff3: http://www.sequenceontology.org/gff3.shtml
• gtf: http://mblab.wustl.edu/GTF22.html

Unlike for the gtf, the gff3 ninth column holding the attributes has no mandatory tags. Some of them are
however“predefined”. As exemplified further down (see 4.6, 12), we expect these“predefined”attributes to
be used and we rely on the“ID”,“Parent”and“Name”to identify the relation between a gene and its exons
and transcripts.

Summarization The reads can be counted/summarized by:

• exons
• features (any features such as introns, enhancers, etc.)
• transcripts
• geneModels: they consists of the set of disjoint“synthetic”exons that fully overlap every known exons

and UTRs of a gene; I.e. every alternate exon will be split into separate “synthetic” exons and these
exons will be grouped into a set that correspond to a single gene.

When you use the “geneModels” summarization, no reads will be counted twice at the exception of those
mapping overlapping exons of different genes, whether on the same strand or not. The easyRNASeq

function does not deal with these situation as it does not yet support stranded reads, hence as previously
a warning will be emitted if this occurs. The implementation of the geneModel generation is actually
outdated - it is rather slow - and is being re-implemented as described in section 7.1 (page 25). Note that
the geneModel summarization as it is now, is deprecated.

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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Output The results can be exported in five different formats:

• count table (the default, a n (features) x m (samples) matrix).
• a DESeq [11] CountDataSet class object. Useful to perform further analyses using the DESeq

package.
• an edgeR [12] DGEList class object. Useful to perform further analyses using the edgeR package.
• an RNAseq class object. Useful for performing additional pre-processing without re-loading the reads

and annotations.
• as an instance of the RangedSummarizedExperiment class. See section 6 (page 24) for additional

details.

Correction The results can optionally be“corrected”as Reads per Kilobase of feature per Million reads in
the library (RPKM, [3]), useful for visualization but not for differential expression, see []. comment: Note
that the vst and voom approaches from the DESeq2 and limma packages, respectively offer more powerful
approaches for correcting the data prior to visualization. These will be included in future version of the
easyRNASeq package.

Normalization The normalization step is also available when the results are exported in the DESeq or
edgeR formats. This generates plots to assess the validity of the normalization and help decide how to
proceed with any downstream analysis.

http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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4.5 different input

The default input format of the easyRNASeq function is the BAM format, as exemplified before. It does
at the moment support older formats through the ShortRead package, but as BAM is nowadays standard,
this support will eventually be phased out in a few release cycles.

In the first example, we read a BAM file containing gapped alignments. In that particular case, TopHat
[13] was used to look for splicing events. Note the use of the gapped boolean argument.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ gapped=TRUE,

+ count="exons",

+ filenames="gapped.bam")

The next example show how to load an Illumina ’export’ file, which was Illumina’s default output before
the CASAVA v1.8 release in spring 2011. The format argument is set to“aln”and an additional argument:
type is provided that precise the input file format. See the ShortRead readAligned help page for all
available formats. A final argument: the filter argument, essential to filter usable reads is also given.
This argument is crucial as export files contain every read, including those not aligning and those not
passing the original quality filter performed during the Illumina Base Calling, a.k.a. the chastity filter.
For more details, see the section “Filtering the Data” in the RnaSqTutorial vignette. Finally, also note
the chr.sizes argument; it precises the sizes of the chromosomes using a named integer vector.Indeed,
these cannot be determined programatically unlike for the BAM format where the chromosome sizes can
be extracted from the header.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ chr.sizes=seqlengths(Dmelanogaster),

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="aln",

+ type="SolexaExport",

+ count="exons",

+ pattern="subset_export",

+ filter=compose(

+ chromosomeFilter(regex="chr"),

+ chastityFilter()))

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/data/experiment/html/RnaSqTutorial.html
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4.6 different annotation

This sections describes how to use different annotation sources to retrieve genic information. It also
describes the expected format of these annotations.

comment: Important Note: there are many derivative of the GFF3 and GTF file formats, some of which not
strictly applying the convention these files should implement. Using incorrectly formatted file is bound to
fail, but most of the time a relevant error message will be reported. GTF files as produced by e.g. Ensembl
and GFF3 files as produced by e.g. Flybase are correct implementation of these formats. If you encounter
problems with an annotation file, please try first to locate and correct them. For the GFF format, the
example file present in the RnaSqTutorial package can be used as a reference. If you have installed this
package the following gives you that gff file path on your machine:

> system.file(

+ "extdata",

+ "Dmel-mRNA-exon-r5.52.gff3",

+ package="RnaSeqTutorial")

comment: If you do not manage to identify the issue, please contact the Bioconductor mailing list for help.

biomaRt The following is an example of how to use biomaRt to retrieve annotation.

> rnaSeq <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=36L,

+ annotationMethod="biomaRt",

+ gapped=TRUE,

+ count="exons",

+ filenames="gapped.bam",

+ outputFormat="RNAseq")

Once the annotation is fetched, it can be retrieved provided that the outputFormat argument was set to
RNAseq. This implies a complete S4 object of class RNAseq is returned and not only the count table (see
4.7 (page 15) for details on the different output). The genomicAnnotation accessor allows then to access
the annotation stored in the RNAseq object.

> gAnnot <- genomicAnnotation(rnaSeq)

The gAnnot - of class RangedData - can then be saved in a ’.rda’ file for a faster re-processing using the
easyRNASeq function with the arguments annotationMethod and annotationFile set to ”rda” and to
the ’rda’ filepath, respectively. comment: Note, however that it is necessary to save that object under the
name“gAnnot”. Finally, it would be important to pre-process that new annotation in the manner described
in section 7.1 (page 25) for reason described in section 4.4 (page 8)

genomeIntervals The next example shows how to perform the same provided that you have a gtf or gff3
formatted file at hand. While the gtf format is more constrained, gff formatted file will likely have varying
gff attributes (its ninth last column). This column contains “key=value” pairs separated by semi-colons.
We depend on specific keys to be present and these are ID, Parent, and Name, all strongly suggested by
the gff3 format specification. When parsing a gff3 file, we’re only considering feature of type ’exon’ (the
gff3 third column). Then, we expect the ID key to have the format: geneID:exonNumber ; both the exon
and gene annotation being derived from it. The Parent key should contain the transcript ID. If one exon
is part of several transcripts, these can be concatenated using commas without space. Finally, the Name

http://bioconductor.org/packages/release/data/experiment/html/RnaSqTutorial.html
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key should contain the gene name, but its presence is actually facultative for the processing. As we are
using the readGff3 function from the genomeIntervals package, it is as well essential that the key=value
pairs are separated by semi-colons whitout space. Have a look at the ’annot.gff’ file used in the next code
chunck for an example of a gff3 file formatted as the easyRNASeq expects it.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=36L,

+ annotationMethod="gff",

+ annotationFile=system.file(

+ "extdata",

+ "Dmel-mRNA-exon-r5.52.gff3",

+ package="RnaSeqTutorial"),

+ gapped=TRUE,

+ count="exons",

+ filenames="gapped.bam")

RangedData Internally, the easyRNAseq function converts the retrieved annotation - when executed with
the annotationMethod argument“gff”,“gtf”, or“biomaRt”- into an object of the RangedData class. Using
the annotationMethod argument “env” or “rda” requires that you provide such an object. The following
example shows the expected structure of that object.

> library(IRanges)

> gAnnot <- RangedData(

+ IRanges(

+ start=c(10,30,100),

+ end=c(21,53,123)),

+ space=c("chr01","chr01","chr02"),

+ strand=c("+","+","-"),

+ transcript=c("trA1","trA2","trB"),

+ gene=c("gA","gA","gB"),

+ exon=c("e1","e2","e3"),

+ universe = "Hs19"

+ )

> gAnnot

RangedData with 3 rows and 4 value columns across 2 spaces

space ranges | strand transcript gene exon

<factor> <IRanges> | <character> <character> <character> <character>

1 chr01 [ 10, 21] | + trA1 gA e1

2 chr01 [ 30, 53] | + trA2 gA e2

3 chr02 [100, 123] | - trB gB e3

In that object, we describe the genomic location of three exons (chromosome, position and strand) as
well as their transcript and gene membership. Nothing more is required. Note that the names’ spelling
is essential for the easyRNAseq function to work properly. Indeed, the count argument will be used to
lookup the proper values in the annotation, e.g. for summarizing by “exons”, an “exon” column in the
RangedData object is mandatory; a“feature”one for counting“features”, a“transcript”one for“transcripts”,
etc. . For a peek at the RangedData class gAnnot object used in the RnaSeqTutorial tutorial, do:

> library(RnaSeqTutorial)

http://bioconductor.org/packages/release/bioc/html/genomeIntervals.html
http://bioconductor.org/packages/release/bioc/html/RnaSeqTutorial.html
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> data(gAnnot)

> gAnnot

GRangesList The easyRNASeq package support as well annotation provided as a GRangesList class
object (from the GenomicRanges package). Converting a RangedData class object into a GRangesList
class object is pretty straightforward.

> grngs <- as(gAnnot,"GRanges")

> grngsList<-split(grngs,seqnames(grngs))

> grngsList

GRangesList object of length 2:

$chr01

GRanges object with 2 ranges and 3 metadata columns:

seqnames ranges strand | transcript gene exon

<Rle> <IRanges> <Rle> | <character> <character> <character>

[1] chr01 [10, 21] + | trA1 gA e1

[2] chr01 [30, 53] + | trA2 gA e2

$chr02

GRanges object with 1 range and 3 metadata columns:

seqnames ranges strand | transcript gene exon

[1] chr02 [100, 123] - | trB gB e3

-------

seqinfo: 2 sequences from Hs19 genome; no seqlengths

The advantage of doing so is that the RangedData class might get deprecated in the future. The next
advantage is that the GRangesList class is strand-aware.

Remember comment: Generating the proper annotation is probably the most important step in pro-
cessing your RNA-Seq sample. Mind the warnings produced by the easyRNASeq function, they might be
annoying, but there are there for a good reason: to help.

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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4.7 different output

matrix This is the default output - a matrix of m features by n samples - that has been exemplified
throughout the beginning of this vignette.

RNAseq This has also been introduced previously, see section 4.6 (page 12), but shortly - as shown below
- the only change that need doing is to use the RNAseq value of the outputFormat argument.

> rnaSeq <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ pattern="[A,C,T,G]{6}\\.bam$",

+ outputFormat="RNAseq")

Checking arguments...

Fetching annotations...

Summarizing counts...

Processing ACACTG.bam

Processing ACTAGC.bam

Processing ATGGCT.bam

Processing TTGCGA.bam

Preparing output

CountDataSet, DGEList, RangedSummarizedExperiment More details on how to generate Count-
DataSet (DESeq) or DGEList (edgeR) are given in section 4.9 (page 17).
The integration of the SummarizedExperiment outputFormat in the easyRNASeq package is recent, but
at term it will be the new outputFormat default. See section 6 (page 24) for details.

http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
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4.8 different summarization

As introduced previously, there are four possible counting method accesible through an easyRNASeq call:
by “exons”, “features”, “transcripts” and “genes”. However, to perform multiple summarization on the same
data, e.g. by “exons”and“transcripts”, calling the easyRNASeq twice is inefficient as the read files and the
annotation twice would have to be processed twice. To avoid this, specific functions are available, which
are applicable to an object of class RNAseq, see details about that class in section 4.7 (page 15). These
functions are:

1. exonCounts

2. featureCounts

3. transcriptCounts

4. geneCounts This function takes an additional parameter defining the kind of gene summarization,
either bestExons or geneModels. The bestExons summarization will return per gene, the highest
exon count. The geneModels summarization first calculate a gene model and then return the read
count for it. Rather than using the genes / geneModels paradigm, consider using synthetic transcripts
as described in section 7.1 (page 25).

5. readCounts a function to access the different count tables stored in the RNAseq object.

For example, to summarize the reads per transcripts, apply the transcriptCounts function on the previ-
ously generated rnaSeq object - see section 4.7 (page 15) - and use the readCounts function to access
the transcript count table.

> rnaSeq <- transcriptCounts(rnaSeq)

> head(readCounts(rnaSeq,'transcripts'))

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

FBtr0005009 0 0 0 0

FBtr0005088 56 29 44 52

FBtr0005673 2 0 1 2

FBtr0005674 7 3 9 6

FBtr0006151 0 0 0 1

FBtr0070000 0 0 0 0

Summarizing by transcript is frequently inherently biased as exons are often part of different splicing variants.
For that reason, it might be better to summarize the data per genes - or synthetic transcripts- as described
in section 7.1 (page 25).
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4.9 optional correction or normalization

In this section, different count correction and normalization are described. First the RPKM, a common
sense correction that take the genic feature size (exon, transcript, gene model,...) and the total number of
reads sequenced in the library into account. Its use is not recommended for doing any kind of differential
expression analysis - see [4] - but is adequate for visualization; e.g. to create tracks to be displayed in a
genome browser. Actually for state of the art visualization, one can use a voom (from the limma package)
or vst (from the DESeq2 package) approach.

Here is an example on how to get a RPKM count table:

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam"),

+ normalize=TRUE

+ )

In addition, easyRNASeq generated raw count tables can be post-corrected using the RPKM method:

> feature.size = width(genomicAnnotation(rnaSeq))

> names(feature.size) = genomicAnnotation(rnaSeq)$exon

> lib.size=c(

+ "ACACTG.bam"=56643,

+ "ACTAGC.bam"=42698,

+ "ATGGCT.bam"=55414,

+ "TTGCGA.bam"=60740)

> head(RPKM(readCounts(rnaSeq,summarization="exons")$exons,

+ NULL,

+ lib.size=lib.size,

+ feature.size=feature.size))

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

CG11023:1 0 0 0 0

CG11023:2 0 0 0 0

CG11023:3 0 0 0 20

CG2671:1 0 0 0 0

CG2671:2 130 0 0 121

CG2671:3 295 241 255 254

The same can be directly done on RNAseq class objects.

> head(RPKM(rnaSeq,from="transcripts"))

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

FBtr0005009 0.0 0 0.0 0.0

http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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FBtr0005088 338.4 233 272.1 292.9

FBtr0005673 7.5 0 3.9 7.0

FBtr0005674 21.9 12 28.8 17.5

FBtr0006151 0.0 0 0.0 6.6

FBtr0070000 0.0 0 0.0 0.0

For normalizing the data, numerous solution are available in Bioconductor , see [4] for details. Only the
edgeR and DESeq packages are currently imported by easyRNASeq.

DESeq To be able to normalize the data using DESeq (or edgeR for that matter), one needs to define
the samples’ “conditions”, e.g. “disease” vs. “healthy”. To ensure traceability, the easyRNASeq package
require the conditions to be a named vector where the names are the raw data filenames.

> conditions=c("A","A","B","B")

> names(conditions) <- c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam")

Once the conditions has been defined, pass it to the conditions argument of the easyRNASeq function
and set the outputFormat argument to DESeq. An additional normalize argument is available to trigger
or not the count normalization implemented in the DESeq package. In either case, a CountDataSet object
is returned. Additional argument to the DESeq function can be provided through the . . . arguments of the
easyRNASeq function. e.g. in the following example, we precise the kind of fit (local) that needs to be
performed by the estimateDispersion function of the DESeq package. Since we have few data, the
default fit fails and reports an error telling us to change the fitType argument.

> countDataSet <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam"),

+ normalize=TRUE,

+ outputFormat="DESeq",

+ conditions=conditions,

+ fitType="local"

+ )

comment: Note that setting the normalize argument to TRUE generates diagnostics plots as detailed in
the DESeq vignette. The plot produced in the present examples are irrelevant as the dataset is too small.
You can turn the plotting off by setting the plot argument to FALSE. Have a look at the DESeq vignette
(essential if you plan to use DESeq anyway!) for the plot explanation.

edgeR The same procedure can be done using the edgeR package functionalities.

> dgeList <- easyRNASeq(system.file(

+ "extdata",

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
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+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam"),

+ normalize=TRUE,

+ outputFormat="edgeR",

+ conditions=conditions

+ )

As for the former paragraph about DESeq (see section 4.9 (page 18)), the diagnostics plots generated are
only semi-relevant. Check out the edgeR manual for more details about these plots. Note that producing
the plots is rather slow.

Next steps At this stage you are done with the normalization and what’s ahead of you: calling differential
expression, exporting track files for visualization, etc. is not the scope of the easyRNASeq package. This
one has a few more functionalities, the most important of which will be described in the next section.
To proceed with your data analysis, check the relevant package vignettes (DESeq, edgeR) for differential
expression analysis and the RnaSqTutorial for examples of track files generation using the rtracklayer
package.

4.10 Performance

The geneModel generation, the read counting and summarization can be parallelized. Use the nbCore

argument to set the number of CPU cores to use. There are a number of word of caution:

1. CPU cores means CPU cores, i.e. located on the same physical machine. Do not expect it to work
across machines.

2. there’s no load nor memory management, so watch out yourself for it. Memory will scale linearly
with the number and size of read libraries (e.g. bam files) you process in parallel.

3. It’s using the R ’parallel’ package, so it’s supported on all three main OS. However, some cosmetic
reporting might get lost.

http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/data/experiment/html/RnaSqTutorial.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
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5 Advanced usage

5.1 De-multiplexing samples

Nowadays, NGS machines produces huge quantity of“raw” reads (40M to 150M reads per Illumina MiSeq
or Illumina HiSeq lanes respectively), that the coverage obtained per lane for the transcriptome of “small”
genome-sized organisms is for a single sample essentially a waste of resource. e.g. one lane of HiSeq
results in an approximate 3,000X coverage of the Saccharomyces cerevisiae genome which is 12Mb large.
Therefore, techniques to have several samples running as a single library have been created [14, 15], using
4-6bp barcodes to uniquely identify samples; this is called multiplexing. A 30X coverage per sample of
48 yeast samples can hence be obtained froman average Illumina GenomeAnalyzer GAIIx run (105bp read,
single end). This approach is very advantageous to researchers, especially in term of costs, but it adds an
additional layer of pre-processing that is not as trivial as one may think. Extracting the barcodes would
be fairly straightforward, but for the average 0.1 percent sequencing error rate that introduces a lot of
multiplicity in the actual barcodes present in the samples. A proper design of the barcodes, maximizing the
Hamming distance[16, 17] is an essential step for a proper de-multiplexing.
There are two kinds of barcoding, the one described in [14] where the barcode is part of the read sequence
and the one developed by Illumina, where the barcode is read in a separate sequencing reaction after the
first mate sequencing.
The data used in the following example has been sequenced using the Illumina protocol. We’ll look at the
specificities that this introduce.

comment: This pre-processing procedure has to be applied on the raw reads before any alignment is
performed. Most often, one would use the “fastq” formatted file as input. In the particular case of the
Illumina protocol, the barcodes can be retrieved from the fastq ID lines or from the Illumina export format.
The export format is normally the result of aligning the reads with ELAND, the Illumina aligner, but it
can be generated as well without aligning the reads, i.e. the export file may not contain any alignment
information. comment: The ShortRead package offers a quick functionality to access the barcode field of
an export file, which we take advantage of in the next example; the withAll argument of the readAligned
function.

> alns <- readAligned(

+ system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ pattern="multiplex_export",

+ filter=compose(

+ chastityFilter(),

+ nFilter(2),

+ chromosomeFilter(regex="chr")),

+ type="SolexaExport",

+ withAll=TRUE)

Note the use of the withAll argument. It is essential to get the barcode, since this data was multiplexed
using the Illumina protocol. For the Illumina protocol, the barcode is read in a separate sequencing reaction
and its sequence is reported as a field of the export file. This field is not parsed by default by the
readAligned function to save time and memory. It becomes available when the data is loaded using the
withAll argument and is afterwards accessible in the metadata of the returned object. It can be accessed
using the following command:

> alignData(alns)$multiplexIndex

where alns is the object of the ShortRead AlignedRead class.

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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In the following, we will look at the other kind of barcoding, where the barcode is part of the sequenced
sequence. First, we will create some plots to evaluate the barcoding efficiency.

> barcodes=c("ACACTG","ACTAGC","ATGGCT","TTGCGA")

> barcodePlot(alns,

+ barcodes=barcodes,

+ type="within",

+ barcode.length=6,

+ show.barcode=20,

+ main="All samples",

+ xlim=c(0,0.5))

ACACCG
ACACTA
ATGGGT
ACAATG
ACACTT
ATAGCT

ACTCGC
ATGCGA
TGGCTG
ATGCCT
ATACTG

ACAGTG
ACACAG
ACACGG
ACACTC
TGCGAT
ACTAGC
ACACTG
ATGGCT
TTGCGA

0.5 0

barcodes frequency

All samples

All the barcodes seem to be almost equally distributed. Every one has a proportion close to 25%. Just the
“ACTAGG” seems to have been either less amplified during the library preparation or simply had a lower
concentration than the other or generated less clusters. Overall, only a low percentage of them cannot be
surely assigned. Once this has been verified, the sample can be demultiplexed.

> dem.alns <- demultiplex(alns,

+ barcodes=barcodes,

+ edition.dist=2,

+ barcodes.qty=4,

+ type="within")
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> dem.alns$reads[[1]]

> dem.alns$barcodes[[1]]

There remain to write the extracted data to file, or proceed it within R. Again performing some validation
plot is important to ensure that the de-multiplexing process succeeded.

> par(mfrow=c(2,2))

> barcode.frequencies <- lapply(

+ names(dem.alns$barcodes),

+ function(barcode,alns){

+ barcodePlot(

+ alns$barcodes[[barcode]],

+ barcodes=barcode,

+ type="within",barcode.length=6,

+ show.barcode=20,

+ main=paste(

+ "Expected barcode:",

+ barcode))

+ },dem.alns)

TTACTG
ACGCTG
GCACTG
ATACCG
ACACCT
ACACTN
TCACTG
ACACGA
NCACTG
ACACNN
ACACCG
ACACTA
ACAATG
ACACTT
ATACTG

ACAGTG
ACACAG
ACACGG
ACACTC
ACACTG

1 0.5 0

barcodes frequency

Expected barcode: ACACTG
AGTAGC
ACCAGC
AATAGC
CCTAGC

ACGCGC
ACTAGN
ACTAGG
TCTAGC
ACTAGT
ACTACC

ACGAGC
ACTANN
GCTAGC
ATTAGC

NCTAGC
ACTATC
ACTAGA
ACAAGC
ACTCGC
ACTAGC

1 0.5 0

barcodes frequency

Expected barcode: ACTAGC

ATGGTT
ATGGCG
ATGCTT

CTGGCT
ATGACT

AAGGCT
ATGGCC
ATGGCN
ATGGCA
GTGGCT
TTGGCT
ATGTCT
ATTGCT

ATGGNN
ACGGCT
NTGGCT
ATGGGT
TGGCTG
ATGCCT
ATGGCT

1 0.5 0

barcodes frequency

Expected barcode: ATGGCT
TCACGA
TTTAGA

ACGCGA
TTGCGG
ATGCGG
TTGCGT
TTGGGA
TCGCGA
TTGCGN
TTGCCA
TTGCGC
TTTCGA
TTGCTA
TTGAGA
TTGCNN
TTACGA

NTGCGA
ATGCGA
TGCGAT
TTGCGA

1 0.5 0

barcodes frequency

Expected barcode: TTGCGA

In the previous figure, we can observe the demultiplexed barcodes. It is important to assess wether within
a given sample there was a barcode bias. Generally, visually assessing the data is important to make sure
that the raw data you are looking at agrees with the experimental design that was performed. This is
discussed in the RnaSeqTutorial vignette of the RnaSqTutorial .

http://bioconductor.org/packages/release/data/experiment/html/RnaSqTutorial.html
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Finally, we can save the demultiplexed files to disk.

> status <- lapply(

+ names(dem.alns$barcodes),

+ function(barcode,alns){

+ writeFastq(

+ alns$reads[[barcode]],

+ file=paste(

+ barcode,

+ "fastq",sep="."))

+ },dem.alns)

The fastq files are now ready to be aligned with your preferred aligner - alternatively, other R packages
such as Rsubread , gmapR, QuasR can be used to align them - and the resulting bam files processed with
the easyRNASeq function as described in the first part of the present vignette! Enjoy.

http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/QuasR.html
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6 Yet to come

The easyRNASeq can now return a RangedSummarizedExperiment object. The aim is to have it be the
only output in the next development version of the easyRNASeq package (version 1.9.x). This in order to
consolidate the kind of objects used for Next-Generation Sequencing in the Bioconductor repository.

> ## creating a RangedSummarizedExperiment from 4 bam files

> sumExp <- easyRNASeq(filesDirectory=system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ pattern="[A,C,T,G]{6}\\.bam$",

+ readLength=30L,

+ organism="Dmelanogaster",

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ outputFormat="SummarizedExperiment"

+ )

> ## the counts

> assays(sumExp)

> ## the sample info

> colData(sumExp)

> ## the 'features' info

> rowRanges(sumExp)

See the RangedSummarizedExperiment class defined in the SummarizedExperiment package for more de-
tails on last three accessors used in the example.

Support for DESeq2 is also planned for version 1.10.x as well as additional visualization taking advantage
of the voom/vst transformations.

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/SummarizedExperiment.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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7 Use Cases

The following use cases have been created to answer user request from the Bioconductor mailing list. We
want to thank Francesco Lescai, Wade Davis and Richard Friedman for asking pertinent questions that
helped us make this vignette better.
The first use case shows how to create an annotation that contains synthetic transcripts; i.e. a transcript
combining every single exons of a gene into a single abiological splice-variant. The aim is to mesure
expression at the gene level, while avoiding counting biases that may be introduced when working with
multiple splice variants sharing common exons. If you are interested in such splice variants expression, you
need to look for more appropriate analysis expression pipeline (RSEM, MMSEQ, BitSeq, etc.)
The second use case examplifies how to use the easyRNASeq to get DESeq normalized data from two
human samples. It introduces as well how to use the GenomicFeatures package to retrieve annotations.
Note that the data for this example is not readily available. If you want to reproduce this example, you
will need to get 2 (at least) fastq files from either the SRA or ENA websites and align them against the
human genome using your aligner of choice and convert the alignment into the BAM format. An example
of how to achieve this in R is described in the beginning of the use case.
The third use case describe how to combine different annotation (chromosomic and genic), when for
example the chromosome names in the aligned file(s) are different from the annotation retrieved using
( biomaRt. In both use case, we will assume the easyRNASeq library as already been loaded as in:

> library(easyRNASeq)

7.1 Creating a set of synthetic transcripts

The gff3 is retrieved from FlyBase [5]: ftp://ftp.flybase.net/releases/FB2013 06/dmel r5.54/gff/dmel-all-no-analysis-r5.
54.gff.gz. As the file is rather large, only the line containing ”gene”, ”mRNA” and ”exon” are kept using an
awk script.

awk '{if($3=="gene"){print}; if($3=="mRNA"){print}; if($3=="exon"){print}}'
< dmel-all-no-analysis-r5.54.gff > dmel_r5-54.gff3

Set your working environment to the directory where you created dmel r5-54.gff3.

> ## lib - loaded by easyRNASeq already

> library(genomeIntervals)

> ## read in the gff

> gff <- readGff3("dmel_r5-54.gff3")

> ## look at the gff

> gff

> nrow(gff[gff$type=="exon",])

> nrow(gff[gff$type=="mRNA",])

> nrow(gff[gff$type=="gene",])

> ## map the mRNA ID to the gene ID

> transcriptGeneMapping <- data.frame(

+ getGffAttribute(gff[gff$type=="mRNA",],"ID"),

+ getGffAttribute(gff[gff$type=="mRNA",],"Parent"))

> head(transcriptGeneMapping)

> ## extract the exons IRangesList

> ## ie exons are grouped by gene

> ## and their coordinates are stored as an IRanges object

> sel <- gff$type=="exon"

> rngList<- split(IRanges(start=gff[sel,1],end=gff[sel,2]),

http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/(.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
ftp://ftp.flybase.net/releases/FB2013_06/dmel_r5.54/gff/dmel-all-no-analysis-r5.54.gff.gz
ftp://ftp.flybase.net/releases/FB2013_06/dmel_r5.54/gff/dmel-all-no-analysis-r5.54.gff.gz
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+ transcriptGeneMapping[match(

+ sapply(strsplit(

+ getGffAttribute(gff[sel,],"Parent"),

+ ","),"[",1),

+ transcriptGeneMapping$ID),"Parent"])

> rngList

> ## check what's the gene with the max number of exons

> mostExons <- rev(names(table(elementLengths(rngList))))[1]

> mostExons

> ## work the magic; collapse the genes IRanges

> rngList<- reduce(rngList)

> rngList

> ## what's the max now?

> rev(names(table(elementLengths(rngList))))[1]

> ## create the gff

> ## get the gff information; here we simply duplicate the

> ## first exon of every gene by the number of synthetic

> ## exons per gene. The content will be updated afterwards.

> exons <- gff[sel,]

> syntheticGeneModel<- exons[rep(

+ match(names(rngList),

+ transcriptGeneMapping[

+ match(sapply(

+ strsplit(getGffAttribute(exons,"Parent"),

+ ","),"[",1),

+ transcriptGeneMapping$ID),"Parent"]),

+ elementLengths(rngList)),]

> ## update the coordinates

> syntheticGeneModel[,1]<- unlist(start(rngList))

> syntheticGeneModel[,2]<- unlist(end(rngList))

> ## change the source

> levels(syntheticGeneModel$source)<- "inhouse"

> ## get the exon number for the minus strand

> exonNumber<- lapply(elementLengths(rngList),":",1)

> ## reverse them on the plus strand

> sel<- strand(syntheticGeneModel)[cumsum(elementLengths(rngList))] == "+"

> exonNumber[sel]<- sapply(exonNumber[sel],rev)

> ## update the attributes

> syntheticGeneModel$gffAttributes<- paste("ID=",

+ rep(names(rngList),elementLengths(rngList)),

+ ":",unlist(exonNumber),";Parent=",

+ rep(names(rngList),elementLengths(rngList)),".0",sep="")

> ## write the file

> writeGff3(syntheticGeneModel,file="dmel_synthetic_transcript_r5-54.gff3")

Now we can use the ’gff3’ file as our annotation. As we have created synthetic transcripts, we can directly
use the ’transcripts’ value for the count argument of the easyRNASeq function as follows:

> sumExp <- easyRNASeq(

+ filesDirectory=system.file(

+ "extdata",

+ package="RnaSeqTutorial"),
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+ pattern="[A,C,T,G]{6}\\.bam$",

+ readLength=30L,

+ chr.sel="chr2L",

+ organism="Dmelanogaster",

+ annotationMethod="gff",

+ annotationFile="dmel_synthetic_transcript_r5-54.gff3",

+ count="transcripts",

+ outputFormat="SummarizedExperiment"

+ )

That’s it. Done much faster than using the ’geneModels’ summarization argument. This approach is
currently being ported to the development version of easyRNASeq. There remains a caveat not addressed
by this procedure: genes overlapping on the same or opposite strands will still generate double- countings.
Adequate warnings would be emitted. A refinement of the method above would be to restrict these genes
to their non-overlapping intervals. Commonly the overlaps encompass UTRs and can be safely ignored. In
a few case however, it might be difficult to decide wheter to keep or drop them. Note that if the result is
returned as an RNAseq or RangedSummarizedExperiment class object, the overlapping genes are flagged
by a boolean. To access this information in an RNAseq object, do:

> genomicAnnotation(rnaSeq)$overlap

and from a RangedSummarizedExperiment object:

> rowRanges(sumExp)$overlap

7.2 Processing a set of human samples

Getting the data If you already have a set of bam files resulting of short read alignments against the
human genome, you can just proceed to the next paragraph. If not here is an example on how to retrieve
and align data in R. Note that the Rsubread is only supported on the linux platform. You’ll need to use
your aligner of choice and generate BAM files if you’re using another platform. However you should still
be able to download the SRA/ENA files. The files listed in this example are from the [18] study, but where
simply selected for their small size. Still downloading and creating all the necessary file requires times and
a computer with a sufficient amount of memory to index the human genome.

> library(BSgenome.Hsapiens.UCSC.hg19)

> library(GEOquery)

> library(SRAdb)

> library(Rsamtools)

> library(Rsubread)

> ## create a temp dir

> dir.create(file.path(getwd(),"tmp1234"))

> ## change the working directory

> setwd(file.path(getwd(),"tmp1234"))

> ## init SRA

> sqlfile <- getSRAdbFile()

> ## init a connection

> sra_con <- dbConnect(SQLite(),sqlfile)

> ## list the files

> acc <- c("SRR490224","SRR490225")

> getFASTQinfo( in_acc = acc, srcType = 'ftp' )

> ## get the read files

> getSRAfile( in_acc=acc, sra_con, destDir = getwd(),

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
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+ fileType = 'fastq', srcType = 'ftp' )

> ## close the connection

> dbDisconnect( sra_con )

> ## write the human genome sequences

> writeXStringSet(Reduce(append,

+ lapply(seqnames(Hsapiens),

+ function(nam){

+ dss <- DNAStringSet(unmasked(Hsapiens[[nam]]))

+ names(dss) <- nam

+ dss

+ })),

+ file="hg19.fa")

> ## create the indexes

> dir.create("indexes")

> buildindex(basename=file.path("indexes","hg19"),

+ reference="hg19.fa")

> ## align the reads

> sapply(dir(pattern="*\\.gz$"),function(fil){

+ ## decompress the files

+ gunzip(fil)

+

+ ## align

+ align(index=file.path("indexes","hg19"),

+ readfile1=sub("\\.gz$","",fil),

+ nsubreads=2,TH1=1,

+ output_file=sub("\\.fastq\\.gz$","\\.sam",fil)

+ )

+

+ ## create bam files

+ asBam(file=sub("\\.fastq\\.gz$","\\.sam",fil),

+ destination=sub("\\.fastq\\.gz$","",fil),

+ indexDestination=TRUE)

+ })

>

Note that this has generated a number of files that you should clean up afterwards, i.e. delete the“tmp1234”
folder, once you are done with the use case.

Processing the data First, we start by retrieveing the size of the chromosomes. This is an important
information for calculating any feature count. Actually, neither the BSgenome nor any related packages
are required for easyRNASeq to run. As they are the easiest way to access genomic information such as
chromosome lengths within the R/Bioconductor framework, they are made available to the easyRNASeq

for that purpose. However, providing a simple named vector is sufficient and therefore is easyRNASeq not
limited to existing BSgenome organisms. The chromosome size is essential for one reason: to provide a
complete representation of the data. When counting reads per features, one get counts for these features
that have at least one read aligning to them, i.e. every feature having no reads will be missed. One could
then either return only those features having counts or returning a value of 0 counts for those that do
not. We do not find these solutions satisfying and to ensure that we provide coherent data, we return the
counts for every feature present on the chromosomes. For that purpose, the chromosome size is essential
as it allows us to define those features on a chromosome that are located between the last feature having a
number a count bigger or equal to one and the end of the chromosome - features, which would otherwise

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
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be ignored. It is as well a mean to monitor that the provided annotation is pertinent. As of version 1.3.5,
when using the ’bam’ format, it is even easier. Setting the ’chr.sizes’ argument to auto will result in the
chromosome sizes to be retrieved from the BAM header. However, the purpose of this use case is to,
at least partly, demonstrate the importance of using appropriate annotations and therefore the use of the
’chr.sizes’ argument is demonstrated.

> library(BSgenome.Hsapiens.UCSC.hg19)

> chr.sizes=seqlengths(Hsapiens)

Then, we list the BAM files.

> bamfiles=dir(getwd(),pattern="*\\.bam$")

We can now run the easyRNASeq function, fetching the annotation using biomaRt. As this is time
consuming (about 10 minutes from an average network) and since we might want to work on these
annotation to avoid double-counting, we first ask the function to return an instance of the RNAseq class.
Then, using the genomicAnnotation accessor, we extract the retrieved annotation.

> rnaSeq <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ readLength=58L,

+ annotationMethod="biomaRt",

+ count="exons",

+ filenames=bamfiles[1],

+ outputFormat="RNAseq"

+ )

> gAnnot <- genomicAnnotation(rnaSeq)

As one can see by looking at this object, it contains 434“chromosomes”, most of which are of no interest
to us. For that reason, we first filter it and then save it to the disk for later re-use. The “.rda” extension is
a synonym of the “.RData” one and identifies a serialized R data file.

> gAnnot <- gAnnot[space(gAnnot) %in% paste("chr",c(1:22,"X","Y","M"),sep=""),]

> save(gAnnot,file="gAnnot.rda")

Now using the modified, saved annotation, we can get a count table as follows:

> countTable <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ readLength=58L,

+ annotationMethod="rda",

+ annotationFile="gAnnot.rda",

+ count="exons",

+ filenames=bamfiles[1]

+ )

Another way to retrieve the annotation is to use the GenomicFeatures library. easyRNASeq does not
yet supports that library automatically, but it can take GRangesList object as input; objects that are
derivatives of the ones returned by the functions of the GenomicFeatures package. A few changes needs
to be done to the obtained object so that it can be used by the easyRNASeq: first, a metadata element
needs to be updated and then the object needs to be converted into a GRangesList.

> library(GenomicFeatures)

> hg19.tx <- makeTxDbFromUCSC(genome="hg19", tablename="refGene")

> gAnnot <- exons(hg19.tx)

> colnames(elementMetadata(gAnnot)) <- "exon"

> gAnnot <- split(gAnnot,seqnames(gAnnot))

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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As previously, this annotation can either be saved to disk or be used directly, using the annotationMethod

”env” and annotationObject arguments. Additionaly, one can select chromosome of interest using the
chr.sel argument. It accepts a vector of chromosome names. In the following, we subset for the chro-
mosome “chr1” only.

> countTable <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ readLength=58L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ count="exons",

+ filenames=bamfiles[1],

+ chr.sel="chr1"

+ )

Note that in the previous call, we removed the ’chr.sizes’ argument, just to demonstrate that the chr.sizes
can be retrieved from the bam files. Removing the argument is the same as setting it to its default value:
’auto’

Alternatively, one can use the outputFormat argument function to get a RangedSummarizedExperiment
object back. Mind the comments in section 6, page 24 though.

> sumExp <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ readLength=58L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ count="exons",

+ filenames=bamfiles[1],

+ chr.sel="chr1",

+ outputFormat="SummarizedExperiment"

+ )

Finally, instead of returning a count table, we can get a CountDataSet instance from the DESeq package.
This will perform the normalization of the data and generate some Quality Assessment plots. In the present
example, it would not yield very sensitive results as we have no replicates (biological). These are important
to DESeq to accurately model the technical and biological variance. With no replicates for every condition,
the dispersion will be based on a ”pooled” estimate making the differential expression call lose sensitivity.
In addition, DESeq is in such cases using a conservative approach (which is good) so you’d get even less
significant results. Here, as we have no replicates, we need to pass additional arguments (the last two)
that will be tunnelled to the DESeq estimateDispersions function. See the DESeq vignette for more
details on these.

> conditions <- c("A","B")

> names(conditions) <- bamfiles

> countDataSet <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ count="exons",

+ filenames=bamfiles,

+ chr.sel="chr1",

+ outputFormat="DESeq",

+ normalize=TRUE,

http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
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+ conditions=conditions,

+ fitType="local",

+ method="blind"

+ )

Note that as the read length differs between the two files: 58 and 76, the readLength argument was
removed from the previous function call. The read size is then identified automatically.

7.3 Dealing with annotation inconsistencies

This use case shows how to deal with inconsistent annotations, e.g. when the chromosome names present
in the aligned file are different from those that can be retrieved from an annotation source such as biomaRt.
First, we have a look at the data, in this case some Illumina export files. Reading in the data using the
ShortRead package is quite resource demanding as the whole sequences are loaded in memory. Then we
look at the chromosome names. These differs from what we expect - UCSC standards - as they have an
additional “.fa” extension.

> aln <- readAligned("data",type="SolexaExport",pattern="*.txt.gz")

> gc()

> levels(chromosome(aln))

[1] "chr1.fa" "chr10.fa" "..." "chrY.fa"

They are different from what biomaRt will return as well: i.e. 1:19, X, Y and MT plus others. This triple
inconsistency will be a problem for easyRNASeq. If there were only two sets of names, using the ”custom”
chromosome name map by-pass (see the Details section of the “?easyRNASeq” help page) would solve
the issue. However, in the present particular case, as we are retrieving the annotation from biomaRt, we
need to precise the name of the organism, which circumvent the chromosome name mapping by-pass. The
solution is to first fetch the annotation, modify it and save it as an R data file. Some of the retrieved
annotation are“NT”contigs. There are only a few of them, so instead of filtering them out, we just ignore
them.

> obj <- fetchAnnotation(new('RNAseq',
+ organismName="Mmusculus"

+ ),

+ method="biomaRt")

> gAnnot <- genomicAnnotation(obj)

> length(grep("NT_",space(gAnnot)))

>

[1] 1181

> names(gAnnot) <- paste("chr",names(gAnnot),".fa",sep="")

As described previously, see page 29 we can save the annotation to a file or use it directly, using the
AnnotationMethod“env”argument. In that later case, since we did not process the annotation, numerous
warnings concerning possible multiple countings of reads will be raised. Double counting reads is not what
ones want, see section 7.1 (page 25) on how to adress that.
Note that easyRNASeq does support some chromosome names conversion by default. The list of organism
for which this is possible can be listed using the knownOrganisms function.
Before going on, we do some cleanup as some of the objects we have generated take large amounts of
memory.

> rm(aln,obj)

> gc()

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
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As on page 29 we get the chromosome sizes. Again, note that the use of the BSgenome is not mandatory.
It’s just easy as they are available in Bioconductor. Typing in your own chromosome sizes named vector is
as valid.

> library(BSgenome.Mmusculus.UCSC.mm9)

> chr.sizes<- seqlengths(Mmusculus)

We can now create the chromosome name mapping.

> chr.map <- data.frame(

+ from=paste("chr",c(1:19,"X","Y"),".fa",sep=""),

+ to=paste("chr",c(1:19,"X","Y"),sep=""))

Using this chromosome map, we can now summarize the reads per feature of interest. Here we want to look
for gene models, so we set the count and summarization arguments. Note again that the summarization
argument will be deprecated in the near future and its values merged with the count ones. The approach
described in section 7.1 (page 25) is a faster way to achieve the same.
Asking to get back an RNAseq instance allows us to look at the gene models defined by easyRNASeq.
This offers the possibility to clean them to avoid multiple counting.
As we have Illumina export data at hand, we need to define a set of Filter to ensure that the data is read
properly. Indeed, the export file contains all the reads, so the one that do not pass the chastity filter have
to be removed. In addition, some of the other reads are for internal QC, and they have no position. For
that reason, we need to filter those too out.
Reading in export data is more resource exhausting that reading in bam files, as we are loading in the
sequence and quality information as well, whereas we do not need them.
We will now look through three different set of parameters that will stepwise reduce the number of warnings
emitted. These warnings are there to help you understand the different pitfalls that the easyRNASeq helps
you avoiding when analysing your RNA-Seq data. The first approach generates a lot of warnings, because
of the differing annotations, since we are using the entire set of annotation we got. As we do not want to
generate all these warnings, these code lines are not evaluated. To get a feel about these warnings, they
will look as the follows:

Warning messages:

1: In .convertToUCSC(names(genomicAnnotation(obj)), organismName(obj), :

Your custom map does not define a mapping for the following

chromosome names: chrMT.fa

2: In easyRNASeq(filesDirectory = headDir, organism = "custom", chr.map = chr.map, :

There are 6096 synthetic exons as determined from your annotation that overlap!

This implies that some reads will be counted more than once!

Is that really what you want?

Let us start with the full set of annotation.

> rnaSeq <- easyRNASeq(filesDirectory="data",

+ organism="custom",

+ chr.map=chr.map,

+ chr.sizes=chr.sizes,

+ filter=compose(

+ naPositionFilter(),

+ chastityFilter()),

+ readLength=50L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ format="aln",

+ count="genes",

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
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+ summarization= "geneModels",

+ filenames="1-Feb_ATCACG_L003_R1_001_export.txt.gz",

+ outputFormat="RNAseq",

+ nbCore=2

+ )

To reduce the number of warnings emitted, we can select for the chromosome we are interested in as
previously done on page 30.

> rnaSeq <- easyRNASeq(filesDirectory="data",

+ organism="custom",

+ chr.map=chr.map,

+ chr.sizes=chr.sizes,

+ chr.sel=chr.map$from,

+ filter=compose(

+ naPositionFilter(),

+ chastityFilter()),

+ readLength=50L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ format="aln",

+ count="genes",

+ summarization= "geneModels",

+ filenames="1-Feb_ATCACG_L003_R1_001_export.txt.gz",

+ outputFormat="RNAseq",

+ nbCore=2

+ )

Finally, to further reduce the warnings, we can manipulate the RangedData object to remove the unneces-
sary annotation.

> sel <- grep("NT_",names(gAnnot))

> gAnnot <- RangedData(ranges=ranges(gAnnot)[-sel,],values=values(gAnnot)[-sel,])

> colnames(gAnnot) <- gsub("values\\.","",colnames(gAnnot))

This last call will only generate two warnings, one that could be easily dealt with (a complaint about the
chrMT). The other one is about double counting and it requires to adapt the annotation.

> rnaSeq <- easyRNASeq(filesDirectory="data",

+ organism="custom",

+ chr.map=chr.map,

+ chr.sizes=chr.sizes,

+ chr.sel=chr.map$from,

+ filter=compose(

+ naPositionFilter(),

+ chastityFilter()),

+ readLength=50L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ format="aln",

+ count="genes",

+ summarization= "geneModels",

+ filenames="1-Feb_ATCACG_L003_R1_001_export.txt.gz",

+ outputFormat="RNAseq",
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+ nbCore=2

+ )
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8 FAQ

warning:

8.1 Does easyRNASeq support reads of variable length?

Yes it does. The base-pair coverage extracted from the read mapping is actually weighted by the read
length to determine better read count estimates.

8.2 Does the easyRNASeq support paired-end reads?

No it does not look at the pair information; hence read counts for PE data will be on average 2x larger
than those returned from other methods. In the context of DE, this is of little significance though.
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9 Session Information

The version number of R[19] and Bioconductor [1] packages loaded for generating the vignette were:

R version 3.2.2 (2015-08-14)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.11.2 (El Capitan)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] BSgenome.Dmelanogaster.UCSC.dm3_1.4.0 BSgenome_1.38.0

[3] rtracklayer_1.30.1 Biostrings_2.38.2

[5] XVector_0.10.0 GenomicRanges_1.22.1

[7] GenomeInfoDb_1.6.1 IRanges_2.4.4

[9] S4Vectors_0.8.3 BiocGenerics_0.16.1

[11] RnaSeqTutorial_0.8.0 curl_0.9.4

[13] BiocStyle_1.8.0 easyRNASeq_2.6.1

loaded via a namespace (and not attached):

[1] SummarizedExperiment_1.0.1 genefilter_1.52.0 locfit_1.5-9.1

[4] splines_3.2.2 lattice_0.20-33 htmltools_0.2.6

[7] yaml_2.1.13 survival_2.38-3 XML_3.98-1.3

[10] DBI_0.3.1 BiocParallel_1.4.0 RColorBrewer_1.1-2

[13] lambda.r_1.1.7 stringr_1.0.0 zlibbioc_1.16.0

[16] futile.logger_1.4.1 hwriter_1.3.2 devtools_1.9.1

[19] memoise_0.2.1 evaluate_0.8 latticeExtra_0.6-26

[22] Biobase_2.30.0 knitr_1.11 geneplotter_1.48.0

[25] biomaRt_2.26.1 BiocInstaller_1.20.1 AnnotationDbi_1.32.0

[28] xtable_1.8-0 edgeR_3.12.0 formatR_1.2.1

[31] limma_3.26.3 annotate_1.48.0 ShortRead_1.28.0

[34] Rsamtools_1.22.0 digest_0.6.8 stringi_1.0-1

[37] DESeq_1.22.0 grid_3.2.2 tools_3.2.2

[40] bitops_1.0-6 magrittr_1.5 RCurl_1.95-4.7

[43] LSD_3.0 RSQLite_1.0.0 futile.options_1.0.0

[46] rmarkdown_0.8.1 GenomicAlignments_1.6.1 genomeIntervals_1.26.0

[49] intervals_0.15.1
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10 Final remarks

RNA-seq is still maturating and a lot of new developments are to be expected. If you have any questions,
comments, feel free to contact me: nicolas.delhomme at umu dot se.
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