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Introduction

Di�usionmaps are spectral method for non-linear dimension reduction introduced by Coifman et al. (2005). Di�u-
sionmaps are based on a distancemetric (di�usion distance) which is conceptually relevant to howdi�erentiating
cells follow noisy di�usion-like dynamics, moving from a pluripotent state towards more di�erentiated states.

The R package destiny implements the formulation of di�usion maps presented in Haghverdi et al. (2015) which
is especially suited for analyzing single-cell gene expression data from time-course experiments. It implicitly ar-
ranges cells along their developmental path, with bifurcations where di�erentiation events occur.

In particular we follow Haghverdi et al. (2015) and present an implementation of di�usion maps in R that is less
a�ected by sampling density heterogeneities and thus capable of identifying both abundant and rare cell popula-
tions. In addition, destiny implements complex noise models reflecting zero-inflation/censoring due to drop-out
events in single-cell qPCR data and allows for missing values. Finally, we further improve on the implementation
from Haghverdi et al. (2015), and implement a nearest neighbour approximation capable of handling very large
data sets of up to 300.000 cells.

For those familiar with R, and data preprocessing, we recommend the section Plotting.
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1 Preprocessing of single qPCR data

As an example, we present in the following the preprocessing of data from Guo et al. (2010). This dataset was
produced by the Biomark RT-qPCR system and contains Ct values for 48 genes of 442mouse embryonic stem cells
at 7 di�erent developmental time points, from the zygote to blastocyst.

Starting at the totipotent 1-cell stage, cells transition smoothly in the transcriptional landscape towards either the
trophoectoderm lineage or the inner cell mass. Subsequently, cells transition from the inner cell mass either to-
wards the endoderm or epiblast lineage. This smooth transition from one developmental state to another, includ-
ing two bifurcation events, is reflected in the expression profiles of the cells and can be visualized using destiny.

Import

Downloading the table S4 from the publication website will give you a spreadsheet “mmc4.xls”, from which the
data can be loaded:

In [2]: library(xlsx)
raw.ct <- read.xlsx(’mmc4.xls’, sheetName = ’Sheet1’)

raw.ct[1:9, 1:9] #preview of a few rows and columns

Out[2]: Cell Actb Ahcy Aqp3 Atp12a Bmp4 Cdx2 Creb312 Cebpa
1 1C 1 14.01 19.28 23.89 28 28 21.28 20.84 28
2 1C 2 13.68 18.56 28 28 28 23.43 20.93 28
3 1C 3 13.42 18.19 26.18 28 28 22.87 19.61 28
4 1C 4 13.69 18.59 28 28 28 23.28 20.72 28
5 1C 5 13.47 18.6 24.2 28 28 24.19 21.75 23.69
6 1C 6 12.86 17.37 25.53 28 28 21.87 21.27 28
7 1C 7 12.95 17.37 23.93 28 28 22.74 21.12 28
8 1C 8 12.77 18.4 23.68 28 28 24.14 19.8 28
9 1C 9 13.29 18.26 28 28 28 21.91 21.18 28

The value 28 is the assumed background expression of 28 cycle times.

In order to easily clean and normalize the data without mangling the annotations, we convert the data.frame
into a Bioconductor ExpressionSet using the as.ExpressionSet function from the destiny package, and
assign it to the name ct:

In [3]: library(destiny)
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ct <- as.ExpressionSet(raw.ct)
ct

Out[3]: ExpressionSet (storageMode: lockedEnvironment)
assayData: 48 features, 442 samples

element names: exprs
protocolData: none
phenoData

sampleNames: 1 2 ... 442 (442 total)
varLabels: Cell
varMetadata: labelDescription

featureData: none
experimentData: use ’experimentData(object)’
Annotation:

The advantage of ExpressionSet over data.frame is that tasks like normalizing the expressions are both
faster and do not accidentally destroy annotations by applying “normalization” to columns that are not expres-
sions. The approach of handling a separate expression matrix and annotation data.frame requires you to be
careful when adding or removing samples on both variables, while ExpressionSet does it internally for you.

The object internally stores an expression matrix of features × samples, retrievable using exprs(ct), and an
annotation data.frame of samples × annotations as phenoData(ct). Note that the expression matrix is
transposed compared to the usual samples× features data.frame.

Data cleaning

We remove all cells that have a value bigger than the background expression, indicating data points not available
(NA). Alsowe remove cells from the 1 cell stage embryos, since theywere treated systematically di�erent (Guo et al.
(2010)).

For this, we add an annotation column containing the embryonic cell stage for each sample by extracting the num-
ber of cells from the “Cell” annotation column:

In [4]: num.cells <- gsub(’^(\\d+)C.*$’, ’\\1’, phenoData(ct)$Cell)
phenoData(ct)$num.cells <- as.integer(num.cells)

We then use the new annotation column to create two filters:

In [5]: # cells from 2+ cell embryos
have.duplications <- phenoData(ct)$num.cells > 1
# cells with values ≤ 28
normal.vals <- apply(exprs(ct), 2, function(sample) all(sample <= 28))

We can use the combination of both filters to exclude both non-divided cells and such containing Ct values higher
than the baseline, and store the result as cleaned.ct:

In [6]: cleaned.ct <- ct[, have.duplications & normal.vals]

Normalization

Finally we follow Guo et al. (2010) and normalize each cell using the endogenous controls Actb and Gapdh by sub-
tracting their average expression for each cell. Note that it is not clear how tonormalise sc-qPCRdata as the expres-
sion of housekeeping genes is also stochastic. Consequently, if such housekeeping normalisation is performed. It
is crucial to take the mean of several genes.
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In [7]: housekeepers <- c(’Actb’, ’Gapdh’) # houskeeper gene names

normalizations <- colMeans(exprs(cleaned.ct)[housekeepers, ])

normalized.ct <- cleaned.ct
exprs(normalized.ct) <- exprs(normalized.ct) - normalizations

The resulting ExpressionSet contains the normalized Ct values of all cells retained a�er cleaning.

2 Plotting

The data necessary to create a di�usion map with our package is a a cell×gene matrix or data.frame, or
alternatively an ExpressionSet (which has a gene×cell exprsmatrix). In order to create a DiffusionMap
object, you just need to supply oneof those formats as first parameter to theDiffusionMap function. In the case
of a data.frame, each floating point column is interpreted as expression levels, and columns of di�erent type
(e.g. factor, character or integer) are assumed to be annotations and ignored. Note that single-cell RNA-
seq count data should be transformed using a variance-stabilizing transformation (e.g. log or rlog); the Ct scale for
qPCR data is logarithmic already (an increase in 1 Ct corresponds to a doubling of transcripts).

In order to create a di�usion map to plot, you have to call DiffusionMap, optionally with parameters. If the
number of cells is small enough (< ~1000), you do not need to specify approximations like k (for k nearest neigh-
bors):

In [8]: library(destiny)
dif <- DiffusionMap(normalized.ct)

Simply calling plot on the resulting object difwill visualize the di�usion components:

In [9]: plot(dif)

DC1

D
C2

D
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The di�usion map nicely illustrates a branching during the first days of embryonic development.
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The annotation column containing the cell stage can be used to annotate our di�usionmap. Using the annotation
as col parameter will automatically color the map using the current palette().

In [10]: plot(dif, pch = 20, # pch for prettier points
col.by = ’num.cells’, # or “col” to use a vector or a single color
legend.main = ’Cell stage’)
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Three branches appear in themap, with a bifurcation occurring the 16 cell stage and the 32 cell stage. The di�usion
map is able to arrange cells according to their expression profile: Cells that divided the most and the least appear
at the tips of the di�erent branches.

In order to display a 2Dplotwe supply a vector containing twodi�usion component numbers (here 1 & 2) as second
argument.

In [11]: plot(dif, 1:2, pch = 20, col.by = ’num.cells’,
legend.main = ’Cell stage’)
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Alternative visualizations

Di�usion maps consist of eigenvectors called Di�usion Components (DCs) and corresponding eigenvalues. Per
default, the first 20 are returned.

You are also able to use packages for interative plots like rgl in a similar fashion, by directly subsetting the DCs
using eigenvectors(dif):

In [31]: library(rgl)
plot3d(eigenvectors(dif)[, 1:3],

col = log2(phenoData(normalized.ct)$num.cells))
# now use your mouse to rotate the plot in the window
rgl.close()

For the popular ggplot2 package, there is built in support in the form of a fortify.DiffusionMapmethod,
which allows to use Di�usionMap objects as data parameter in the ggplot and qplot functions:

In [13]: library(ggplot2)
qplot(DC1, DC2, data = dif, colour = factor(num.cells)) +

scale_color_brewer(palette = ’Spectral’)
# or alternatively:
#ggplot(dif, aes(DC1, DC2, colour = factor(num.cells))) + ...
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As aesthetics, all di�usion components, gene expressions, andannotations are available. If youplan tomakemany
plots, create a data.frame first by using as.data.frame(dif) or fortify(dif), assign it to a variable
name, and use it for plotting.

3 Parameter selection

Two important parameters to DiffusionMap, dims and sigma, crucially determine the di�usion map approx-
imation and are explained in detail in the following section.

Other parameters are explained at the end of this section.

Dimensions dims

Di�usion maps consist of the eigenvectors (which we refer to as di�usion components) and corresponding eigen-
values of the di�usion distancematrix. The latter indicate the di�usion components’ importance, i.e. howwell the
eigenvectors approximate the data. The eigenvectors are decreasingly meaningful.

In [14]: plot(eigenvalues(dif), ylim = 0:1, pch = 20,
xlab = ’Diffusion component (DC)’, ylab = ’Eigenvalue’)
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Here, the first four apparently provide the best approximation. The later DCs o�en become noisy and less useful:

In [16]: par(mfrow = c(1, 2), mar = c(2,2,2,2))

plot(dif, 3:4, pch = 20, col.by = ’num.cells’, draw.legend = FALSE)
plot(dif, 19:20, pch = 20, col.by = ’num.cells’, draw.legend = FALSE)
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Gaussian kernel width sigma

The other important parameter for DiffusionMap is the Gaussian kernel width sigma (σ) that determines the
transition probability between data points. The default call of destiny – DiffusionMap(data) – automatically
estimates sigma using a heuristic. It is also possible to specify this parameter manually to tweak the result. The
eigenvector plot explained above will show a continuous decline instead of sharp drops if either the dataset is too
big or the sigma is chosen too small.

The sigma estimation algorithm is explained in detail in Haghverdi et al. (2015). In brief, it works by finding a max-
imum in the slope of the log-log plot of local density versus sigma.
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Using find.sigmas

An e�icient variant of that procedure is provided by find.sigma. This function determines the optimal sigma for
a subset of the given data and provides the default sigma for a DiffusionMap call. Due to a di�erent starting
point, the resulting sigma is di�erent from above:

In [18]: sigmas <- find.sigmas(normalized.ct, verbose = FALSE)
optimal.sigma(sigmas)

Out[18]: 10.8945955274194

The resulting di�usionmap’s approximation depends on the chosen sigma. Note that the sigma estimation heuris-
tic only finds local optima and even the global optimum of the heuristic might not be ideal for your data.

In [19]: par(pch = 20, mfrow = c(2, 2), mar = c(3,2,2,2))

for (sigma in c(2, 5, optimal.sigma(sigmas), 100))
plot(DiffusionMap(normalized.ct, sigma), 1:2,

main = substitute(sigma == s, list(s = round(sigma,2))),
col.by = ’num.cells’, draw.legend = FALSE)
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Other parameters

If the automatic exclusion of categorical and integral features for data frames is not enough, you can also supply
a vector of variable names or indices to use with the vars parameter. If you find that calculation time or used
memory is too large, the parameter k allows you to decrease the quality/runtime+memory ratio by limiting the
number of transitions calculated and stored. It is typically not needed if you have less than few thousand cells.
The n.eigs parameter specifies the number of di�usion components returned.

For more information, consult help(DiffusionMap).
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4 Missing and uncertain values

destiny is particularly well suited for gene expression data due to its ability to cope with missing and uncertain
data.

Censored values

Platforms such as RT-qPCR cannot detect expression values below a certain threshold. To cope with this, destiny
allows to censor specific values. In the case of Guo et al. (2010), only up to 28 qPCR cycles were counted. All tran-
scripts that would need more than 28 cycles are grouped together under this value. This is illustrated by gene
Aqp3:

In [20]: hist(exprs(cleaned.ct)[’Aqp3’, ], breaks = 20,
xlab = ’Ct of Aqp3’, main = ’Histogram of Aqp3 Ct’,
col = ’slategray3’, border = ’white’)
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For our censoring noisemodel we need to identify the limit of detection (LoD). Whilemost researchers use a global
LoD of 28, reflecting the overall sensitivity of the qPCRmachine, di�erent strategies to quantitatively establish this
gene-dependent LoD exist. For example, dilution series of bulk data can be used to establish an LoD such that a
qPCR reaction will be detected with a specified probability if the Ct value is below the LoD. Here, we use such dilu-
tion series provided by Guo et al. and first determine a gene-wise LoD as the largest Ct value smaller than 28. We
then follow themanual ApplicationGuidance: Single-Cell Data Analysis of the popular Biomarks systemanddeter-
mine a global LoD as the median over the gene-wise LoDs. We use the dilution series from table S7 (mmc6.xls).
If you have problemswith the speed of read.xlsx, consider storing your data in tab separated value format and
using read.delim or read.ExpressionSet.

In [21]: dilutions <- read.xlsx(’mmc6.xls’, 1L)
dilutions$Cell <- NULL #remove annotation column

lods <- apply(dilutions, 2, function(col) col[[max(which(col != 28))]])
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lod <- ceiling(median(lods))
lod

Out[21]: 25

This LoD of 25 and the maximum number of cycles the platform can perform (40), defines the uncertainty range
that denotes the possible range of censored values in the censoring model. Using the mean of the normalization
vector, we can adjust the uncertainty range and censoring value to be more similar to the other values in order to
improve distance measures between data points:

In [22]: lod.norm <- ceiling(median(lods) - mean(normalizations))
max.cycles.norm <- ceiling(40 - mean(normalizations))

list(lod.norm = lod.norm, max.cycles.norm = max.cycles.norm)

Out[22]: $lod.norm 10
$max.cycles.norm 25

We thenalsoneed to set thenormalizedvalues that shouldbecensored–namelyall datapointswerenoexpression
was detected a�er the LoD – to this special value, because the values at the cycle threshold were changed due to
normalization.

In [23]: censored.ct <- normalized.ct
exprs(censored.ct)[exprs(cleaned.ct) >= 28] <- lod.norm

Nowwe call the the DiffusionMap function using the censoring model:

In [24]: thresh.dif <- DiffusionMap(censored.ct,
censor.val = lod.norm,
censor.range = c(lod.norm, max.cycles.norm),
verbose = FALSE)

plot(thresh.dif, 1:2, col.by = ’num.cells’, pch = 20,
legend.main = ’Cell stage’)
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Compared to the di�usionmap createdwithout censoringmodel, thismap looksmore homogeneous since it con-
tains more data points.

Missing values

Gene expression experiments may fail to produce some data points, conventionally denoted as “not available”
(NA). By calling DiffusionMap(..., missings = c(total.minimum, total.maximum)), you can
specify the parameters for the missing value model.

As in the data from Guo et al. (2010) no missing values occurred, we illustrate the capacity of destiny to handle
missing values by artificially treating ct values of 999 (i. e. data points were no expression was detected a�er 40
cycles) asmissing. This is purely for illustrativepurposes and inpractice these values shouldbe treatedas censored
as illustrated in the previous section.

In [25]: # remove rows with divisionless cells
ct.w.missing <- ct[, phenoData(ct)$num.cells > 1L]
# and replace values larger than the baseline
exprs(ct.w.missing)[exprs(ct.w.missing) > 28] <- NA

We then perform normalization on this version of the data:

In [26]: housekeep <- colMeans(exprs(ct.w.missing)[housekeepers, ],
na.rm = TRUE)

w.missing <- ct.w.missing
exprs(w.missing) <- exprs(w.missing) - housekeep

exprs(w.missing)[is.na(exprs(ct.w.missing))] <- lod.norm

Finally, we create a di�usion map with both missing value model and the censoring model from before:

In [27]: dif.w.missing <- DiffusionMap(w.missing,
censor.val = lod.norm,
censor.range = c(lod.norm,

max.cycles.norm),
missing.range = c(1, 40),
verbose = FALSE)

plot(dif.w.missing, 1:2, col.by = ’num.cells’, pch = 20,
legend.main = ’Cell stage’)
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This result looks very similar to our previous di�usionmap since only six additional data points have been added.
However if your platform creates more missing values, including missing values will be more useful.

5 Prediction

In order to project cells into an existing di�usion map, for example to compare two experiments measured by the
same platform or to add new data to an existing map, we implemented dm.predict. It calculates the transition
probabilities between datapoints in old and new data and projects cells into the di�usion map using the existing
di�usion components.

As an example we assume that we created a di�usion map from one experiment on 64 cell stage embryos:

In [28]: ct64 <- censored.ct[, phenoData(censored.ct)$num.cells == 64]

dif64 <- DiffusionMap(ct64)

Let us compare the expressions from the 32 cell state embryos to the existingmap. We usedm.predict to create
the di�usion components for the new cells using the existing di�usion components from the old data:

In [29]: ct32 <- censored.ct[, phenoData(censored.ct)$num.cells == 32]
pred32 <- dm.predict(dif64, ct32)

By providing the more and col.more parameters of the plot function, we show the first two DCs for both old
and new data:

In [30]: par(mar = c(2,2,1,5), pch = 20)
plot(dif64, 1:2, col = palette()[[6]],

new.dcs = pred32, col.new = palette()[[5]])
colorlegend(c(32L, 64L), palette()[5:6])
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Clearly, the 32 and 64 cell state embryos occupy similar regions in the map, while the cells from the 64 cell state
are developed further.

6 Troubleshooting

There are several properties of data that can yield subpar results. This section explains a few strategies of dealing
with them:

read.xlsx is slow: Using read.xlsx2 and manually converting the text columns into numbers a�werwards
could be a solution, but using tab separated values (TSV) or comma separated values (CSV) is more portable and
robust than Microso� Excel.

Preprocessing: if there is a strong dependency of the variance on the mean in your data (as for scRNA-Seq count
data), use a variance stabilizing transformation such as the square root or a (regularized) logarithmbefore running
destiny.

Outliers: If a Di�usion Component strongly separates some outliers from the remaining cells such that there is a
much greater distance between them than within the rest of the cells (i. e. almost two discrete values), consider
removing those outliers and recalculating the map, or simply select di�erent Di�usion Components. It may also a
be a good idea to check whether the outliers are also present in a PCA plot to make sure they are not biologically
relevant.

Large datasets: If memory is not su�icient and no machine with more RAM is available, the k parameter could be
decreased. In addition (particularly for >500,000 cells), you can also downsample the data (possibly in a density
dependent fashion).

“Large-p-small-n” data: E.g. for scRNA-Seq, it is may be necessary to first perform a Principal Component Analysis
(PCA) on the data (e.g. usingprcomp orprincomp) and to calculate theDi�usion Components from the Principal
Components (typically using the top 50 components yields good results).
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