Package 'ropls’

April 23, 2016

Type Package
Title PCA, PLS(-DA) and OPLS(-DA) for multivariate analysis and feature selection of omics data
Version 1.2.14
Date 2016-02-12
Author Etienne A. Thevenot etienne.thevenot@cea.fr
Maintainer Etienne A. Thevenot <etienne. thevenot@cea.fr>
biocViews Regression, Classification, PrincipalComponent, Transcriptomics, Proteomics, Metabolomics, Lipidomics, MassSpectrometry
Description Latent variable modeling with Principal Component Analysis (PCA) and Partial Least Squares (PLS) are powerful methods for visualization, regression, classification, and feature selection of omics data where the number of variables exceeds the number of samples and with multicollinearity among variables. Orthogonal Partial Least Squares (OPLS) enables to separately model the variation correlated (predictive) to the factor of interest and the uncorrelated (orthogonal) variation. While performing similarly to PLS, OPLS facilitates interpretation. Successful applications of these chemometrics techniques include spectroscopic data such as Raman spectroscopy, nuclear magnetic resonance (NMR), mass spectrometry (MS) in metabolomics and proteomics, but also transcriptomics data. In addition to scores, loadings and weights plots, the package provides metrics and graphics to determine the optimal number of components (e.g. with the R2 and Q2 coefficients), check the validity of the model by permutation testing, detect outliers, and perform feature selection (e.g. with Variable Importance in Projection or regression coefficients). The package can be accessed via a user interface on the Workflow4Metabolomics.org online resource for computational metabolomics (built upon the Galaxy environment).
Suggests RUnit, BiocGenerics, BiocStyle
License CeCILL
URL http://dx.doi.org/10.1021/acs.jproteome.5b00354
NeedsCompilation no
R topics documented:
ropls-package 2
aminoacids 4
cellulose 5
cornell 6
foods 7
linnerud 8
lowarp 9
mark 10
opls 11
plot.opls 15
predict.opls 17
sacurine 18
strF 19
Index 20
ropls-package $P C A, P L S(-D A)$ and $O P L S(-D A)$ for multivariate analysis and feature selection of omics data

Description

Latent variable modeling with Principal Component Analysis (PCA) and Partial Least Squares (PLS) are powerful methods for visualization, regression, classification, and feature selection of omics data where the number of variables exceeds the number of samples and with multicollinearity among variables. Orthogonal Partial Least Squares (OPLS) enables to separately model the variation correlated (predictive) to the factor of interest and the uncorrelated (orthogonal) variation. While performing similarly to PLS, OPLS facilitates interpretation. Successful applications of these chemometrics techniques include spectroscopic data such as Raman spectroscopy, nuclear magnetic resonance (NMR), mass spectrometry (MS) in metabolomics and proteomics, but also transcriptomics data. In addition to scores, loadings and weights plots, the package provides metrics and graphics to determine the optimal number of components (e.g. with the R2 and Q2 coefficients), check the validity of the model by permutation testing, detect outliers, and perform feature selection (e.g. with Variable Importance in Projection or regression coefficients). The package can be accessed via a user interface on the Workflow4Metabolomics.org online resource for computational metabolomics (built upon the Galaxy environment).

Details

Package:	ropls
Type:	Package
Version:	1.2 .14
Date:	$2016-02-12$
License:	CeCILL
LazyLoad:	yes

Author(s)

Etienne A. Thevenot.
Maintainer: Etienne A. Thevenot etienne.thevenot@cea.fr
Please cite: Etienne A. Thevenot, Aurelie Roux, Ying Xu, Eric Ezan, and Christophe Junot (2015). Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research. DOI: 10.1021/acs.jproteome.5b00354.

Examples

```
#### PCA
data(foods) ## see Eriksson et al. (2001); presence of 3 missing values (NA)
head(foods)
foodMN <- as.matrix(foods[, colnames(foods) != "Country"])
rownames(foodMN) <- foods[, "Country"]
head(foodMN)
foo.pca <- opls(foodMN)
#### PLS with a single response
data(cornell) ## see Tenenhaus, 1998
head(cornell)
cornell.pls <- opls(as.matrix(cornell[, grep("x", colnames(cornell))]),
                            cornell[, "y"])
## Complementary graphics
plot(cornell.pls, typeVc = c("outlier", "predict-train", "xy-score", "xy-weight"))
#### PLS with multiple (quantitative) responses
data(lowarp) ## see Eriksson et al. (2001); presence of NAs
head(lowarp)
lowarp.pls <- opls(as.matrix(lowarp[, c("glas", "crtp", "mica", "amtp")]),
    as.matrix(lowarp[, grepl("^wrp", colnames(lowarp)) |
                                    grepl("^st", colnames(lowarp))]))
```

```
#### PLS-DA
data(sacurine)
attach(sacurine)
sacurine.plsda <- opls(dataMatrix, sampleMetadata[, "gender"])
#### OPLS-DA
sacurine.oplsda <- opls(dataMatrix, sampleMetadata[, "gender"], predI = 1, orthoI = NA)
detach(sacurine)
```

```
aminoacids Amino-Acids Dataset
```


Description

Quantitative structure property relationship (QSPR)

Usage

data(aminoacids)

Format

A data frame with the following parameters:
AA amino acid
PIE lipophilicity constant of the AA side chain
PIF lipophilicity constant of the AA side chain
DGR free energy of transfer of an AA side chain from protein interior to water
SAC water-accessible surface area of AA's calculated by MOLSV
MR molecular refractivity
Lam polarity parameter
Vol molecular volume of AA's calculated by MOLSV
DDGTS free energy of unfolding of the tryptophane synthase a unit of bacteriophage T 4 lysosome

Value

Data frame (numeric type except the first column, which can be transformed into row names) with 19 rows and the 9 columns contaning information about amino acids. For details see the 'Format' section above.

Source

'aminoacids' dataset.

References

Wold et al. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 58:109-130.

```
cellulose
```

NIR-Viscosity example data set to illustrate multivariate calibration using PLS, spectral filtering and OPLS

Description

The data were collected at Akzo Nobel, Ornkoldsvik (Sweden). The raw material for their cellulose derivative process is delivered to the factory in form of cellulose sheets. Before entering the process the cellulose sheets are controlled by a viscosity measurement, which functions as a steering parameter for that particular batch. In this data set NIR spectra for 180 cellulose sheets were collected after the sheets had been sent through a grinding process. Hence the NIR spectra were measured on the cellulose raw material in powder form. Data are divided in two parts, one used for modeling and one part for testing.

Usage

data(cellulose)

Format

A list with the following elements: 1) nirMN: a matrix of 180 samples x 1201 wavelengths in the VIS-NIR region, 2) viscoVn: a vector (length $=180$) of viscosity of cellulose powder, and 3) classVn: a vector (length $=180$) of class membership (1 or 2)

Value

For details see the Format section above.

References

Multivariate calibration using spectral data. Simca tutorial. Umetrics.

```
cornell Octane of various blends of gasoline
```


Description

Twelve mixture component proportions of the blend are analysed

Usage
 data(cornell)

Format

A data frame with the following parameters:
num mixture number
x 1 proportion of component 1
$\times 2$ proportion of component 2
$x 3$ proportion of component 3
$x 4$ proportion of component 4
$x 5$ proportion of component 5
$x 6$ proportion of component 6
$x 7$ proportion of component 7 Note: the 7 variables are correlated since they sum up to 1
y octane (quantitative variable)

Value

Data frame (numeric type only; the first column can be transformed into row names) with 12 rows and 9 columns corresponding to the 'num'ber of the mixture (column 1), the proportion of each of the 7 ' x ' components within the mixture (columns 2-8), and the octane indice 'y' (column 9). For details see the 'Format' section above.

Source

Tenenhaus (1998), Table 6, page 78.

References

Tenenhaus (1998). La regression PLS: theorie et pratique. Paris: Editions Technip.

Description

The relative consumption of 20 food items was compiled for 16 countries. The values range between 0 and 100 percent and a high value corresponds to a high consumption. The dataset contains 3 missing data.

Usage

data(foods)

Format

A data frame with the following parameters:
Country Name of the country
Gr_Coffe Ground Coffee
Inst_Coffe Instant Coffee
Tea Tea
Sweetner Sweetner
Biscuits Biscuits
Pa_Soup Powder Soup
Ti_Soup Tin Soup
In_Potat Instant Potatoes
Fro_Fish Frozen Fish
Fro_Veg Frozen Vegetables
Apples Apples
Oranges Oranges
Ti_Fruit Tin Fruit
Jam Jam
Garlic Garlic
Butter Butter
Margarine Margarine
Olive_Oil Olive Oil
Yoghurt Yoghurt
Crisp_Brea Crisp Bread

Value

Data frame (numeric type except the first column, which can be transformed into row names) with 16 rows and 21 columns, corresponding to the 'Country' (column 1), followed by the consumption of each of the 20 food items (columns 2-21). For details see the 'Format' section above.

References

Eriksson et al. (2006). Multi- and Megarvariate Data Analysis. Umetrics Academy. pp.10, 33, 48.
linnerud Linnerud Dataset

Description

Three physiological and three exercise variables are measured on twenty middle-aged men in a fitness club.

Usage

data(linnerud)

Format

A data frame with the following parameters:
num subject number
weight weight
waist waist
pulse pulse
pullUp pull-up
squat situp
jump jump

Value

Data frame (numeric type only; the first column can be transformed into row names) with 20 rows and 7 columns corresponding to the subject's 'num'ber (column 1), the 3 physiological variables (columns 2-4), and the 3 exercise variables (columns 5-7). For details see the 'Format' section above.

Source

'mixOmics' 'linnerud' dataset.

References

Tenenhaus (1998). La regression PLS: theorie et pratique. Paris: Editions Technip.

Description

This example concerns the development of a polymer similar to that used in the plastic covering of mobile phones. The desired profile of the polymer was low warp and high strength. Four constituents (glas, crtp, mica, and amtp) were varied in the polymer formulation by means of a 17 run mixture design. For each new polymer, i.e., each new experiment in the mixture design, 14 responses relating to both warp and strength were measured on the product. The objective of the data analysis was to uncover which combination of factors (the four ingredients) gave polymers with low warp and high strength. The data set contains 10 missing values (NA).

Usage

data(lowarp)

Format

A data frame with the following parameters:
num mixture number
glas glas constituent
crtp crtp constituent
mica mica constituent
amtp amtp constituent
wrp1 warp response 1
wrp2 warp response 2
wrp3 warp response 3
wrp4 warp response 4
wrp5 warp response 5
wrp6 warp response 6
wrp7 warp response 7
wrp8 warp response 8
st1 strength response 1
st2 strength response 2
st3 strength response 3
st4 strength response 4
st5 strength response 5
st6 strength response 6

Value

Data frame (numeric type only; the first column can be transformed into row names) with 17 rows and 19 columns corresponding to the subject's 'num'ber (column 1), the 4 constituent variables (columns 2-5), the 8 warp responses (columns 6-13), and the 6 strength responses (columns 14-19). For details see the 'Format' section above.

References

Eriksson et al. (2006). Multi- and Megarvariate Data Analysis. Umetrics Academy. pp.16, 77, 209.

```
mark 'mark' Dataset
```


Description

Examination marks obtained by French students in Mathematics, Physics, French and English

Usage

data(mark)

Format

A data frame with the following parameters:
nom names of the students
math marks in mathematics
phys marks in physics
fran marks in french
angl marks in english

Value

Data frame (numeric type except the first column, which can be transformed into row names) with 9 rows and 5 columns, corresponding to the name of the students (column 1), followed by the marks obtained in Maths, Physics, French and English (columns 2-5). For details see the 'Format' section above.

Source

'mark' dataset.

References

Baccini (2010). Statistique Descriptive Multidimensionnelle (pour les nuls).

Description

PCA, PLS, and OPLS regression, classification, and cross-validation with the NIPALS algorithm

```
Usage
    ## Default S3 method:
    opls(x,
    y = NULL,
    predI = NA,
    orthoI = 0,
    algoC = c("default", "nipals", "svd")[1],
    crossvalI = 7,
    log10L = FALSE,
    permI = 20,
    scaleC = c("none", "center", "pareto", "standard")[4],
    subset = NULL,
    printL = TRUE,
    plotL = TRUE,
    .sinkC = NULL,
    ...)
```


Arguments

x
y Response to be modelled: Either 1) 'NULL' for PCA (default) or 2) a numerical vector (same length as 'x' row number) for single response (O)PLS, or 3) a numerical matrix (same row number as 'x') for multiple response PLS or 4) a factor (same length as ' x ' row number) for (O)PLS-DA. Note that, for convenience, character vectors are also accepted for (O)PLS-DA as well as single column numerical (resp. character) matrices for (O)PLS (respectively (O)PLSDA). NAs are allowed in numeric responses.
predI Integer: number of components (predictive componenents in case of PLS and OPLS) to extract; for OPLS, predI is (automatically) set to 1 ; if set to NA [default], autofit is performed: a maximum of 10 components are extracted until (i) PCA case: the variance is less than the mean variance of all components (note that this rule requires all components to be computed and can be quite time-consuming for large datasets) or (ii) PLS case: either R2Y of the component is <0.01 (N4 rule) or Q2Y is <0 (for more than 100 observations) or 0.05 otherwise (R1 rule)
orthoI Integer: number of orthogonal components (for OPLS only); when set to 0 [default], PLS will be performed; otherwise OPLS will be peformed; when set to

	NA, OPLS is performed and the number of orthogonal components is automati- cally computed by using the cross-validation (with a maximum of 9 orthogonal components).
algoc	Default algorithm is 'svd' for PCA (in case of no missing values in 'x'; 'nipals' otherwise) and 'nipals' for PLS and OPLS; when asking to use 'svd' for PCA on an 'x' matrix containing missing values, NAs are set to half the minimum of non-missing values and a warning is generated
crossvalI	Integer: number of cross-validation segments (default is 7); The number of sam- ples (rows of 'x') must be at least >= crossvalI
log10L	Should the 'x' matrix be log10 transformed? Zeros are set to 1 prior to transfor- mation
permI	Integer: number of random permutations of response labels to estimate R2Y and Q2Y significance by permutation testing [default is 20 for single response models (without train/test partition), and 0 otherwise]
scaleC	Character: either no centering nor scaling ('none'), mean-centering only ('cen- ter'), mean-centering and pareto scaling ('pareto'), or mean-centering and unit variance scaling ('standard') [default]
subset	Integer vector: indices of the observations to be used for training (in a classifi- cation scheme); use NULL [default] for no partition of the dataset; use 'odd' for a partition of the dataset in two equal sizes (with respect to the classes propor- tions)
printL	Logical: Should informations regarding the data set and the model be printed? [default = TRUE]
plotL	Logical: Should the 'summary' plot be displayed? [default = TRUE] Character: Name of the file for R output diversion [default = NULL: no diver-
sion]; Diversion of messages is required for the integration into Galaxy	

Value

typeC Character: model type (PCA, PLS, PLS-DA, OPLS, or OPLS-DA)
descriptionMC Character matrix: Description of the data set (number of samples, variables, etc.)
modelDF Data frame with the model overview (number of components, R2X, R2X(cum), R2Y, R2Y(cum), Q2, Q2(cum), significance, iterations)
summaryDF Data frame with the model summary (cumulated R2X, R2Y and Q2); RMSEE is the square root of the mean error between the actual and the predicted responses
subset Integer vector: Indices of observations in the training data set
pcaVarVn PCA: Numerical vector of variances of length: predI
vipVn PLS(-DA): Numerical vector of Variable Importance in Projection; OPLS(-DA): Numerical vector of Variable Importance for Prediction (VIP4,p from GalindoPrieto et al, 2014)
orthoVipVn OPLS(-DA): Numerical vector of Variable Importance for Orthogonal Modeling (VIP4,o from Galindo-Prieto et al, 2014)

fitted	(O)PLS: Predicted reponse based on the reference subset (which is the whole ' x ' matrix in case of no partition: subset $=$ NULL)
tested	(O)PLS: In case of training/test partition indicated via the subset argument, predicted response based on the test subset
coefficients	(O)PLS(-DA): Numerical matrix of regression coefficients (B; dimensions: ncol(x) x number of responses; $\mathrm{B}=\mathrm{W}^{*} \mathrm{C}^{\prime}$ and $\mathrm{Y}=\mathrm{XB}+\mathrm{F}$
residuals	(O)PLS: Numerical vector equal to the difference between the true and the predicted responses
xMeanVn	Numerical vector: variable means of the 'x' matrix
$x S d V n$	Numerical vector: variable standard deviations of the ' x ' matrix
yMeanVn	(O)PLS: Numerical vector: variable means of the 'y' response (transformed into a dummy matrix in case it is of 'character' mode initially)
$y S d V n$	(O)PLS: Numerical vector: variable standard deviations of the 'y' response (transformed into a dummy matrix in case it is of 'character' mode initially)
xZeroVarVi	Numerical vector: indices of variables with variance $<2.22 \mathrm{e}-16$ which were excluded from 'x' before building the model
scoreMN	Numerical matrix of x scores (T; dimensions: nrow $(x) x$ predI) $X=T P '+E ; Y$ $=\mathrm{TC}^{\prime}+\mathrm{F}$
loadingMN	Numerical matrix of x loadings (P ; dimensions: $\mathrm{ncol}(\mathrm{x}) \mathrm{x}$ predI) $\mathrm{X}=\mathrm{TP}{ }^{\prime}+\mathrm{E}$
weightMN	(O)PLS: Numerical matrix of x weights (W ; same dimensions as loadingMN)
orthoScoreMN	OPLS: Numerical matrix of orthogonal scores (Tortho; dimensions: nrow(x) x number of orthogonal components)
orthoLoadingMN	OPLS: Numerical matrix of orthogonal loadings (Portho; dimensions: ncol(x) x number of orthogonal components)
orthoWeightMN	OPLS: Numerical matrix of orthogonal weights (same dimensions as orthoLoadingMN)
CMN	(O)PLS: Numerical matrix of Y weights (C; dimensions: number of responses or number of classes in case of qualitative response) x number of predictive components; $\mathrm{Y}=\mathrm{TC}{ }^{\prime}+\mathrm{F}$
UMN	(O)PLS: Numerical matrix of Y scores (U ; same dimensions as scoreMN); $\mathrm{Y}=$ UC' ${ }^{\prime}$ G
weightStarMN	Numerical matrix of projections (W^{*}; same dimensions as loadingMN); whereas columns of weightMN are derived from successively deflated matrices, columns of weightStarMN relate to the original ' x ' matrix: $\mathrm{T}=\mathrm{XW}^{*} ; \mathrm{W}^{*}=\mathrm{W}\left(\mathrm{P}^{\prime} \mathrm{W}\right)$ inv
suppLs	List of additional objects to be used internally by the 'print', 'plot', and 'predict' methods

Author(s)

Etienne Thevenot (CEA)

References

Eriksson et al. (2006). Multi- and Megarvariate Data Analysis. Umetrics Academy. Rosipal and Kramer (2006). Overview and recent advances in partial least squares Tenenhaus (1990). La regression PLS : theorie et pratique. Technip. Wehrens (2011). Chemometrics with R. Springer. Wold et al. (2001). PLS-regression: a basic tool of chemometrics

Examples

```
#### PCA
data(foods) ## see Eriksson et al. (2001); presence of 3 missing values (NA)
head(foods)
foodMN <- as.matrix(foods[, colnames(foods) != "Country"])
rownames(foodMN) <- foods[, "Country"]
head(foodMN)
foo.pca <- opls(foodMN)
#### PLS with a single response
data(cornell) ## see Tenenhaus, 1998
head(cornell)
cornell.pls <- opls(as.matrix(cornell[, grep("x", colnames(cornell))]),
    cornell[, "y"])
## Complementary graphics
plot(cornell.pls, typeVc = c("outlier", "predict-train", "xy-score", "xy-weight"))
#### PLS with multiple (quantitative) responses
data(lowarp) ## see Eriksson et al. (2001); presence of NAs
head(lowarp)
lowarp.pls <- opls(as.matrix(lowarp[, c("glas", "crtp", "mica", "amtp")]),
    as.matrix(lowarp[, grepl("^wrp", colnames(lowarp)) |
    grepl("^st", colnames(lowarp))]))
#### PLS-DA
data(sacurine)
attach(sacurine)
sacurine.plsda <- opls(dataMatrix, sampleMetadata[, "gender"])
#### OPLS-DA
sacurine.oplsda <- opls(dataMatrix, sampleMetadata[, "gender"], predI = 1, orthoI = NA)
detach(sacurine)
```

```
plot.opls

\section*{Description}

This function plots values based upon a model trained by opls.

\section*{Usage}
```


S3 method for class 'opls'

plot(x,
y,
typeVc = c("correlation",
"outlier",
"overview",
"permutation",
"predict-train",
"predict-test",
"summary",
"x-loading",
"x-score",
"x-variance",
"xy-score",
"xy-weight")[7],
parAsColFcVn = NA,
parCexN = 0.8,
parCompVi = c(1, 2),
parDevNewL = TRUE,
parEllipsesL = NA,
parLabVc = NA,
parTitleL = TRUE,
file.pdfC = NULL,
.sinkC = NULL,
...)

```

\section*{Arguments}
\begin{tabular}{ll}
x & Object of class "opls", created by opls. \\
y & Currently not used. \\
typeVc & \begin{tabular}{l} 
Character vector: the following plots are available: 'correlation': Variable cor- \\
relations with the components, 'outlier': Observation diagnostics (score and or- \\
thogonal distances), 'overview': Model overview showing R2Ycum and Q2cum \\
(or 'Variance explained' for PCA), 'permutation': Scatterplot of R2Y and Q2Y \\
actual and simulated models after random permutation of response values; 'predict- \\
train' and 'predict-test': Predicted vs Actual Y for reference and test sets (only if
\end{tabular}
\end{tabular}

Y has a single column), 'summary' [default]: 4-plot summary showing permutation, overview, outlier, and x-score together, 'x-variance': Spread of raw variables corresp. with min, median, and max variances, 'x-loading': X-loadings (the 6 of variables most contributing to loadings are colored in red to facilitate interpretation), 'x-score': X-Scores, 'xy-score': XY-Scores, 'xy-weight': XYWeights
parAsColFcVn Optional factor character or numeric vector to be converted into colors for the score plot; default is NA [ie colors will be converted from 'y' in case of (O)PLS(DA) or will be 'black' for PCA]
parCexN Numeric: amount by which plotting text should be magnified relative to the default
parCompVi Integer vector of length 2: indices of the two components to be displayed on the score plot (first two components by default)
parDevNewL Should the graphics be displayed in a new window [default]; If FALSE, parLayL must be set to FALSE also
parEllipsesL Should the Mahalanobis ellipses be drawn? If 'NA' [default], ellipses are drawn when either a character parAsColVcn is provided (PCA case), or when 'y' is a character factor ((O)PLS-DA cases).
parLabVc Optional character vector for the labels of observations on the plot; default is NA [ie row names of ' \(x\) ', if available, or indices of ' \(x\) ', otherwise, will be used]
parTitleL Should the titles of the plots be printed on the graphics (default = TRUE); It may be convenient to set this argument to FALSE when the user wishes to add specific titles a posteriori
file.pdfC Figure filename (e.g. in case of batch mode) ending with '.pdf'; for multiple graphics, set parLayL to TRUE; default is NULL (no saving; displaying instead)
.sinkC Character: Name of the file for R output diversion [default = NULL: no diversion]; Diversion of messages is required for the integration into Galaxy
... Currently not used.

\section*{Author(s)}

Etienne Thevenot (CEA)

\section*{Examples}
```

data(sacurine)
attach(sacurine)
for(typeC in c("correlation", "outlier", "overview",
"permutation", "predict-train","predict-test",
"summary", "x-loading", "x-score", "x-variance",
"xy-score", "xy-weight")) {
print(typeC)
if(grepl("predict", typeC))
subset <- "odd"

```
```

 else
 subset <- NULL
 opLs <- opls(dataMatrix, sampleMetadata[, "gender"],
 predI = ifelse(typeC != "xy-weight", 1, 2),
 orthoI = ifelse(typeC != "xy-weight", 1, 0),
 permI = ifelse(typeC == "permutation", 10, 0),
 subset = subset,
 printL = FALSE, plotL = FALSE)
 plot(opLs, typeVc = typeC)
 }
 detach(sacurine)
    ```
predict.opls Predict Method for (O)PLS

\section*{Description}

This function predicts values based upon a model trained by opls.

\section*{Usage}
\#\# S3 method for class 'opls'
predict(object, newdata, ...)

\section*{Arguments}
object Object of class "opls", created by opls.
newdata Either a data frame or a matrix, containing numeric columns only, with the same number of columns (variables) as the 'x' used for model training with 'opls'.
... Currently not used.

\section*{Author(s)}

Etienne Thevenot (CEA)

\section*{Examples}
```

data(sacurine)
attach(sacurine)
predictorMN <- dataMatrix
responseFc <- sampleMetadata[, "gender"]

```
```

sacurine.plsda <- opls(predictorMN,
responseFc,
subset = "odd")
trainVi <- sacurine.plsda[["subset"]]
table(responseFc[trainVi], fitted(sacurine.plsda))
table(responseFc[-trainVi],
predict(sacurine.plsda, predictorMN[-trainVi,]))
detach(sacurine)

```
sacurine

Analysis of the human adult urinary metabolome variations with age, body mass index and gender

\section*{Description}

Urine samples from 183 human adults were analyzed by liquid chromatography coupled to highresolution mass spectrometry (LTQ Orbitrap) in the negative ionization mode. A total of 109 metabolites were identified or annotated at the MSI level 1 or 2. After retention time alignment with XCMS, peaks were integrated with Quan Browser. After signal drift and batch effect correction of intensities, each urine profile was normalized to the osmolality of the sample. Finally, the data were \(\log 10\) transformed.

\section*{Usage}
data(sacurine)

\section*{Format}

A list with the following elements: 1) dataMatrix: a 183 samples x 109 variables matrix of numeric type corresponding to the intensity profiles (values have been \(\log 10\)-transformed); 2) sampleMetadata: a \(183 \times 3\) data frame, with the volunteers' age ('age', numeric), body mass index ('bmi', numeric), and gender ('gender', factor), and 3) variableMetadata: a \(109 \times 3\) data frame, with the metabolites' MSI identification level ('msiLevel': either 1 or 2), HMDB ID when available ('hmdb', character), chemical class according to the 'super class' taxonomy of HMDB ('chemicalClass', character)

\section*{Value}

List containing the 'dataMatrix' matrix (numeric) of data (samples as rows, variables as columns), the 'sampleMetadata' data frame of sample metadata, and the variableMetadata data frame of variable metadata. Row names of 'dataMatrix' and 'sampleMetadata' are identical. Column names of 'dataMatrix' are identical to row names of 'variableMetadata'. For details see the 'Format' section above.

\section*{References}

Thevenot E.A., Roux A., Xu Y., Ezan E. and Junot C. (2015). Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research, DOI: 10.1021/acs.jproteome.5b00354
```

strF Printed summary of an R object

```

\section*{Description}

Displays the class, mode, size and first...last values of the object

\section*{Usage}
\(\operatorname{strF}(i n p M F, b o r d e r N=2, \operatorname{bigMarkC}=", ")\)

\section*{Arguments}
\begin{tabular}{ll} 
inpMF & Input matrix, dataframe or vector \\
borderN & Number of border (first and last) rows and columns to display \\
bigMarkC & Big mark separator for summary results
\end{tabular}

\section*{Value}

This function has no output.

\section*{Author(s)}

Etienne Thevenot (CEA)

\section*{See Also}
str

\section*{Examples}
```

data(sacurine)
strF(sacurine[['dataMatrix']])
strF(sacurine[['sampleMetadata']])

```

\section*{Index}
```

*Topic datasets
aminoacids,4
cellulose, 5
cornell,6
foods,7
linnerud, }
lowarp,9
mark, 10
sacurine, 18
*Topic package
ropls-package, 2
aminoacids,4
cellulose, 5
cornell, }
foods, }
linnerud,8
lowarp,9
mark, 10
opls, 11
plot.opls, 15
predict.opls,17
ropls(ropls-package), 2
ropls-package, 2
sacurine, 18
str,19
strF,19

```
```

