
Package ‘csaw’
April 22, 2016

Version 1.4.1

Date 2015/11/20

Title ChIP-seq analysis with windows

Author Aaron Lun <alun@wehi.edu.au>, Gordon Smyth <smyth@wehi.edu.au>

Maintainer Aaron Lun <alun@wehi.edu.au>

Depends R (>= 3.2.0), GenomicRanges, SummarizedExperiment

Imports Rsamtools, edgeR, limma, GenomicFeatures, AnnotationDbi,
methods, GenomicAlignments, S4Vectors, IRanges, GenomeInfoDb

Suggests org.Mm.eg.db, TxDb.Mmusculus.UCSC.mm10.knownGene

biocViews MultipleComparison, ChIPSeq, Normalization, Sequencing,
Coverage, Genetics, Annotation

Description Detection of differentially bound regions in ChIP-seq data
with sliding windows, with methods for normalization and proper
FDR control.

License GPL-3

NeedsCompilation yes

R topics documented:
checkBimodality . 2
clusterFDR . 4
combineTests . 5
consolidateSizes . 7
correlateReads . 9
csawUsersGuide . 11
detailRanges . 12
dumpPE . 14
extractReads . 16
filterWindows . 18
findMaxima . 21
getBestTest . 22
getPESizes . 24

1

2 checkBimodality

getWidths . 25
makeExtVector . 26
maximizeCcf . 28
mergeWindows . 29
normOffsets . 30
overlapStats . 32
Parameter list methods . 35
profileSites . 36
readParam . 38
regionCounts . 41
scaledAverage . 42
SEmethods . 44
strandedCounts . 45
upweightSummit . 47
windowCounts . 48
wwhm . 50

Index 52

checkBimodality Check bimodality of regions

Description

Compute the maximum bimodality score across all base pairs in each region.

Usage

checkBimodality(bam.files, regions, width=100, param=readParam(),
prior.count=2, invert=FALSE)

Arguments

bam.files a character vector containing paths to sorted and indexed BAM files

regions a GRanges object specifying the regions over which bimodality is to be calcu-
lated

width an integer vector indicating the span with which to compute bimodality

param a readParam object containing read extraction parameters

prior.count a numeric scalar specifying the prior count to compute bimodality scores

invert a logical scalar indicating whether bimodality score should be inverted

checkBimodality 3

Details

Consider a base position x. This function counts the number of forward- and reverse-strand reads
within the interval [x-width+1, x]. It then calculates the forward:reverse ratio after adding
prior.count to both counts. This is repeated for the interval [x, x+width-1], and the re-
verse:forward ratio is then computed. The smaller of these two ratios is used as the bimodality
score.

Sites with high bimodality scores will be enriched for forward- and reverse-strand enrichment on
the left and right of the site, respectively. Given a genomic region, this function will treat each base
position as a site. The largest bimodality score across all positions will be reported for each region.
The idea is to assist with the identification of transcription factor binding sites, which exhibit strong
strand bimodality. The function will be less useful for broad targets like histone marks.

If multiple bam.files are specified, they are effectively pooled so that counting uses all reads in
all files. The value of width should be set to the average fragment length, as this is allows optimal
counting of reads. Specifically, all reads in the subpeaks on either strand will be counted when x
is set to the center of the peak. A separate value can be specified for each library, to account for
differences in fragmentation.

If invert is set, the bimodality score will be flipped around, i.e., it will be maximized when reverse-
strand coverage dominates on the left, and forward-strand coverage dominates on the right. This
is designed for use in CAGE analyses where this inverted bimodality is symptomatic of enhancer
RNAs.

Value

A numeric vector containing the maximum bimodality score across all bases in each region.

Author(s)

Aaron Lun

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
incoming <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),

IRanges(c(1, 500, 100, 1000), c(100, 580, 500, 1500)))

checkBimodality(bamFiles, incoming)
checkBimodality(bamFiles, incoming, width=c(100, 200))
checkBimodality(bamFiles, incoming, param=readParam(minq=20, dedup=TRUE))
checkBimodality(bamFiles, incoming, prior.count=5)

Works on PE data; scores are computed from paired/rescued reads.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
checkBimodality(bamFile, incoming[1:3], param=readParam(pe="both"))
checkBimodality(bamFile, incoming[1:3], param=readParam(pe="both",

rescue.ext=50, max.frag=100))

4 clusterFDR

clusterFDR Compute the cluster-level FDR

Description

Compute the FDR across clusters based on the test-level FDR threshold

Usage

clusterFDR(ids, threshold)

Arguments

ids an integer vector of cluster IDs for each significant test below threshold

threshold a numeric scalar, specifying the FDR threshold used to define the significant
tests

Details

This function computes an informal estimate of the cluster-level FDR, where each cluster is formed
by aggregating only significant tests. In the context of ChIP-seq, each significant test refers to a
DB window that is detected at a FDR below threshold. The idea is to obtain an error rate while
reporting the precise coordinates of a DB subinterval in a complex region.

The cluster-level FDR is defined as the proportion of reported clusters that have no true positives.
Simply using threshold is not appropriate, as the cluster- and window-level FDRs are not equiva-
lent. This function also differs from the standard pipeline that is based on combineTests. Specifi-
cally, region definition in the standard pipeline must be independent of DB. Precise coordinates of
the DB subinterval cannot be reported.

Users should note that the calculation of the cluster-level FDR here is not statistically rigorous. In
particular, the observed number of false positive tests is estimated based on threshold and the
total number of significant tests. This is not guaranteed to be an upper bound, especially when the
observed window-level FDR is variable.

In conclusion, users should use the standard combineTests-based pipeline wherever possible. Clus-
tering on significant windows should only be performed where the precise coordinates of the DB
subinterval are important for interpretation.

Value

A numeric scalar as the cluster-level FDR.

Author(s)

Aaron Lun

See Also

mergeWindows, combineTests

combineTests 5

Examples

Setting up the windows and p-values.
windows <- GRanges("chrA", IRanges(1:1000, 1:1000))
test.p <- runif(1000)
test.p[c(1:10, 100:110, 220:240)] <- 0 # 3 significant subintervals.

Defining significant windows.
threshold <- 0.05
is.sig <- p.adjust(test.p, method="BH") <= threshold

Assuming that we only cluster significant windows.
merged <- mergeWindows(windows[is.sig], tol=0)
clusterFDR(merged$id, threshold)

combineTests Combine statistics across multiple tests

Description

Combines p-values across clustered tests using Simes’ method to control the cluster FDR.

Usage

combineTests(ids, tab, weight=NULL, pval.col=NULL, fc.col=NULL)

Arguments

ids an integer vector containing the cluster ID for each test

tab a dataframe of results with PValue, logCPM and at least one logFC field for each
test

weight a numeric vector of weights for each window, defaults to 1 for each test

pval.col an integer scalar specifying the column of tab containing the p-values, or a
character string containing the name of that column

fc.col an integer vector specifying the columns of tab containing the log-fold changes,
or a character vector containing the names of those columns

Details

This function uses Simes’ procedure to compute the combined p-value for each cluster of tests with
the same value of ids. Each combined p-value represents evidence against the global null hypothe-
sis, i.e., all individual nulls are true in each cluster. This may be more relevant than examining each
test individually when multiple tests in a cluster represent parts of the same underlying event, e.g.,
genomic regions consisting of clusters of windows. The BH method is also applied to control the
FDR across all clusters.

The importance of each test within a cluster can be adjusted by supplying different relative weight
values. This may be useful for downweighting low-confidence tests, e.g., those in repeat regions. In

6 combineTests

Simes’ procedure, weights are interpreted as relative frequencies of the tests in each cluster. Note
that these weights have no effect between clusters and will not be used to adjust the computed FDR.

By default, the relevant fields in tab are identified by matching the column names to their expected
values. Multiple fields in tab containing the logFC substring are allowed, e.g., to accommodate
ANOVA-like contrasts. If the column names are different from what is expected, specification of
the correct columns can be performed using pval.col and fc.col. This will overwrite any internal
selection of the appropriate fields.

This function will report the number of windows with log-fold changes above 0.5 and below -0.5, to
give some indication of whether binding increases or decreases in the cluster. If a cluster contains
non-negligble numbers of up and down windows, this indicates that there may be a complex DB
event within that cluster. Similarly, complex DB may be present if the total number of windows
is larger than the number of windows in either category (i.e., change is not consistent across the
cluster). Note that the threshold of 0.5 is arbitrary and has no impact on the significance calculations.

A simple clustering approach for windows is provided in mergeWindows. However, anything can
be used so long as it does not compromise type I error control, e.g., promoters, gene bodies, inde-
pendently called peaks.

Value

A dataframe with one row per cluster and the numeric fields PValue, the combined p-value; and
FDR, the q-value corresponding to the combined p-value. An integer field nWindows specifies the
total number of windows in each cluster. There are also two integer fields *.up and *.down for each
log-FC column in tab, containing the number of windows with log-FCs above 0.5 or below -0.5,
respectively. The name of each row represents the ID of the corresponding cluster.

Author(s)

Aaron Lun

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73, 751-754.

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. Series B 57, 289-300.

Benjamini Y and Hochberg Y (1997). Multiple hypotheses testing with weights. Scand. J. Stat. 24,
407-418.

Lun ATL and Smyth GK (2014). De novo detection of differentially bound regions for ChIP-seq
data using peaks and windows: controlling error rates correctly. Nucleic Acids Res. 42, e95

See Also

mergeWindows

consolidateSizes 7

Examples

ids <- round(runif(100, 1, 10))
tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
combined <- combineTests(ids, tab)
head(combined)

With window weighting.
w <- round(runif(100, 1, 5))
combined <- combineTests(ids, tab, weight=w)
head(combined)

With multiple log-FCs.
tab$logFC.whee <- rnorm(100, 5)
combined <- combineTests(ids, tab)
head(combined)

Manual specification of column IDs.
combined <- combineTests(ids, tab, fc.col=c(1,4), pval.col=3)
head(combined)

combined <- combineTests(ids, tab, fc.col="logFC.whee", pval.col="PValue")
head(combined)

consolidateSizes Consolidate window sizes

Description

Consolidate DB results from multiple window sizes.

Usage

consolidateSizes(data.list, result.list, equiweight=TRUE, merge.args=list(tol=1000),
combine.args=list(), region=NULL, overlap.args=list())

Arguments

data.list a list of RangedSummarizedExperiment objects, produced by windowCounts

result.list a list of data frames containing the DB test results for each entry of data.list

equiweight a logical scalar indicating whether equal weighting from each window size
should be enforced

merge.args a list of parameters to pass to mergeWindows when FUN=NULL

combine.args a list of parameters to pass to combineTests

region a GRanges object specifying regions of interest for overlapping with windows

overlap.args a list of parameters to pass to findOverlaps

8 consolidateSizes

Details

This function consolidates DB results from multiple window sizes, to provide comprehensive de-
tection of DB at a range of spatial resolutions. RangedSummarizedExperiment objects can be
generated by running windowCounts at a range of window sizes. Windows of all sizes are clustered
together through mergeWindows, and the p-values from all windows in each cluster are combined
using combineTests.

Some effort is required to equalize the contribution of each window size to the combined p-value
of each cluster. This is done by setting equiweight=TRUE, where the weight of each window is
inversely proportional to the number of windows of that size. Otherwise, the combined p-value
would be determined by numerous small windows in each cluster.

If region is specified, each entry of region is defined as a cluster. Windows in each cluster are
identified using findOverlaps, and consolidation is performed across multiple window sizes like
before. Note that the returned id will be a list of Hits objects rather than integer vectors, as one
window (subject) may overlap more than one region (query).

Value

A list is returned, containing:

id a list of integer vectors, where each vector corresponds to an object in data.list;
the entries of the vector specify the cluster to which each row of that object is
assigned

region a GRanges object containing the genomic coordinates of the clusters of merged
windows (or other regions, if region is specified)

table a data frame containing the combined DB results for each region

Author(s)

Aaron Lun

See Also

windowCounts, mergeWindows, findOverlaps, combineTests

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
low <- windowCounts(bamFiles, width=1, filter=1)
med <- windowCounts(bamFiles, width=100, filter=1)
high <- windowCounts(bamFiles, width=500, filter=1)

Making up some DB results.
dbl <- data.frame(logFC=rnorm(nrow(low)), PValue=runif(nrow(low)), logCPM=0)
dbm <- data.frame(logFC=rnorm(nrow(med)), PValue=runif(nrow(med)), logCPM=0)
dbh <- data.frame(logFC=rnorm(nrow(high)), PValue=runif(nrow(high)), logCPM=0)

Consolidating.
cons <- consolidateSizes(list(low, med, high), list(dbl, dbm, dbh),
merge.args=list(tol=100, max.width=300))

correlateReads 9

cons$region
cons$id
cons$table

Without weights.
cons <- consolidateSizes(list(low, med, high), list(dbl, dbm, dbh),
merge.args=list(tol=100, max.width=300), equiweight=FALSE)
cons$table

Trying with a custom region.
of.interest <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),

IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))
cons <- consolidateSizes(list(low, med, high), list(dbl, dbm, dbh),

region=of.interest)
cons$table
cons$id

Trying with limited numbers of overlaps; empty regions are ignored.
cons <- consolidateSizes(list(low[1,], med[1,], high[1,]),

list(dbl[1,], dbm[1,], dbh[1,]), region=of.interest)
cons$region
cons$table

correlateReads Compute correlation coefficients between reads

Description

Computes the auto- or cross-correlation coefficients between read positions across a set of delay
intervals.

Usage

correlateReads(bam.files, max.dist=1000, cross=TRUE, param=readParam())

Arguments

bam.files a character vector containing paths to sorted and indexed BAM files

max.dist integer scalar specifying the maximum delay distance over which correlation
coefficients will be calculated

cross a logical scalar specifying whether cross-correlations should be computed

param a readParam object containing read extraction parameters, or a list of such ob-
jects (one for each BAM file)

10 correlateReads

Details

If cross=TRUE, reads are separated into those mapping on the forward and reverse strands. Positions
on the forward strand are shifted forward by a delay interval. The chromosome-wide correlation co-
efficient between the shifted forward positions and the original reverse positions are computed. This
is repeated for all delay intervals less than max.dist. A weighted mean for the cross-correlation is
taken across all chromosomes, with weighting based on the number of reads.

Cross-correlation plots can be used to check the quality of immunoprecipitation for ChIP-Seq ex-
periments involving transcription factors or punctate histone marks. Strong immunoprecipitation
should result in a peak at a delay corresponding to the fragment length. A spike may also be ob-
served at the delay corresponding to the read length. This is probably an artefact of the mapping
process where unique mapping occurs to the same sequence on each strand.

By default, marked duplicate reads are removed from each BAM file prior to calculation of co-
efficients. This is strongly recommended, even if the rest of the analysis will be performed with
duplicates retained. Otherwise, the read length spike will dominate the plot, such that the fragment
length peak will no longer be easily visible.

If cross=FALSE, auto-correlation coefficients are computed without use of strand information. This
is designed to guide estimation of the average width of enrichment for diffuse histone marks. For
example, the width can be defined as the delay distance at which the autocorrelations become neg-
ligble. However, this tends to be ineffective in practice as diffuse marks tend to have very weak
correlations to begin with.

If multiple BAM files are specified in bam.files, the reads from all libraries are pooled prior to
calculation of the correlation coefficients. This is convenient for determining the average correlation
profile across an entire dataset. Separate calculations for each file will require multiple calls to
correlateReads.

Paired-end data is also supported, whereby correlations are computed using only those reads in
proper pairs. This may be less meaningful as the presence of proper pairs will inevitably result in a
strong peak at the fragment length. Instead, IP efficiency can be diagnosed by treating paired-end
data as single-end, e.g., with pe="first" in readParam.

Value

A numeric vector of length max.dist+1 containing the correlation coefficients for each delay inter-
val from 0 to max.dist.

Author(s)

Aaron Lun

References

Kharchenko PV, Tolstorukov MY and Park, PJ (2008). Design and analysis of ChIP-seq experi-
ments for DNA-binding proteins. Nat. Biotechnol. 26, 1351-1359.

See Also

ccf

csawUsersGuide 11

Examples

n <- 20
bamFile <- system.file("exdata", "rep1.bam", package="csaw")
par(mfrow=c(2,2))

x <- correlateReads(bamFile, max.dist=n)
plot(0:n, x, xlab="delay (bp)", ylab="ccf")

x <- correlateReads(bamFile, max.dist=n, param=readParam(dedup=TRUE))
plot(0:n, x, xlab="delay (bp)", ylab="ccf")

x <- correlateReads(bamFile, max.dist=n, cross=FALSE)
plot(0:n, x, xlab="delay (bp)", ylab="acf")

Also works on paired-end data.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
x <- correlateReads(bamFile, param=readParam(pe="both"))
head(x)

x <- correlateReads(bamFile, param=readParam(pe="both",
rescue.ext=50, max.frag=100))

head(x)

csawUsersGuide View csaw user’s guide

Description

Finds the location of the user’s guide and opens it for viewing.

Usage

csawUsersGuide(view=TRUE)

Arguments

view logical scalar specifying whether the document should be opened

Details

The csaw package is designed for de novo detection of differentially bound regions from ChIP-
seq data. It provides methods for window-based counting, normalization, filtering and statistical
analyses via edgeR. The user guide for this package can be obtained by running this function.

For non-Windows operating systems, the PDF viewer is taken from Sys.getenv("R_PDFVIEWER").
This can be changed to x by using Sys.putenv(R_PDFVIEWER=x). For Windows, the default viewer
will be selected to open the file.

Note that the user’s guide is not a true vignette as it is not generated using Sweave when the package
is built. This is due to the time-consuming nature of the code when run on realistic case studies.

12 detailRanges

Value

A character string giving the file location. If view=TRUE, the system’s default PDF document reader
is started and the user’s guide is opened.

Author(s)

Aaron Lun

See Also

system

Examples

To get the location:
csawUsersGuide(view=FALSE)
To open in pdf viewer:
Not run: csawUsersGuide()

detailRanges Add annotation to ranges

Description

Add detailed exon-based annotation to specified genomic regions.

Usage

detailRanges(incoming, txdb, orgdb, dist=5000, promoter=c(3000, 1000),
max.intron=1e6, key.field="ENTREZID", name.field="SYMBOL",
ignore.strand=TRUE)

Arguments

incoming a GRanges object containing the ranges to be annotated

txdb a TranscriptDb object for the genome of interest

orgdb a genome wide annotation object for the genome of interest

dist an integer scalar specifying the flanking distance to annotate

promoter an integer vector of length 2, where first and second values define the promoter
as some distance upstream and downstream from the TSS, respectively

max.intron an integer scalar indicating the maximum distance between exons

key.field a character scalar specifying the keytype for name extraction

name.field a character scalar or vector specifying the column(s) to use as the gene name

ignore.strand a logical scalar indicating whether strandedness in incoming should be ignored

detailRanges 13

Details

This function adds exon-based annotations to a given set of genomic regions, in the form of com-
pact character strings specifying the features overlapping and flanking each region. The aim is to
determine the genic context of empirically identified regions. This allows some basic biological
interpretation of binding/marking in those regions. All neighboring genes within a specified range
are reported, rather than just the closest gene to the region. If a region in incoming is stranded and
ignore.strand=FALSE, annotated features will only be reported if they lie on the same strand as
that region.

If incoming is missing, then the annotation will be provided directly to the user in the form of
a GRanges object. This may be more useful when further work on the annotation is required.
Exon numbers are provided in the metadata with promoters and gene bodies labelled as 0 and -1,
respectively. Overlaps to introns can be identified by finding those regions that overlap with gene
bodies but not with any of the corresponding exons.

Value

If incoming is not provided, a GRanges object will be returned containing ranges for the exons,
promoters and gene bodies. Gene keys (e.g., Entrez IDs) are stored as row names. Gene symbols,
exon numbers and internal groupings (for exons of genes with multiple genomic locations) are also
stored as metadata.

If incoming is a GRanges object, a list will be returned with overlap, left and right elements.
Each element is a character vector of length equal to the number of ranges in incoming. Each non-
empty string records the gene symbol, the overlapped exons and the strand. For left and right,
the gap between the range and the annotated feature is also included.

Explanation of fields

For annotated features overlapping a region, the character string in the overlap output vector will
be of the form GENE|EXONS|STRAND. GENE is the gene symbol by default, but reverts to <XXX> if
no symbol is defined for a gene with the Entrez ID XXX. The EXONS indicate the exon or range of
exons that are overlapped. The STRAND is, obviously, the strand on which the gene is coded. For
annotated regions flanking the region within a distance of dist, the character string in the left or
right output vectors will have an additional [DIST] value. This represents the gap between the
edge of the region and the closest exon for that gene.

Exons are numbered in order of increasing start or end position for genes on the forward or reverse
strands, respectively. Promoters are defined as the region of length promoter upstream of the gene
TSS, itself defined as the start of the first exon (for genes on the forward strand) or the end of the
last exon (otherwise). All promoters are marked as exon 0 for simplicity. Exon ranges in EXON
are reported from as a comma-separated list where stretches of consecutive exons are summarized
into a range. If the region overlaps an intron, it is labelled with I in EXON. No intronic overlaps are
reported if there is an exonic overlap.

Note that promoter and intronic annotations are only reported for the overlap vector to reduce
redundancy in the output. For example, it makes little sense to report that the region is both flanking
and overlapping an intron. Similarly, the value of DIST is more relevant when it is reported to the
nearest exon rather than to an intron (in which case, the distance would be zero if the intron overlaps
the region). In cases where the distance is reported to the first exon, it can be used to refine the choice
of promoter.

14 dumpPE

Other options

The max.intron value is necessary to deal with genes that have ambiguous locations on the genome.
If a gene has exons on different chromosomes, its location is uncertain and the gene is partitioned
into two sets of exons for separate processing. However, this is less obvious when the ambigu-
ous locations belong to the same chromosome. The max.intron value protects against excessively
large genes that may occur from considering those locations as a single transcriptional unit. Exons
are partitioned into two (or more) internal groupings for further processing.

The default settings for key.field and name.field will work for human and mouse genomes, but
may not work for other organisms. The key.field should refer to the key type in the OrgDb
object, and also correspond to the GENEID of the TxDb object. For example, in S. cerevisiae,
key.field is set to "ORF" while name.field is set to "GENENAME". If multiple entries are sup-
plied in name.field, the value of GENE is defined as a semicolon-separated list of each of those
entries.

Author(s)

Aaron Lun

Examples

require(org.Mm.eg.db)
require(TxDb.Mmusculus.UCSC.mm10.knownGene)

current <- readRDS(system.file("exdata", "exrange.rds", package="csaw"))
output <- detailRanges(current, orgdb=org.Mm.eg.db,

txdb=TxDb.Mmusculus.UCSC.mm10.knownGene)
head(output$overlap)
head(output$right)
head(output$left)

detailRanges(txdb=TxDb.Mmusculus.UCSC.mm10.knownGene, orgdb=org.Mm.eg.db)

Not run:
output <- detailRanges(current, txdb=TxDb.Mmusculus.UCSC.mm10.knownGene,

orgdb=org.Mm.eg.db, name.field=c("ENTREZID"))
head(output$overlap)

output <- detailRanges(current, txdb=TxDb.Mmusculus.UCSC.mm10.knownGene,
orgdb=org.Mm.eg.db, name.field=c("SYMBOL", "ENTREZID"))

head(output$overlap)

End(Not run)

dumpPE Dump paired-end data to file

dumpPE 15

Description

Extract proper pairs from a BAM file, and dump fragment intervals into another BAM file.

Usage

dumpPE(bam.file, prefix, param=readParam(pe="both"), overwrite=FALSE)

Arguments

bam.file a character string containing the path to a paired-end BAM file

prefix a character string containing the prefix to an output BAM file

param a readParam object

overwrite a logical scalar indicating whether to overwrite the existing file starting with
prefix

Details

This function extracts proper pairs from bam.file according to the settings in param. It then
generates another output BAM file that stores fragment information for each proper pair. Each
alignment entry represents the forward-stranded read of a valid fragment. Fragment data can be
extracted as the read position and insert size.

The idea is to generate a pre-filtered BAM file by specifying the appropriate settings in param. The
output BAM file can then be efficiently analyzed with, e.g., windowCounts with fast.pe=TRUE.
This avoids the need to load and match read names in every function. Note that all alignment-
specific information is lost, e.g., MAPQ scores, duplicate information, CIGAR strings.

Only proper pairs with sizes less than param$max.frag will be retained in the output file. If
max.frag is increased in downstream calls on the output file, the results may not be correct as
proper pairs with sizes between the two settings will not be considered. Users are recommended to
keep max.frag constant throughout the pipeline.

Value

A sorted and indexed BAM file is produced at the specified location. A character string containing
the full name of the output BAM file is silently returned.

See Also

readParam, windowCounts

Examples

Loading PE data.
bamFile <- system.file("exdata", "pet.bam", package="csaw")

xparam <- readParam(pe="both")
out <- windowCounts(bamFile, param=xparam, filter=1)

outBam <- dumpPE(bamFile, "whee", param=xparam)

16 extractReads

out2 <- windowCounts(outBam, param=reform(xparam, fast.pe=TRUE), filter=1)

stopifnot(identical(assay(out), assay(out2)))
stopifnot(identical(out$totals, out2$totals))

Comparing it to a more complex scenario.
xparam <- readParam(pe="both", rescue.ext=200)
out <- windowCounts(bamFile, param=xparam, filter=1)

outBam <- dumpPE(bamFile, "whee", param=xparam, overwrite=TRUE)
out2 <- windowCounts(outBam, param=reform(xparam, fast.pe=TRUE), filter=1)

stopifnot(identical(assay(out), assay(out2)))
stopifnot(identical(out$totals, out2$totals))

Looking at extracted reads.
last.reg <- rowRanges(out)[6]
reg1 <- extractReads(bamFile, last.reg, param=xparam)
reg2 <- extractReads(outBam, last.reg, param=reform(xparam, fast.pe=TRUE))

stopifnot(identical(sort(reg1), sort(reg2)))

extractReads Extract reads from a BAM file

Description

Extract reads from a BAM file with the specified parameter settings.

Usage

extractReads(bam.file, region, ext=NA, param=readParam(), as.reads=FALSE)

Arguments

bam.file a character string containing the path to a sorted and indexed BAM file

region a GRanges object of length 1 describing the region of interest

ext an integer scalar specifying the fragment length for directional read extension

param a readParam object specifying how reads should be extracted

as.reads a logical scalar indicating whether reads should be returned instead of fragments
for paired-end data

extractReads 17

Details

This function extracts the reads from a BAM file overlapping a given genomic interval. The inter-
pretation of the values in param is the same as that throughout the package. The aim is to supply
the raw data for visualization, in a manner that maintains consistency with the rest of the analysis.

Note that this does not account for any read extension that might have been performed during read
counting. In such cases, users are advised to expand region by the extension length on each side.
Counted reads can then be extracted by identifying their extended counterparts that overlap with the
original region.

Any strandedness of region is ignored. If strand-specific extraction is desired, this can be done by
setting param$forward via reform. Alternatively, the returned GRanges can be filtered to retain
only the desired strand.

If ext is not NA, directional read extension will be performed for single-end data. All extended reads
overlapping region will then be extracted, and the intervals of the extended will be reported.. See
windowCounts for more details.

By default, unstranded fragments are returned for paired-end data. If as.reads=TRUE, the con-
stituent reads are returned, with pairing indicated by pair in the metadata. Rescued reads are
marked as those with pair of zero; see readParam for details on rescuing.

Value

A GRanges object is returned. If pe="both" in param, intervals are unstranded and correspond to
fragments. Otherwise, strand-specific intervals that represent reads are returned.

Author(s)

Aaron Lun

See Also

readParam, windowCounts

Examples

bamFile <- system.file("exdata", "rep1.bam", package="csaw")
extractReads(bamFile, GRanges("chrA", IRanges(100, 500)))
extractReads(bamFile, GRanges("chrA", IRanges(100, 500)),

param=readParam(dedup=TRUE))
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)))

bamFile <- system.file("exdata", "pet.bam", package="csaw")
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

param=readParam(pe="both"))
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

param=readParam(pe="both", rescue.ext=100))
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

param=readParam(pe="first"))

Extracting as reads.
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

18 filterWindows

param=readParam(pe="both"), as.reads=TRUE)
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

param=readParam(pe="both", rescue.ext=100), as.reads=TRUE)

Dealing with the extension length.
bamFile <- system.file("exdata", "rep1.bam", package="csaw")
my.reg <- GRanges("chrA", IRanges(10, 200))
extractReads(bamFile, my.reg)
extractReads(bamFile, my.reg, ext=100)

filterWindows Filtering methods for RangedSummarizedExperiment objects

Description

Convenience function to compute filter statistics for windows, based on proportions or using en-
richment over background.

Usage

filterWindows(data, background, type="global", prior.count=2, norm.fac=NULL)

Arguments

data a RangedSummarizedExperiment object containing window- or bin-level counts

background another RangedSummarizedExperiment object, containing counts for background
regions when type!="proportion"

type a character string specifying the type of filtering to perform; can be any of
c("global", "local", "control", "proportion")

prior.count a numeric scalar, specifying the prior count to use in aveLogCPM

norm.fac a numeric scalar representing the normalization factor between ChIP and con-
trol samples, or a list of two RangedSummarizedExperiment objects; only used
when type="control"

Details

Proportion-based filtering supposes that a certain percentage of the genome is genuinely bound. If
type="proportion", the filter statistic is defined as the ratio of the rank to the total number of
windows. Rank is in ascending order, i.e., higher abundance windows have higher ratios. Windows
are retained that have rank ratios above a threshold, e.g., 0.99 if 1% of the genome is assumed to be
bound.

All other values of type will perform background-based filtering, where abundances of the windows
are compared to those of putative background regions. The filter statistic are generally defined as the
difference between window and background abundances, i.e., the log-fold increase in the counts.
Windows can be filtered to retain those with large filter statistics, to select those that are more
likely to contain genuine binding sites. The differences between the methods center around how the
background abundances are obtained for each window.

filterWindows 19

If type="global", the median average abundance across the genome is used as a global estimate
of the background abundance. This should be used when background contains unfiltered counts
for large (2 - 10 kbp) genomic bins, from which the background abundance can be computed. The
filter statistic for each window is defined as the difference between the window abundance and the
global background. If background is not supplied, the background abundance is directly computed
from entries in data.

If type="local", the counts of each row in data are subtracted from those of the corresponding
row in background. The average abundance of the remaining counts is computed and used as the
background abundance. The filter statistic is defined by subtracting the background abundance from
the corresponding window abundance for each row. This is designed to be used when background
contains counts for expanded windows, to determine the local background estimate.

If type="control", the background abundance is defined as the average abundance of each row in
background. The filter statistic is defined as the difference between the average abundance of each
row in data and that of the corresponding row in background. This is designed to be used when
background contains read counts for each window in the control sample(s). Unlike type="local",
there is no subtraction of the counts in background prior to computing the average abundance.

Value

A list is returned with abundances, the average abundance of each entry in data; filter, the
filter statistic for the given type; and, for type!="proportion", back.abundances, the average
abundance of each entry in background.

Additional details

Proportion and global background filtering are dependent on the total number of windows/bins
in the genome. However, empty windows or bins are automatically discarded in windowCounts
(exacerbated if filter is set above unity). This will result in underestimation of the rank or over-
estimation of the global background. To avoid this, the total number of windows or bins is inferred
from the spacing.

For background-based methods, the abundances of large bins or regions in background must be
rescaled for comparison to those of smaller windows - see getWidths and scaledAverage for
more details. In particular, the effective width of the window is often larger than width, due to
the counting of fragments rather than reads. The fragment length is extracted from data$ext and
background$ext, though users will need to set data$rlen or background$rlen for unextended
reads (i.e., ext=NA).

The prior.count protects against inflated log-fold increases when the background counts are near
zero. A low prior is sufficient if background has large counts, which is usually the case for wide re-
gions. Otherwise, prior.count should be increased to a larger value like 5. This may be necessary
in type="control", where background contains counts for small windows in the control sample.

Normalization for composition bias

When type=="control", ChIP samples will be compared to control samples to compute the filter
statistic. Composition biases are likely to be present, where increased binding at some loci reduces
coverage of other loci in the ChIP samples. This incorrectly results in smaller filter statistics for the
latter loci, as the fold-change over the input is reduced. To correct for this, a normalization factor
between ChIP and control samples can be computed from norm.fac.

20 filterWindows

Users should supply a list containing two RangedSummarizedExperiment objects, each containing
the counts for large (~10 kbp) bins. The first and second objects should contain counts for the
libraries in data and background, respectively. The median difference in the average abundance
between the two objects is then computed across all bins. This is used as a normalization factor to
correct the filter statistics for each window.

The idea is that most bins represent background regions, such that a systematic difference in abun-
dance between ChIP and control should represent the composition bias. Alternatively, a normaliza-
tion factor can be specified manually in norm.fac. This should represent the scaling factor for the
library sizes of the control samples relative to the ChIP samples, i.e., the “average” fold increase in
coverage of the control over ChIP for the background regions. However, if the value is left as NULL,
a warning will be issued.

See Also

windowCounts, aveLogCPM, getWidths, scaledAverage

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, filter=1)

Proportion-based (keeping top 1%)
stats <- filterWindows(data, type="proportion")
head(stats$filter)
keep <- stats$filter > 0.99
new.data <- data[keep,]

Global background-based (keeping fold-change above 3).
background <- windowCounts(bamFiles, bin=TRUE, width=300)
stats <- filterWindows(data, background, type="global")
head(stats$filter)
keep <- stats$filter > log2(3)

Local background-based.
locality <- regionCounts(bamFiles, resize(rowRanges(data), fix="center", 300))
stats <- filterWindows(data, locality, type="local")
head(stats$filter)
keep <- stats$filter > log2(3)

Control-based (pretend "rep.2" is a control library).
stats <- filterWindows(data[,1], data[,2], type="control", prior.count=5)
head(stats$filter)
keep <- stats$filter > log2(3)

Control-based with binning for normalization.
binned <- windowCounts(bamFiles, width=10000, bin=TRUE)
stats <- filterWindows(data[,1], data[,2], type="control", prior.count=5,
norm.fac=list(binned[,1], binned[,2]))

findMaxima 21

findMaxima Find local maxima

Description

Find the local maxima for a given set of genomic regions.

Usage

findMaxima(regions, range, metric, ignore.strand=TRUE)

Arguments

regions a GRanges object

range an integer scalar specifying the range of surrounding regions to consider as local

metric a numeric vector of values for which the local maxima is found

ignore.strand a logical scalar indicating whether to consider the strandedness of regions

Details

For each region in regions, this function will examine all regions within range on either side. It
will then determine if the current region has the maximum value of metric across this range. A
typical metric to maximize might be the sum of counts or the average abundance across all libraries.

Preferably, regions should contain regularly sized and spaced windows or bins, e.g., from windowCounts.
The sensibility of using this function for arbitrary regions is left to the user. In particular, the algo-
rithm will not support nested regions and will fail correspondingly if any are detected.

If ignore.strand=FALSE, the entries in regions are split into their separate strands. The function
is run separately on the entries for each strand, and the results are collated into a single output. This
may be useful for strand-specific applications.

Value

A logical vector indicating whether each region in regions is a local maxima.

Author(s)

Aaron Lun

See Also

windowCounts, aveLogCPM

22 getBestTest

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, filter=1)
regions <- rowRanges(data)
metric <- edgeR::aveLogCPM(asDGEList(data))
findMaxima(regions, range=10, metric=metric)
findMaxima(regions, range=50, metric=metric)
findMaxima(regions, range=100, metric=metric)

findMaxima(regions, range=10, metric=runif(length(regions)))
findMaxima(regions, range=50, metric=runif(length(regions)))
findMaxima(regions, range=100, metric=runif(length(regions)))

getBestTest Get the best test in a cluster

Description

Find the test with the strongest evidence for rejection of the null in each cluster.

Usage

getBestTest(ids, tab, by.pval=TRUE, weight=NULL, pval.col=NULL, cpm.col=NULL)

Arguments

ids an integer vector containing the cluster ID for each test

tab a table of results with a PValue field for each test

by.pval a logical scalar, indicating whether selection should be performed on corrected
p-values

weight a numeric vector of weights for each window, defaults to 1 for each test

pval.col an integer scalar specifying the column of tab containing the p-values, or a
character string containing the name of that column

cpm.col an integer scalar specifying the column of tab containing the log-CPM values,
or a character string containing the name of that column

Details

Clusters are identified as those tests with the same value of ids. If by.pval=TRUE, this function
identifies the test with the lowest p-value as that with the strongest evidence against the null in each
cluster. The p-value of the chosen test is adjusted using the Bonferroni correction, based on the total
number of tests in the parent cluster. This is necessary to obtain strong control of the family-wise
error rate such that the best test can be taken from each cluster for further consideration.

The importance of each window in each cluster can be adjusted by supplying different relative
weight values. Each weight is interpreted as a different threshold for each test in the cluster. Larger
weights correspond to lower thresholds, i.e., less evidence is needed to reject the null for tests

getBestTest 23

deemed to be more important. This may be useful for upweighting particular tests, e.g., windows
containing a motif for the TF of interest.

Note the difference between this function and combineTests. The latter presents evidence for any
rejections within a cluster. This function specifies the exact location of the rejection in the cluster,
which may be more useful in some cases but at the cost of conservativeness. In both cases, clustering
procedures such as mergeWindows can be used to identify the cluster.

If by.pval=FALSE, the best test is defined as that with the highest log-CPM value. This should
be independent of the p-value so no adjustment is necessary. Weights are not applied here. This
mode may be useful when abundance is correlated to rejection under the alternative hypothesis, e.g.,
picking high-abundance regions that are more likely to contain peaks.

By default, the relevant fields in tab are identified by matching the column names to their expected
values. If the column names are different from what is expected, specification of the correct column
can be performed using pval.col and cpm.col.

Value

A dataframe with one row per cluster and the numeric fields best, the index for the best test in the
cluster; PValue, the (possibly adjusted) p-value for that test; and FDR, the q-value corresponding
to the adjusted p-value. Note that the p-value column may be named differently if pval.col is
specified. Other fields in tab corresponding to the best test inthe cluster are also returned. Cluster
IDs are stored as the row names.

Author(s)

Aaron Lun

References

Wasserman, L, and Roeder, K (2006). Weighted hypothesis testing. arXiv preprint math/0604172.

See Also

combineTests, mergeWindows

Examples

ids <- round(runif(100, 1, 10))
tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
best <- getBestTest(ids, tab)
head(best)

best <- getBestTest(ids, tab, cpm.col="logCPM", pval.col="PValue")
head(best)

With window weighting.
w <- round(runif(100, 1, 5))
best <- getBestTest(ids, tab, weight=w)
head(best)

24 getPESizes

By logCPM.
best <- getBestTest(ids, tab, by.pval=FALSE)
head(best)

best <- getBestTest(ids, tab, by.pval=FALSE, cpm.col=2, pval.col=3)
head(best)

getPESizes Compute fragment lengths for paired-end tags

Description

Compute the length of the sequenced fragment for each read pair in paired-end tag (PE) data.

Usage

getPESizes(bam.file, param=readParam(pe="both"))

Arguments

bam.file a character string containing the file path to a sorted and indexed BAM file

param a readParam object containing read extraction parameters

Details

This function assembles a number of paired-end diagnostics. For starters, a read is only mapped if
it is not removed by dedup, minq, restrict or discard in readParam. Otherwise, the alignment
is not considered to be reliable. Any read pair with exactly one unmapped read is discarded, and
the number of read pairs lost in this manner is recorded. Obviously, read pairs with both reads
unmapped will be ignored completely.

Of the mapped pairs, the valid (i.e., proper) read pairs are identified. These refer to intrachro-
mosomal read pairs where the reads with the lower and higher genomic coordinates map to the
forward and reverse strand, respectively. The distance between the positions of the mapped 5’ ends
of the two reads must also be equal to or greater than the read lengths. Any intrachromosomal read
pair that fails these criteria will be considered as improperly oriented. If the reads are on different
chromosomes, the read pair will be recorded as being interchromosomal.

Each valid read pair corresponds to a DNA fragment where both ends are sequenced. The size of the
fragment can be determined by calculating the distance between the 5’ ends of the mapped reads.
The distribution of sizes is useful for assessing the quality of the library preparation, along with all
of the recorded diagnostics. Note that any max.frag specification in param will be ignored; sizes
for all valid pairs will be returned.

getWidths 25

Value

A list containing:

sizes an integer vector of fragment lengths for all valid read pairs in the library

diagnostics an integer vector containing the total number of reads, the number of mapped
reads, number of mapped singleton reads, pairs with exactly one unmapped read,
number of improperly orientated read pairs and interchromosomal pairs

Author(s)

Aaron Lun

See Also

readParam

Examples

bamFile <- system.file("exdata", "pet.bam", package="csaw")
out <- getPESizes(bamFile, param=readParam(pe="both"))
out <- getPESizes(bamFile, param=readParam(pe="both", restrict="chrA"))
out <- getPESizes(bamFile, param=readParam(pe="both", discard=GRanges("chrA", IRanges(1, 50))))

getWidths Get region widths

Description

Get the widths of the read counting interval for each region.

Usage

getWidths(data)

Arguments

data a RangedSummarizedExperiment object, produced by windowCounts or regionCounts

Details

Widths of all regions are increased by the average fragment length during the calculations. This is
because each count represents the number of (imputed) fragments overlapping each region. Thus, a
1 bp window has an effective width that includes the average length of each fragment.

The fragment length is taken from metadata(data)$final.ext, if it is not NA. Otherwise, it is
taken from data$ext. For paired-end data, the average fragment length should be the median of
the values obtained with getPESizes. If the fragment lengths are different between libraries, the
average is used to computed the effective width of the window.

26 makeExtVector

If final.ext is NA and any of ext are NA, the function will throw an error. Users should set the read
length in data$rlen to avoid this, as NA values of ext correspond to the use of unextended reads.
This information must be manually supplied as it is not automatically stored when constructing
data.

Value

An integer vector containing the effective width, in base pairs, of each region.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, filter=1)
getWidths(data)

data <- windowCounts(bamFiles, ext=c(50, 100), filter=1)
getWidths(data)

data <- windowCounts(bamFiles, ext=makeExtVector(c(50, 100)), filter=1)
getWidths(data)

Avoid error by defining 'rlen'.
data <- windowCounts(bamFiles, ext=c(NA, 100), filter=1)
try(getWidths(data))
data$rlen <- 200
getWidths(data)

Paired-end data takes the fragment length from 'ext'.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
data <- windowCounts(bamFile, param=readParam(pe="both"), ext=200, filter=1)
getWidths(data)

makeExtVector Make an extVector object

Description

Construct an extVector to hold read extension parameters.

Usage

makeExtVector(ext, final.ext=NULL)

makeExtVector 27

Arguments

ext an integer scalar or vector containing average fragment lengths for read exten-
sion in one or more libraries

final.ext an integer scalar, specifying the length to which all fragments are scaled

Details

This function returns an extVector object, which is just an augmented integer vector with the
final.ext attribute. The aim of using a specialized class is to preserve attributes during subsetting.
Thus, functions like windowCounts or regionCounts can be run with different combinations of
libraries, and final.ext will be maintained in each call.

The values in ext will ultimately be used for directional extension, to infer the fragment corre-
sponding to each read. Different fragment lengths will be used in different libraries if a vector is
supplied for ext. If final.ext is NULL, it is defined by makeExtVector as the mean of all ext.

Lengths of all fragments will be scaled to the same final.ext value in each library. If final.ext
is NA, no scaling is performed. See windowCounts for more details.

Value

An extVector object containing the values of ext, with the value of final.ext stored in the
attributes.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts

Examples

out <- makeExtVector(1:5*10, NA)
out
out[1:2]

out <- makeExtVector(1:5*10, NULL)
out
out[1:2] # Doesn't recalculate, which is correct.

28 maximizeCcf

maximizeCcf Find the delay at the maximal CCF

Description

Estimate the average fragment length by maximizing the cross-correlations.

Usage

maximizeCcf(profile, ignore=100)

Arguments

profile a numeric vector containing a coverage profile, as produced by correlateReads

ignore an integer scalar specifying the distances to ignore

Details

This function identifies the delay distance at which the cross-correlations are maximized. This
distance can then be used as an estimate of the average fragment length, for use in directional
extension during read counting.

In some datasets, identification of the maxima is confounded by a phantom peak at the read length.
This can be overcome by ignoring the first ignore delay distances, such that the distance corre-
sponding to the true peak is used.

Obviously, this only works in TF experiments with moderate to strong enrichment, where a strong
peak in the CCF profile is present. The function may not perform sensibly in the presence of noisy
profiles containing multiple local maxima.

Value

The average fragment length is returned as an integer scalar.

Author(s)

Aaron Lun

References

Landt SG, Marinov GK, Kundaje A, et al. (2012). ChIP-seq guidelines and practices of the EN-
CODE and modENCODE consortia. Genome Res. 22, 1813-31.

See Also

correlateReads

mergeWindows 29

Examples

x <- dnorm(-200:200/100) # Mocking up a profile.
maximizeCcf(x)

x2 <- x + dnorm(-50:250/10) # Adding a phantom peak
maximizeCcf(x2)
maximizeCcf(x2, ignore=0)

mergeWindows Merge windows into clusters

Description

Uses a simple single-linkage approach to merge adjacent or overlapping windows into clusters.

Usage

mergeWindows(regions, tol, sign=NULL, max.width=NULL, ignore.strand=TRUE)

Arguments

regions a GRanges object

tol a numeric scalar specifying the maximum distance between adjacent windows

sign a logical vector specifying whether each window has a positive log-FC

max.width a numeric scalar specifying the maximum size of merged intervals

ignore.strand a logical scalar indicating whether to consider the strandedness of regions

Details

Windows are merged if the gap between the end of one window and the start of the next is no
greater than tol. Adjacent windows can then be chained together to build a cluster of windows
across the linear genome. A value of zero for tol means that the windows must be contiguous
whereas negative values specify minimum overlaps.

If sign!=NULL, windows are only merged if they have the same sign of the log-FC and are not sep-
arated by intervening windows with opposite log-FC values. This can be useful to ensure consistent
changes when summarizing adjacent DB regions. However, it is not recommended for routine clus-
tering in differential analyses as the resulting clusters will not be independent of the p-value.

Specification of max.width prevents the formation of excessively large clusters when many adjacent
regions are present. Any cluster that is wider than max.width is split into multiple subclusters of
(roughly) equal size. Specifically, the cluster interval is partitioned into the smallest number of
equally-sized subintervals where each subinterval is smaller than max.width. Windows are then
assigned to each subinterval based on the location of the window midpoints. Suggested values
range from 2000 to 10000 bp, but no limits are placed on the maximum size if it is NULL.

The tolerance should reflect the minimum distance at which two regions of enrichment are consid-
ered separate. If two windows are more than tol apart, they will be placed into separate clusters.

30 normOffsets

In contrast, the max.width value reflects the maximum distance at which two windows can be
considered part of the same region.

Arbitrary regions can also be used in this function. However, caution is required if any fully nested
regions are present. Clustering with sign!=NULL will throw an error as splitting by sign becomes
undefined. Splitting with max.width!=NULL will not fail, but cluster sizes may not be reduced if
very large regions are present.

If ignore.strand=FALSE, the entries in regions are split into their separate strands. The function
is run separately on the entries for each strand, and the results collated. The region returned in the
output will be stranded to reflect the strand of the contributing input regions. This may be useful for
strand-specific applications.

Note that, in the output, the cluster ID reported in id corresponds to the index of the cluster coordi-
nates in the input region.

Value

A list containing id, an integer vector containing the cluster ID for each window; and region, a
GRanges object containing the start/stop coordinates for each cluster of windows.

Author(s)

Aaron Lun

See Also

combineTests, windowCounts

Examples

x <- round(runif(10, 100, 1000))
gr <- GRanges(rep("chrA", 10), IRanges(x, x+40))
mergeWindows(gr, 1)
mergeWindows(gr, 10)
mergeWindows(gr, 100)
mergeWindows(gr, 100, sign=rep(c(TRUE, FALSE), 5))

normOffsets Normalize counts between libraries

Description

Calculate normalization factors or offsets using count data from multiple libraries.

Usage

S4 method for signature 'matrix'
normOffsets(object, lib.sizes=NULL, type=c("scaling", "loess"),

weighted=FALSE, ...)

normOffsets 31

Arguments

object a matrix of integer counts with one column per library

lib.sizes a numeric vector specifying the total number of reads per library

type a character string indicating what type of normalization is to be performed

weighted a logical scalar indicating whether precision weights should be used for TMM
normalization

... other arguments to be passed to calcNormFactors for type="scaling", or
loessFit for type="loess"

Details

If type="scaling", this function provides a convenience wrapper for the calcNormFactors func-
tion in the edgeR package. Specifically, it uses the trimmed mean of M-values (TMM) method
to perform normalization. Precision weighting is turned off by default so as to avoid upweighting
high-abundance regions. These are more likely to be bound and thus more likely to be differen-
tially bound. Assigning excessive weight to such regions will defeat the purpose of trimming when
normalizing the coverage of background regions.

If type="loess", this function performs non-linear normalization similar to the fast loess algorithm
in normalizeCyclicLoess. For each sample, a lowess curve is fitted to the log-counts against the
log-average count. The fitted value for each bin pair is used as the generalized linear model offset
for that sample. The use of the average count provides more stability than the average log-count
when low counts are present for differentially bound regions.

If lib.sizes is not specified, a warning is issued and the column sums of counts are used instead.
Note that the same lib.sizes should be used throughout the analysis if normOffsets is called
multiple times on the same libraries, e.g., with different bin or window sizes or after different
filtering steps. This ensures that the normalization factors or offsets are comparable between calls.

Value

For type="scaling", a numeric vector containing the relative normalization factors for each li-
brary.

For type="loess", a numeric matrix of the same dimensions as counts, containing the log-based
offsets for use in GLM fitting.

Author(s)

Aaron Lun

References

Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression anal-
ysis of RNA-seq data. Genome Biology 11, R25.

Ballman KV, Grill DE, Oberg AL, Therneau TM (2004). Faster cyclic loess: normalizing RNA
arrays via linear models. Bioinformatics 20, 2778-86.

32 overlapStats

See Also

calcNormFactors, loessFit, normalizeCyclicLoess

Examples

A trivial example
counts <- matrix(rnbinom(400, mu=10, size=20), ncol=4)
normOffsets(counts)
normOffsets(counts, lib.sizes=rep(400, 4))

Adding undersampling
n <- 1000L
mu1 <- rep(10, n)
mu2 <- mu1
mu2[1:100] <- 100
mu2 <- mu2/sum(mu2)*sum(mu1)
counts <- cbind(rnbinom(n, mu=mu1, size=20), rnbinom(n, mu=mu2, size=20))
actual.lib.size <- rep(sum(mu1), 2)
normOffsets(counts, lib.sizes=actual.lib.size)
normOffsets(counts, logratioTrim=0.4, lib.sizes=actual.lib.size)
normOffsets(counts, sumTrim=0.3, lib.size=actual.lib.size)

With and without weighting, for high-abundance spike-ins.
n <- 100000
blah <- matrix(rnbinom(2*n, mu=10, size=20), ncol=2)
tospike <- 10000
blah[1:tospike,1] <- rnbinom(tospike, mu=1000, size=20)
blah[1:tospike,2] <- rnbinom(tospike, mu=2000, size=20)
full.lib.size <- colSums(blah)

normOffsets(blah, weighted=TRUE, lib.sizes=full.lib.size)
normOffsets(blah, lib.sizes=full.lib.size)
true.value <- colSums(blah[(tospike+1):n,])/colSums(blah)
true.value <- true.value/exp(mean(log(true.value)))
true.value

Using loess-based normalization, instead.
offsets <- normOffsets(counts, type="loess", lib.size=full.lib.size)
head(offsets)
offsets <- normOffsets(counts, type="loess", span=0.4, lib.size=full.lib.size)
offsets <- normOffsets(counts, type="loess", iterations=1, lib.size=full.lib.size)

overlapStats Compute overlap statistics

Description

Compute assorted statistics for overlaps between windows and regions in a Hits object.

overlapStats 33

Usage

combineOverlaps(olap, tab, o.weight=NULL, i.weight=NULL, ...)
getBestOverlaps(olap, tab, o.weight=NULL, i.weight=NULL, ...)
summitOverlaps(olap, region.best, o.summit=NULL, i.summit=NULL)

Arguments

olap a Hits object produced by findOverlaps, containing overlaps between regions
(query) and windows (subject)

tab a dataframe of DE results for each window

o.weight a numeric vector specifying weights for each overlapped window

i.weight a numeric vector specifying weights for each individual window

... other arguments to be passed to the wrapped functions

region.best an integer vector specifying the window index that is the summit for each region

o.summit a logical vector specifying the overlapped windows that are summits, or a cor-
responding integer vector of indices for such windows

i.summit a ogical vector specifying whether an individual window is a summit, or a cor-
responding integer vector of indices

Details

These functions provide convenient wrappers around combineTests, getBestTest and upweightSummit.
They accept Hits objects produced by running findOverlaps between windows and some pre-
specified regions. Each set of windows overlapping a region is defined as a cluster to compute the
various statistics.

A wrapper is necessary as a window may overlap multiple regions. If so, the multiple instances
of that window are defined as distinct “overlapped” windows, where each overlapped window is
assigned to a different region. Each overlapped window is represented by a row of olap. In contrast,
the “individual” window just refers to the window itself, regardless of what it overlaps. This is
represented by each row of the RangedSummarizedExperiment object and the tab derived from it.

The distinction between these two definitions is required to describe the weight arguments. The
o.weight argument refers to the weights for each region-window relationship. This allows for
different weights to be assigned to the same window in different regions. The i.weight argument
is the weight of the window itself, and is the same regardless of the region. If both are specified,
o.weight takes precedence.

For summitOverlaps, the region.best argument is designed to accept the best field in the output
of getBestOverlaps (run with by.pval=FALSE). This contains the index for the individual window
that is the summit within each region. In contrast, the i.summit argument indicates whether an
individual window is a summit, e.g., from findMaxima. The o.summit argument does the same for
overlapped windows, though this has no obvious input within the csaw pipeline.

Value

For combineOverlaps and getBestOverlaps, a dataframe is returned from their respective wrapped
functions. Each row of the dataframe corresponds to a region, where regions without overlapped
windows are assigned NA values.

34 overlapStats

For summitOverlaps, a numeric vector of weights is produced. This can be used as o.weight in
the other two functions.

Author(s)

Aaron Lun

See Also

combineTests, getBestTest, upweightSummit

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, width=1, filter=1)
of.interest <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),

IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))

Making some mock results.
N <- nrow(data)
mock <- data.frame(logFC=rnorm(N), PValue=runif(N), logCPM=rnorm(N))

olap <- findOverlaps(of.interest, rowRanges(data))
combineOverlaps(olap, mock)
getBestOverlaps(olap, mock)

See what happens when you don't get many overlaps.
getBestOverlaps(olap[1,], mock)
combineOverlaps(olap[2,], mock)

Weighting example, with window-specific weights.
window.weights <- runif(N)
comb <- combineOverlaps(olap, mock, i.weight=window.weights)

Weighting example, with relation-specific weights.
best.by.ave <- getBestOverlaps(olap, mock, by.pval=FALSE)
w <- summitOverlaps(olap, region.best=best.by.ave$best)
head(w)
stopifnot(length(w)==length(olap))
combineOverlaps(olap, mock, o.weight=w)

Running summitOverlaps for window-specific summits
(output is still relation-specific weights, though).
is.summit <- findMaxima(rowRanges(data), range=100, metric=mock$logCPM)
w <- summitOverlaps(olap, i.summit=is.summit)
head(w)

Parameter list methods 35

Parameter list methods

Get or modify readParam lists

Description

Extract and modify lists of library-specific readParam objects

Usage

reformList(paramlist, ...)
checkList(paramlist)

Arguments

paramlist a list of readParam objects

... other arguments, to be passed to reform

Details

The reformList function sets the parameters specified in ... across all elements of paramlist.
This standardizes all of the internal readParam objects, e.g., for the restrict parameter. If
paramlist is a single readParam object, then reformList is equivalent to reform.

The checkList function checks which parameter settings are identical between elements of paramlist.
This is useful when some parameters must be variable, while others must be the same.

Value

For reformList, a list of library-specific readParam objects is returned.

For checkList, a character vector is returned containing all non-identical parameters across the
list.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts, reform

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, width=100, filter=1)
data$param

data <- windowCounts(bamFiles, width=100, filter=1, param=list(readParam(), readParam(minq=100)))

36 profileSites

data$param
data[,1]$param
data[,2]$param

plist <- data$param
reformList(plist, restrict="chrA")
reformList(plist, minq=10)

checkList(plist)
checkList(reformList(plist, minq=10))

profileSites Profile binding sites

Description

Get the coverage profile around potential binding sites.

Usage

profileSites(bam.files, regions, range=5000, ext=100, average=TRUE,
weight=1, param=readParam(), strand=c("ignore", "use", "match"))

Arguments

bam.files a character vector containing paths to one or more BAM files

regions a GRanges object over which profiles are to be aggregated

range an integer scalar specifying the range over which the profile will be collected

ext an integer scalar specifying the average fragment length for single-end data

average a logical scalar specifying whether the profiles should be averaged across re-
gions

weight a numeric vector indicating the relative weight to be assigned to the profile for
each region

param a readParam object containing read extraction parameters, or a list of such ob-
jects (one for each BAM file)

strand a string indicating how stranded regions should be handled

Details

This function aggregates the coverage profile around the specified regions. The shape of this profile
can guide an intelligent choice of the window size in windowCounts, or to determine if region
expansion is necessary in regionCounts. For the former, restricting the regions to locally maximal
windows with findMaxima is recommended prior to use of profileSites. The function can be also
used to examine average coverage around known features of interest, like genes.

The profile records the number of fragments overlapping each base within range of the start
of all regions. Single-end reads are directionally extended to ext to impute the fragment (see

profileSites 37

windowCounts for more details). For paired-end reads, the interval between each pair is used as the
fragment. If multiple bam.files are specified, reads are pooled across files for counting into each
profile.

Direct aggregation will favor high-abundance regions as these have higher counts. If this is undesir-
able, high-abundance regions can be downweighted using the weight argument. For example, this
can be set to the inverse of the sum of counts across all libraries for each region in regions. This
will ensure that each region contributes equally to the final profile.

Aggregation can be turned off by setting average=FALSE. In such cases, a separate profile will be
returned for each region, instead of the profiles being averaged across all regions. This may be
useful, e.g., for constructing heatmaps of enrichment across many regions. Note that weight has no
effect when aggregation is turned off.

Value

If average=TRUE, a numeric vector of average coverages for each base position within range is
returned, where the average is taken over all regions. The vector is named according to the relative
position of each base to the start of the region. If weight is set as described above for each region,
then the vector will represent average relative coverages, i.e., relative to the number of fragments
counted in the region itself.

If average=FALSE, an integer matrix of coverage values is returned. Each row of the matrix cor-
responds to an entry in regions, while each column corresponds to a base position with range.
Column names are set o the relative position of each base to the start of each region.

Comments on strand specificity

If strand="use", the function is called separately on the reverse-stranded regions. The profile for
these regions is computed such that the left side of the profile corresponds to the upstream flank on
the reverse strand (i.e., the profile is flipped). The center of the profile corresponds to the 5’ end of
the region on the reverse strand. This may be useful for features where strandedness is important,
e.g., TSS’s. Otherwise, if strand="ignore", no special treatment is given to reverse-stranded
features.

By default, the strandedness of the region has no effect on read extraction. If strand="match", the
profile for reverse-strand regions is made with reverse-strand reads only (this profile is also flipped,
as described for strand="use"). Similarly, only forward-strand reads are used for forward- or
unstranded regions. Note that param$forward must be set to NULL for this to work.

Author(s)

Aaron Lun

See Also

findMaxima, windowCounts, wwhm

Examples

bamFile <- system.file("exdata", "rep1.bam", package="csaw")
data <- windowCounts(bamFile, filter=1)
rwsms <- rowSums(assay(data))

38 readParam

maxed <- findMaxima(rowRanges(data), range=100, metric=rwsms)

x <- profileSites(bamFile, rowRanges(data)[maxed], range=200)
plot(as.integer(names(x)), x)

x <- profileSites(bamFile, rowRanges(data)[maxed], range=500)
plot(as.integer(names(x)), x)

x <- profileSites(bamFile, rowRanges(data)[maxed], range=500, weight=1/rwsms)
plot(as.integer(names(x)), x)

Introducing some strandedness.
regs <- rowRanges(data)[maxed]
strand(regs) <- sample(c("-", "+", "*"), sum(maxed), replace=TRUE)
x <- profileSites(bamFile, regs, range=500)
plot(as.integer(names(x)), x)
x2 <- profileSites(bamFile, regs, range=500, strand="use")
points(as.integer(names(x2)), x2, col="red")
x3 <- profileSites(bamFile, regs, range=500, strand="match",

param=readParam(forward=NULL))
points(as.integer(names(x3)), x3, col="blue")

Returning separate profiles.
y <- profileSites(bamFile, rowRanges(data)[maxed], range=500, average=FALSE)
dim(y)

readParam readParam class and methods

Description

Class to specify read loading parameters

Details

Each readParam object stores a number of parameters, each pertaining to the extraction of reads
from a BAM file. Slots are defined as:

pe: a character string indicating whether paired-end data is present; set to "none", "both", "first"
or "second"

max.frag: an integer scalar, specifying the maximum fragment length corresponding to a read pair

rescue.ext: an integer scalar indicating the extension length for rescued reads from invalid pairs

fast.pe: a logical scalar specifying whether fast fragment extraction should be performed for
paired-end data

dedup: a logical scalar indicating whether marked duplicate reads should be ignored

minq: an integer scalar, specifying the minimum mapping quality score for an aligned read

forward: a logical scalar indicating whether only forward reads should be extracted

readParam 39

restrict: a character vector containing the names of allowable chromosomes from which reads
will be extracted

discard: a GRanges object containing intervals in which any alignments will be discarded

Removing low-quality or irrelevant reads

Marked duplicate reads will be removed with dedup=TRUE. This may be necessary when many
rounds of PCR have been performed during library preparation. However, it is not recommended
for routine counting as it will interfere with the downstream statistical methods. Note that the
duplicate field must be set beforehand in the BAM file for this argument to have any effect.

Reads can also be filtered by their mapping quality scores if minq is specified at a non-NA value.
This is generally recommended to remove low-confidence alignments. The exact threshold for minq
will depend on the range of scores provided by the aligner. If minq=NA, no filtering on the score will
be performed.

If restrict is supplied, reads will only be extracted for the specified chromosomes. This is useful
to restrict the analysis to interesting chromosomes, e.g., no contigs/scaffolds or mitochondria. Con-
versely, if discard is set, a read will be removed if the corresponding alignment is wholly contained
within the supplied ranges. This is useful for removing reads in repeat regions.

Parameter settings for paired-end data

For pe="both", reads are extracted with the previously described filters, i.e., discard, minq, dedup.
Extracted reads are then grouped into proper pairs. Proper pairs are those where the two reads are
close together and in an inward-facing orientation. The fragment interval is defined as that bounded
by the 5’ ends of the two reads in a proper pair. Fragment sizes above max.frag are removed; use
getPESizes to pick an appropriate value.

By default, only reads in proper pairs are used to construct a fragment interval. If rescue.ext!=NA,
the function will also attempt to recover reads from improper pairs. For each improper pair, the
read with the higher MAPQ score will be directionally extended with rescue.ext. Users should
set rescue.ext as the median fragment length from getPESizes. The extended read will then be
used as the fragment interval. Similarly, any reads without a mapped mate will be extended. For
reasons of convenience, both reads will be rescued and extended for interchromosomal read pairs.
This is acceptable as these reads will never be counted twice into the same region.

Each run through the position-sorted BAM file tends to be time-consuming, as read names must be
extracted and matched. This can be avoided by setting fast.pe=TRUE. In this case, only cursory
checks are done with regards to proper pairing. Each fragment is defined from a forward-stranded
read with a reverse-stranded mate and a positive insert size no larger than max.frag. Values of minq
and discard are ignored, as the specifics of the mate alignment are not accessed in this fast mode.

Finally, paired-end data can also be treated as single-end data by only using one read from each pair
with pe="first" or "second". This is useful for poor-quality data where the paired-end procedure
has obviously failed, e.g., with many interchromosomal read pairs or pairs with large fragment
lengths. Treating the data as single-end may allow the analysis to be salvaged.

In all cases, users should ensure that each BAM file containing paired-end data is properly synchro-
nized prior to count loading.

40 readParam

Parameter settings for single-end data

If pe="none", reads are assumed to be single-end. Read extraction from BAM files is performed
with the same quality filters described above. If forward=NA, reads are extracted from all strands.
Otherwise, reads are only extracted from the forward or reverse strands for TRUE or FALSE, respec-
tively. This may be useful for applications requiring strand-specific counting. A special case is
forward=NULL - see strandedCounts for more details.

Note that directional extension is often used in analyses of single-end data. However, it must be
stressed that the rescue.ext parameter here does not determine the length of the extension. Instead,
the average fragment length must be specified in each of the relevant downstream functions. This
is because directional extension of single-end data pertains to analysis, not read extraction.

Constructor

readParam(pe="none", max.frag=500, rescue.ext=NA, dedup=FALSE, minq=NA, forward=NA, restrict=NULL, discard=GRanges()):
Creates a readParam object. Each argument is placed in the corresponding slot, with coercion
into the appropriate type.

Subsetting

In the code snippes below, x is a readParam object.

x$name: Returns the value in slot name.

Other methods

In the code snippes below, x is a readParam object.

show(x): Describes the parameter settings in plain English.

reform(x, ...): Creates a new readParam object, based on the existing x. Any named arguments
in ... are used to modify the values of the slots in the new object, with type coercion as
necessary.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts, correlateReads, getPESizes

Examples

blah <- readParam()
blah <- readParam(discard=GRanges("chrA", IRanges(1, 10)))
blah <- readParam(restrict='chr2')
blah$pe
blah$dedup

Use 'reform' if only some arguments need to be changed.
blah

regionCounts 41

reform(blah, dedup=TRUE)
reform(blah, rescue.ext=200)
reform(blah, pe="both", max.frag=212.0)
reform(blah, pe="both", fast.pe=TRUE)

regionCounts Count reads overlapping each region

Description

Count the number of extended reads overlapping pre-specified regions

Usage

regionCounts(bam.files, regions, ext=100, param=readParam())

Arguments

bam.files a character vector containing paths to sorted and indexed BAM files

regions a GRanges object containing the regions over which reads are to be counted

ext an integer scalar or vector, describing the average length of the sequenced frag-
ment in each library

param a readParam object containing read extraction parameters, or a list of such ob-
jects (one for each BAM file)

Details

This function simply provides a wrapper around countOverlaps for read counting into specified
regions. It is provided so as to allow for counting with awareness of the other parameters, e.g., ext,
pe. This allows users to coordinate region-based counts with those from windowCounts. Checking
that the output totals are the same between the two calls is strongly recommended.

Note that the strandedness of regions will not be considered when computing overlaps. The strand-
edness of the output rowRanges will depend on the strand(s) from which reads were counted. This
is determined by the forward slot in the param object.

See windowCounts and makeExtVector for more details on read extension.

Value

A RangedSummarizedExperiment object is returned containing one integer matrix. Each entry of
the matrix contains the count for each library (column) at each region (row). The coordinates of
each region are stored as the rowRanges. The total number of reads, read extension length and
param used in each library are in the colData.

Author(s)

Aaron Lun

42 scaledAverage

See Also

countOverlaps, windowCounts, readParam, makeExtVector

Examples

A low filter is only used here as the examples have very few reads.
bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
incoming <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),

IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))
regionCounts(bamFiles, regions=incoming)
regionCounts(bamFiles, regions=incoming, param=readParam(restrict="chrB"))

Loading PE data.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
regionCounts(bamFile, regions=incoming, param=readParam(pe="both"))
regionCounts(bamFile, regions=incoming, param=readParam(max.frag=100,
pe="first", restrict="chrA"))
regionCounts(bamFile, regions=incoming, param=readParam(max.frag=100,
pe="both", restrict="chrA", rescue.ext=100))

scaledAverage Scaled average abundance

Description

Compute the scaled average abundance for each feature.

Usage

scaledAverage(y, scale=1, prior.count=NULL, ...)

Arguments

y a DGEList object

scale a numeric vector indicating the magnitude with which each abundance is to be
downscaled

prior.count a numeric scalar specifying the prior count to add

... other arguments, to be passed to aveLogCPM

Details

This function computes the average abundance of each feature in y, and downscales it according
to scale. For example, if scale=2, the average count is halved, i.e., the returned abundances are
decreased by 1 (as they are log2-transformed values). The aim is to set scale based on the relative
width of regions, to allow abundances to be compared between regions of different size. Widths can
be obtained using the getWidths function.

scaledAverage 43

Some subtlety is necessary regarding the treatment of the prior.count. Specifically, the prior
used in aveLogCPM is automatically increased when scale is larger. This ensures that the effective
prior is the same after the abundance is scaled down. Otherwise, the use of the same prior would
incorrectly result in a smaller abundance for larger regions.

Note that the adjustment for width assumes that reads are uniformly distributed throughout each
region. This is reasonable for most background regions, but may not be for enriched regions. When
the distribution is highly heterogeneous, the downscaled abundance of a large region will not be an
accurate representation of the abundance of the smaller regions nested within.

For consistency, the prior.count is set to the default value of aveLogCPM.DGEList, if it is not
otherwise specified. If a non-default value is used, make sure that it is the same for all calls to
scaledAverage. This ensures that comparisons between the returned values are valid.

Value

A numeric vector of scaled abundances, with one entry for each row of y.

Author(s)

Aaron Lun

See Also

getWidths, aveLogCPM

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
size1 <- 50
data1 <- windowCounts(bamFiles, width=size1, filter=1)
size2 <- 500
data2 <- windowCounts(bamFiles, width=size2, filter=1)

Adjusting by `scale`, based on median sizes.
head(scaledAverage(asDGEList(data1)))
relative <- median(getWidths(data2))/median(getWidths(data1))
head(scaledAverage(asDGEList(data2), scale=relative))

Need to make sure the same prior is used, if non-default.
pc <- 5
head(scaledAverage(asDGEList(data1), prior.count=pc))
head(scaledAverage(asDGEList(data2), scale=relative, prior.count=pc))

Different way to compute sizes, for 1-to-1 relations.
data3 <- regionCounts(bamFiles, regions=resize(rowRanges(data1),

fix="center", width=size2))
head(scaledAverage(asDGEList(data1)))
relative.2 <- getWidths(data1)/getWidths(data2)
head(scaledAverage(asDGEList(data3), scale=relative.2))

44 SEmethods

SEmethods Statistical wrappers for RangedSummarizedExperiment objects

Description

Convenience wrappers for statistical routines operating on RangedSummarizedExperiment objects.

Usage

S4 method for signature 'RangedSummarizedExperiment'
normOffsets(object, lib.sizes, ...)
S4 method for signature 'RangedSummarizedExperiment'
normalize(object, lib.sizes, ...) # deprecated, use normOffsets
S4 method for signature 'RangedSummarizedExperiment'
asDGEList(object, lib.sizes, ...)

Arguments

object a RangedSummarizedExperiment object, like that produced by windowCounts

lib.sizes an (optional) integer vector of library sizes

... other arguments to be passed to the function being wrapped

Details

Counts are extracted from the matrix corresponding to the first assay in the RangedSummarizedExperiment
object. If not specified in lib.sizes, library sizes are taken from the totals field in the column
data of object. Warnings will be generated if this field is not present.

In the normOffsets method, the extracted counts and library sizes are supplied to normOffsets,matrix-method.
Similarly, the asDGEList method wraps the DGEList constructor. In both cases, any arguments in
... are also passed to the wrapped functions.

Value

For normOffsets, either a numeric matrix or vector is returned; see normOffsets,matrix-method.

For asDGEList, a DGEList object is returned.

Author(s)

Aaron Lun

See Also

normOffsets, DGEList, windowCounts

strandedCounts 45

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, width=100, filter=1)
normOffsets(data)
normOffsets(data, lib.sizes=c(10, 100))
head(normOffsets(data, type="loess"))

asDGEList(data)
asDGEList(data, lib.sizes=c(10, 100))
asDGEList(data, norm.factors=c(1.11, 2.23), group=c("a", "b"))

strandedCounts Get strand-specific counts

Description

Obtain strand-specific counts for each genomic window or region.

Usage

strandedCounts(bam.files, param=readParam(forward=NULL), regions=NULL, ...)

Arguments

bam.files a character vector containing paths to sorted and indexed BAM files

param a readParam object containing read extraction parameters, or a list of such ob-
jects (one for each BAM file), where the forward slot must be set to NULL

regions a GRanges object specifying the regions over which reads are to be counted

... other arguments to be passed to windowCounts or regionCounts

Details

Some applications require strand-specific counts for each genomic region. This function calls
windowCounts after setting param$forward to TRUE and FALSE. Any existing value of param$forward
is ignored. If regions is specified, regionCounts is used instead of windowCounts.

The function then concatenates the two RangedSummarizedExperiment objects (one from each
strand). The total numbers of reads are added together to form the new totals. However, the total
numbers of reads for each strand are also stored for future reference. Count loading parameters are
also stored in the metadata.

Each row in the concatenated object corresponds to a stranded genomic region, where the strand of
the region indicates the strand of the reads that were counted in that row. Note that there may not
be two rows for each genomic region. This is because any empty rows, or those with counts below
filter, will be removed within each call to windowCounts.

Value

A RangedSummarizedExperiment object containing strand-specific counts for genomic regions.

46 strandedCounts

Warnings

Users should be aware that many of the downstream range-processing functions are not strand-
aware by default, e.g., mergeWindows. Any strandedness of the ranges will be ignored in these
functions. If strand-specific processing is desired, users must manually set ignore.strand=FALSE.

The input param$forward should be set to NULL, as a safety measure. This is because the returned
object is a composite of two separate calls to the relevant counting function. If the same param
object is supplied to other functions, an error will be thrown if param$forward is NULL. This serves
to remind users that such functions should instead be called twice, i.e., separately for each strand
after setting param$forward to TRUE or FALSE.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
xparam <- readParam(forward=NULL)
out <- strandedCounts(bamFiles, filter=1, param=xparam)
out

strandedCounts(bamFiles, filter=1, width=100, param=xparam)
strandedCounts(bamFiles, filter=1, param=reform(xparam, minq=20))

incoming <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),
IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))

strandedCounts(bamFiles, regions=incoming, param=xparam)
strandedCounts(bamFiles, regions=incoming, param=reform(xparam, dedup=TRUE))

Throws an error, as the same reads are not involved.
try(windowCounts(bamFiles, filter=1, width=100, param=xparam))

Library sizes should be the same as that without strand-specificity.
colData(out)
out.ref <- windowCounts(bamFiles, param=reform(xparam, forward=NA))
stopifnot(identical(out.ref$totals, out$totals))

Running assorted functions on strandedCounts output.
mergeWindows(rowRanges(out), tol=100)
mergeWindows(rowRanges(out), tol=100, ignore.strand=FALSE)

rwsms <- rowSums(assay(out))
summary(findMaxima(rowRanges(out), range=100, metric=rwsms))
summary(findMaxima(rowRanges(out), range=100, metric=rwsms, ignore.strand=FALSE))

upweightSummit 47

upweightSummit Upweight summits

Description

Upweight the highest-abudance window(s) in a cluster.

Usage

upweightSummit(ids, summits)

Arguments

ids an integer vector of cluster IDs

summits a logical vector indicating whether each window is a summit, or an integer vector
containing the indices of summit windows

Details

This function computes weights for each window in a cluster, where the highest-abundance win-
dows are upweighted. These weights are intended for use in combineTests, such that the summits
of a cluster have a greater influence on the combined p-value. This is more graduated than simply
using the summits alone, as potential DB between summits can still be detected. Summits can be
obtained through findMaxima or by running getBestTest with by.pval=FALSE.

The exact value of the weight is arbitrary. Greater weight represents a stronger belief that DB occurs
at the most abundant window. Here, the weighting scheme is designed such that the maximum
Simes correction is not more than twice that without weighting. It will also be no more than twice
that from applying Simes’ method on the summits alone. This (restrained) conservativeness is an
acceptable cost for considering DB events elsewhere in the cluster, while still focusing on the most
abundant site.

Value

A numeric vector of weights, where the highest-abundance window in each cluster is assigned a
greater weight.

Author(s)

Aaron Lun

References

Benjamini Y and Hochberg Y (1997). Multiple hypotheses testing with weights. Scand. J. Stat. 24,
407-418.

See Also

combineTests, findMaxima, getBestTest

48 windowCounts

Examples

nwin <- 20
set.seed(20)
ids <- sample(5, nwin, replace=TRUE)
summits <- sample(5, nwin, replace=TRUE)==1L
weights <- upweightSummit(ids, summits)

Checking that the summit is upweighted in each cluster.
split(data.frame(summits, weights), ids)

windowCounts Count reads overlapping each window

Description

Count the number of extended reads overlapping a sliding window at spaced positions across the
genome.

Usage

windowCounts(bam.files, spacing=50, width=spacing, ext=100, shift=0,
filter=10, bin=FALSE, param=readParam())

Arguments

bam.files a character vector containing paths to sorted and indexed BAM files

spacing an integer scalar specifying the distance between consecutive windows

width an integer scalar specifying the width of the window

ext an integer scalar or vector, containing the average length(s) of the sequenced
fragments in each library

shift an integer scalar specifying how much the start of each window should be shifted
to the left

filter an integer scalar for the minimum count sum across libraries for each window

bin a logical scalar indicating whether binning should be performed

param a readParam object containing read extraction parameters, or a list of such ob-
jects (one for each BAM file)

Value

A RangedSummarizedExperiment object is returned containing one integer matrix. Each entry of
the matrix contains the count for each library (column) at each window (row). The coordinates of
each window are stored as the rowRanges. The total number of reads in each library are stored as
totals in the colData, along with the read extension length and param used in each library. Other
window counting parameters (e.g., spacing, width) are stored in the metadata.

windowCounts 49

Defining the sliding windows

A window is defined as a genomic interval of size equal to width. The value of width can be
interpreted as the width of the contact area between the DNA and protein. In practical terms, it
determines the spatial resolution of the analysis. Larger windows count reads over a larger region
which results in larger counts. This results in greater detection power at the cost of resolution.

By default, the first window on a chromosome starts at base position 1. This can be shifted to the
left by specifying an appropriate value for shift. New windows are found by sliding the current
window to the right by the specified spacing. Increasing spacing will reduce the frequency at
which counts are extracted from the genome. This results in some loss of resolution but it may be
necessary when machine memory is limited.

If bin is set, settings are internally adjusted so that all reads are counted into non-overlapping adja-
cent bins of size width. Specifically, spacing is set to width and filter is capped at a maximum
value of 1 (empty bins can be retained with filter=0). Only the 5’ end of each read or the midpoint
of each fragment (for paired-end data) is used in counting.

Read extraction and counting

Read extraction from the BAM files is governed by the param argument. Specifying a single
readParam object will use the same extraction parameters for all files. Different parameters can
also be used for each file by specifying a list of readParam objects. However, users should take
care with library-specific parameters, lest spurious differences be introduced between libraries.

Fragments are inferred from reads by directional extension (single-end; see below) or by identifying
proper pairs (paired-end; see readParam for more details). The number of fragments overlapping
the window for each library is then counted for each window position. Windows will be removed if
the count sum across all libraries is below filter. This reduces the memory footprint of the output
by not returning empty or near-empty windows, which are usually uninteresting anyway.

The strandedness of the output rowRanges is set based on the strand(s) from which the reads are
extracted and counted. This is determined by the value of the forward slot in the input param
object.

Elaborating on directional extension

For single-end reads, directional extension is performed whereby each read is extended from its 3’
end to the average fragment length, i.e., ext. This obtains a rough estimate of the interval of the
fragment from which the read was derived. It is particularly useful for TF data, where extension
specifically increases the coverage of peaks that exhibit strand bimodality. Substantially different
fragment lengths between libraries can be accommodated by supplying a vector to ext, where each
entry represents the extension length for the corresponding library. If any value of ext is set to NA,
the read length is used as the fragment length in that library.

However, different fragment lengths will result in different peak widths between libraries. This
may result in the detection of irrelevant differences corresponding to these differences in widths.
To avoid this, fragment lengths in all libraries can be scaled to final.ext. For a bimodal peak,
scaling effectively aligns the subpeaks on a given strand across all libraries to a common location.
This removes the most obvious differences in widths.

The value of final.ext is sourced from the attributes of ext (see makeExtVector for more details).
If this attribute is not present or is NA, no rescaling is performed.

50 wwhm

Comments on ext for paired-end data

Directional extension is not performed for paired-end data, so the values in ext are not used di-
rectly. Hwoever, rescaling can still be performed to standardize fragment lengths across libraries,
by resizing each fragment from its midpoint. This still uses final.ext in the attributes of the ext
parameter.

On a similar note, some downstream functions will use the extension length in the output colData
as the average fragment length. Thus, to maintain compatibility, users are recommended to set ext
to a vector holding the median fragment length in each library. These values will not be used in
windowCounts, but instead, in functions like getWidths.

Author(s)

Aaron Lun

See Also

correlateReads, readParam, makeExtVector

Examples

A low filter is only used here as the examples have very few reads.
bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
windowCounts(bamFiles, filter=1)
windowCounts(bamFiles, width=100, filter=1)
windowCounts(bamFiles, ext=c(50, 100), spacing=100, filter=1)
windowCounts(bamFiles, ext=makeExtVector(c(50, 100), 80), width=100)

Loading PE data.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
windowCounts(bamFile, param=readParam(pe="both"), filter=1)
windowCounts(bamFile, param=readParam(pe="first"), filter=1)
windowCounts(bamFile, param=readParam(max.frag=100, pe="both"), filter=1)
windowCounts(bamFile, param=readParam(max.frag=100, pe="both", restrict="chrA"), filter=1)

Running rescues of PE data (use max.frag=-1 to coerce failure).
windowCounts(bamFile, param=readParam(max.frag=50, pe="both", rescue.ext=200), filter=1)

wwhm Window width at half maximum

Description

Get the width of the window from the half-maximum of the coverage profile.

Usage

wwhm(profile, regions, ext=100, proportion=0.5, rlen=NULL)

wwhm 51

Arguments

profile a numeric vector containing a coverage profile, as produced by profileSites

regions the GRanges object with which the profile was constructed

ext an integer scalar specifying the average fragment length for single-end data

proportion a numeric scalar specifying the proportion of the maximum coverage at which
to compute the window width

rlen a numeric scalar or vector containing read lengths, if any ext=NA, i.e., fragments
are unextended reads

Details

This function computes the ideal window size, based on the width of the peak in the coverage profile
at the specified proportion of the maximum. Obviously, the values of regions and ext should
be the same as those used in profileSites (set ext to the median fragment length for paired-end
data). The regions should contain windows of a constant size.

Some subtleties are involved in obtaining the window width. First, twice the average fragment
length must be subtracted from the peak width, as the profile is constructed from (inferred) frag-
ments. The size of the viewpoints in regions must also be subtracted, to account for the inflated
peak width when spatial resolution is lost after aggregation across many windows.

Value

An integer scalar is returned, specifying the ideal window width.

Author(s)

Aaron Lun

See Also

profileSites, getWidths

Examples

x <- dnorm(-200:200/100) # Mocking up a profile.
windows <- GRanges("chrA", IRanges(1, 50)) # Making up some windows.

wwhm(x, windows)
wwhm(x, windows, ext=50)
wwhm(x, windows, proportion=0.2)

Need to set 'rlen' if ext=NA.
wwhm(x, windows, ext=NA, rlen=10)

Index

∗Topic annotation
detailRanges, 12

∗Topic clustering
consolidateSizes, 7
mergeWindows, 29

∗Topic counting
dumpPE, 14
makeExtVector, 26
Parameter list methods, 35
readParam, 38
regionCounts, 41
strandedCounts, 45
windowCounts, 48

∗Topic diagnostics
checkBimodality, 2
correlateReads, 9
getPESizes, 24
maximizeCcf, 28
profileSites, 36
wwhm, 50

∗Topic documentation
csawUsersGuide, 11

∗Topic filtering
filterWindows, 18
findMaxima, 21
getWidths, 25
scaledAverage, 42

∗Topic normalization
normOffsets, 30
SEmethods, 44

∗Topic testing
clusterFDR, 4
combineTests, 5
getBestTest, 22
overlapStats, 32
upweightSummit, 47

∗Topic visualization
extractReads, 16

[.extVector (makeExtVector), 26

$,readParam-method (readParam), 38

asDGEList (SEmethods), 44
asDGEList,RangedSummarizedExperiment-method

(SEmethods), 44
aveLogCPM, 18, 20, 21, 42, 43
aveLogCPM.DGEList, 43

calcNormFactors, 31, 32
ccf, 10
checkBimodality, 2
checkList (Parameter list methods), 35
clusterFDR, 4
combineOverlaps (overlapStats), 32
combineTests, 4, 5, 7, 8, 23, 30, 33, 34, 47
consolidateSizes, 7
correlateReads, 9, 28, 40, 50
countOverlaps, 41, 42
csaw (csawUsersGuide), 11
csawUsersGuide, 11

detailRanges, 12
DGEList, 44
dumpPE, 14

extractReads, 16

filterWindows, 18
findMaxima, 21, 33, 36, 37, 47
findOverlaps, 7, 8, 33

getBestOverlaps (overlapStats), 32
getBestTest, 22, 33, 34, 47
getPESizes, 24, 25, 39, 40
getWidths, 19, 20, 25, 42, 43, 50, 51

Hits, 8

loessFit, 31, 32

makeExtVector, 26, 41, 42, 49, 50

52

INDEX 53

maximizeCcf, 28
mergeWindows, 4, 6–8, 23, 29, 46

normalize (SEmethods), 44
normalize,RangedSummarizedExperiment-method

(SEmethods), 44
normalizeCyclicLoess, 31, 32
normOffsets, 30, 31, 44
normOffsets,matrix-method

(normOffsets), 30
normOffsets,RangedSummarizedExperiment-method

(SEmethods), 44

overlapStats, 32

Parameter list methods, 35
profileSites, 36, 51

readParam, 10, 15, 17, 24, 25, 38, 42, 49, 50
readParam-class (readParam), 38
reform, 17, 35
reform (readParam), 38
reform,readParam-method (readParam), 38
reformList (Parameter list methods), 35
regionCounts, 25–27, 35, 36, 40, 41, 45, 46

scaledAverage, 19, 20, 42
SEmethods, 44
show,readParam-method (readParam), 38
strandedCounts, 40, 45
summitOverlaps (overlapStats), 32
Sweave, 11
system, 12

upweightSummit, 33, 34, 47

windowCounts, 7, 8, 15, 17, 19–21, 25–27, 30,
35–37, 40–42, 44–46, 48

wwhm, 37, 50

	checkBimodality
	clusterFDR
	combineTests
	consolidateSizes
	correlateReads
	csawUsersGuide
	detailRanges
	dumpPE
	extractReads
	filterWindows
	findMaxima
	getBestTest
	getPESizes
	getWidths
	makeExtVector
	maximizeCcf
	mergeWindows
	normOffsets
	overlapStats
	Parameter list methods
	profileSites
	readParam
	regionCounts
	scaledAverage
	SEmethods
	strandedCounts
	upweightSummit
	windowCounts
	wwhm
	Index

