Package 'a4Core'

April 22, 2016

License GPL-3		
biocViews Microarray		
biocViews Microarray NeedsCompilation no		
•		
NeedsCompilation no	nted:	
NeedsCompilation no R topics document		
NeedsCompilation no R topics document confusionMatrix		1
NeedsCompilation no R topics document confusionMatrix simulateData .		2
NeedsCompilation no R topics document confusionMatrix simulateData topTable		2
NeedsCompilation no R topics document confusionMatrix simulateData topTable		2
NeedsCompilation no R topics document confusionMatrix simulateData topTable		2

Description

Generic function to produce a confusion matrix (related to a classification problem)

2 simulateData

Usage

```
confusionMatrix(x, ...)
```

Arguments

x object (usually a model fit object) that contains all information needed to pro-

duce the confusion matrix.

... further arguments for a specific method

Author(s)

Tobias Verbeke

simulateData

Simulate Data for Package Testing and Demonstration Purposes

Description

Simulate Data for Package Testing and Demonstration Purposes

Usage

```
simulateData(nCols = 40, nRows = 1000, nEffectRows = 5, nNoEffectCols = 5,
    betweenClassDifference = 1, withinClassSd = 0.5)
```

Arguments

nCols number of samples; currently this should be an even number

nRows number of features (genes)

nEffectRows number of differentially expressed features

nNoEffectCols number of samples for which the profile of a differentially expressed feature will

be set similar to the other class

betweenClassDifference

Average mean difference between the two classes to simulate a certain signal in

the features for which an effect was introduced; the default is set to 1

withinClassSd Within class standard deviation used to add a certain noise level to the features

for which an effect was introduced; the default standard deviation is set to 0.5

Value

object of class ExpressionSet with the characteristics specified

Note

The simulation assumes the variances are equal between the two classes. Heterogeneity could easily be introduced in the simulation if this would be requested by the users.

topTable 3

Author(s)

W. Talloen and T. Verbeke

Examples

```
someEset <- simulateData(nCols = 40, nRows = 1000, nEffectRows = 5, nNoEffectCols = 5) \\ someEset
```

topTable

S4 Generic for obtaining a top table

Description

a top table is a rectangular object (e.g. data frame) which lists the top n most relevant variables

Usage

```
topTable(fit, n, ...)
```

Arguments

fit object for which to obtain a top table, generally a fit object for a given model

class

n number of features (variables) to list in the top table, ranked by importance

... further arguments for specific methods

Author(s)

Tobias Verbeke

topTable-methods

Methods for topTable

Description

Methods for topTable. topTable extracts the top n most important features for a given classification or regression procedure

Arguments

n

fit object resulting from a classification or regression procedure

number of features that one wants to extract from a table that ranks all features

according to their importance in the classification or regression model; defaults

to 10 for limma objects

4 topTable-methods

Methods

glmnet and lognet glmnet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)

fit = "glmnet", **n = "numefitc" "lognet"**, **n = "numeric"** lognet objects are produced by lassoClass (a4Classif) or lassoReg (a4Base)

Index

```
*Topic manip
    simulateData, 2
    topTable-methods, 3
*Topic methods
    topTable-methods, 3
*Topic models
    {\tt confusionMatrix}, \\ 1
    topTable, 3
\verb|confusionMatrix|, 1
simulateData, 2
topTable, 3
topTable,elnet-method
        (topTable-methods), 3
topTable,glmnet-method
        (topTable-methods), 3
topTable,lognet-method
        (topTable-methods), 3
topTable-methods, 3
```