
Package ‘RIPSeeker’
April 23, 2016

Type Package

Title RIPSeeker: a statistical package for identifying
protein-associated transcripts from RIP-seq experiments

Version 1.10.0

Date 2013-Apr-13

Author Yue Li

Maintainer Yue Li <yueli@cs.toronto.edu>

Description Infer and discriminate RIP peaks from RIP-seq alignments
using two-state HMM with negative binomial emission
probability. While RIPSeeker is specifically tailored for
RIP-seq data analysis, it also provides a suite of
bioinformatics tools integrated within this self-contained
software package comprehensively addressing issues ranging from
post-alignments processing to visualization and annotation.

Depends R (>= 2.15), methods, IRanges, GenomicRanges,
SummarizedExperiment, Rsamtools, GenomicAlignments, rtracklayer

Suggests biomaRt, ChIPpeakAnno, parallel, GenomicFeatures

License GPL-2

URL http://www.cs.utoronto.ca/~yueli/software.html

Lazyload yes

biocViews Sequencing, RIPSeq

NeedsCompilation no

R topics documented:
RIPSeeker-package . 2
addDummyProb . 4
addPseudoAlignment . 5
annotateRIP . 6
binCount . 9
combineAlignGals . 11

1

http://www.cs.utoronto.ca/~yueli/software.html

2 RIPSeeker-package

combineRIP . 12
computeLogOdd . 14
computeRPKM . 15
disambiguateMultihits . 18
empiricalFDR . 20
evalBinSize . 21
exportGRanges . 23
galp2gal . 24
getAlignGal . 25
logScoreWithControl . 27
logScoreWithoutControl . 29
mainSeek . 31
mainSeekSingleChrom . 33
nbh . 36
nbh.GRanges . 37
nbh.integer . 38
nbh_chk . 40
nbh_em . 41
nbh_gen . 44
nbh_init . 45
nbh_vit . 47
nbm_chk . 50
nbm_em . 51
plotCoverage . 53
plotStrandedCoverage . 54
randindx . 56
ripSeek . 57
rulebaseRIPSeek . 60
scoreMergedBins . 63
seekRIP . 65
selectBinSize . 67
statdis . 70
viewRIP . 72

Index 74

RIPSeeker-package RIPSeeker: a statistical package for identifying protein-associated
transcripts from RIP-seq experiments

Description

RIPSeeker infers and discriminates RIP peaks from RIP-seq alignments using two-state HMM with
negative binomial emission probability. While RIPSeeker is specifically tailored for RIP-seq data
analysis, it also provides a suite of bioinformatics tools integrated within this self-contained soft-
ware package comprehensively addressing issues ranging from post-alignments processing to visu-
alization and annotation. In addition, a rule-based approach is provided as an additional function
named rulebaseRIPSeek for user to obtain RPKM/FPKM (and fold-change) for the gene/transcripts

RIPSeeker-package 3

expressions in RIP (and control) based on automatically retrieved online Ensembl annotation given
single or paired-end alignments.

Details

Package: RIPSeeker
Type: Package
Version: 1.4.0
Date: 2012-11-06
License: GPL-2

The front-end main function ripSeek suffices for most applications. The function takes as the only
required argument the path to alignment files (BAM/BED/SAM) and outputs predicted RIP regions.
Optionally, user may indicate via ’cNAME’ which file(s) in the first file argument list is/are control
to enable empirical false discover rate (eFDR) computation. If the arguments ’biomaRt_dataset’
and/or ’goAnno’ are set, ripSeek will return the annotated RIP predictions and the enriched GO
terms corresponding to the genomic context of the RIP predictions. User can also specify the thresh-
olds for statistical significance scores via logOddCutoff, pvalCutoff, pvalAdjCutoff, eFDRCutoff.

Author(s)

Yue Li <yueli@cs.toronto.edu>

References

Li, Y., Zhao, D. Y., Greenblatt, J. F., & Zhang, Z. (2013). RIPSeeker: a statistical package
for identifying protein-associated transcripts from RIP-seq experiments. Nucleic Acids Research.
doi:10.1093/nar/gkt142

Zhao, J., Ohsumi, T. K., Kung, J. T., Ogawa, Y., Grau, D. J., Sarma, K., Song, J. J., et al. (2010).
Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Molecular Cell, 40(6),
939D953. doi:10.1016/j.molcel.2010.12.011

See Also

ripSeek, rulebaseRIPSeek

Examples

library(RIPSeeker)

ls("package:RIPSeeker")

4 addDummyProb

addDummyProb Create a dummy GRanges object as a placeholder in case nbh_em
fails (Internal function)

Description

This function is used to generate a place holder in cases the EM fails to converge on a chromosome
due to too few number of reads mapped to that chromosome. This is an internal function not
expected to be directly called by the user.

Usage

addDummyProb(alignGR, K = 2, randomProb = FALSE, runViterbi = FALSE, ...)

Arguments

alignGR GRanges object derived from RIP-seq alignment inputs.

K Number of hidden states (Default: 2).

randomProb A binary value to indicate whether to use random probability as a place holder
to present posterior probabilities. If set FALSE, (by default), equal probability
is used for all states.

runViterbi A binary value to indicate whether to generate place holder for the Viterbi state
sequence (Default: FALSE).

... Additional arguments expected to contain the bin size used for computing the
bin counts in binCount function, and any other extra arguments are ignored.

Details

A priviate function to fall back in case HMM fails to converge mostly due to too many zero counts
in the input vector. When that occurs, a GRanges place holder object needs to be returned to keep
consistent with the remaining GRanges for each chromosome. Thus, all information slot will be
generated as place holder to properly create the GRangesList for the predictions on all chromosomes
(each as an GRanges item in the list).

Value

GRanges A GRanges object containing the read count (in the defined bin size), alpha,
beta, TRANS dummy values for the HMM

Author(s)

Yue Li

See Also

mainSeekSingleChrom

addPseudoAlignment 5

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

x <- addDummyProb(alignGRList$chrX, binSize=10000)

x

addPseudoAlignment Add a psuedoalignment as a placeholder for the chromosome (Internal
function)

Description

Check whether chromosome has at least one alignment to prevent abnormal behaviour of the sub-
sequent functions. In case no alignment is found on an entire chromosome, add a pseudo-alignment
as a placeholder for that chromosome.

Usage

addPseudoAlignment(alignGR)

Arguments

alignGR GRanges object containing the alignment information.

Details

In case no alignment is found on an entire chromosome, add an alignment with start 1 and end 20 as
a placeholder for the chromosome. This step is necessary to maintian the chromosome information.

Value

alignGR Original or augmented input GRanges object with pseudoreads, depending on
whether there exists empty chromosome(s).

6 annotateRIP

Author(s)

Yue Li

See Also

combineAlignGals, readGAlignments, readGAlignmentPairs, import

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGR

x <- addPseudoAlignment(alignGR)

x

annotateRIP Annotate RIP peaks with genomic information and perform GO en-
richement

Description

Given the genomic coordinates of each predicted RIP regions, query the Ensembl database whether
each region is nearby or overlaps any known (noncoding) genes.

Usage

annotateRIP(sigGRanges, biomaRt_dataset, featureType = "TSS",
goAnno, strandSpecific = FALSE, exportFormat = "txt",
hasGOdb = !missing(goAnno), goPval = 0.1, outDir, ...)

Arguments

sigGRanges GRanges object indicating the chromosomal coordinates of each RIP peaks.
biomaRt_dataset

Ensembl dataset available from biomaRt (See listDatasets). For instance, the
human and mouse annotations are hsapiens_gene_ensembl and mmusculus_gene_ensembl,
respectively.

annotateRIP 7

featureType TSS, miRNA, Exon, 5’UTR, 3’UTR, transcript or Exon plus UTR defined in
getAnnotation.

goAnno Optional argugment that specifies a GO dataset used for GO enrichement anal-
ysis performed by getEnrichedGO. For instance, the human and mouse GO
datasets are org.Hs.eg.db and org.Mm.eg.db.

strandSpecific Indicate whether the annotations should be strand-specific (Default: FALSE)

exportFormat Format to export using exportGRanges (Default: "txt", i.e. tab-delim file).

hasGOdb A binary flag that indicates whether GO enrichement is performed in order to
export the results. hasGOdb can be FALSE either because goAnno is not specifiy
or because the GO database does not exist.

goPval P-value cutoff to determine the significance of enriched GO terms by getEnrichedGO.

outDir Output directory.

... Extra arguments passed to useMart to specify the database and to passed getEnrichedGO
to specify the GO enrichment procedure.

Details

To access the up-to-date Ensembl database, RIPSeeker employs useMart and getAnnotation from
biomaRt and ChIPpeakAnno Bioconductor packages to dynamically establish internet connection
to the database and retrieve the up-to-date annotations. Then, annotatePeakInBatch from ChIP-
peakAnno is used to efficiently annotate all of the predicted regions based on the Ensembl anno-
tation. A predicted region may overlap multiple genes, all of which will be reported as separate
records. Moreover, getEnrichedGO from ChIPpeakAnno is applied to the annotated predictions to
discover enriched Gene Ontology (GO) terms involving the protein-associated transcriptome.

In order to use old annotation (e.g., mm9 v.s. mm10), user also needs to specify the host and biomart
arguments accepted within useMart. To access to mouse annotation from Ensembl version 65, for
instance, user needs to call annotateRIP(..., dataset="mmusculus_gene_ensembl", biomart="ENSEMBL_MART_ENSEMBL",
host="dec2011.archive.ensembl.org", ...), which will run useMart(dataset="mmusculus_gene_ensembl",
biomart="ENSEMBL_MART_ENSEMBL", host="dec2011.archive.ensembl.org", ...) to get the
mm9 annotation from Ensembl (v65).

Value
sigGRangesAnnotated

sigGRanges augmented with genomic information including "ensembl_gene_id",
"external_gene_id", and "description"

enrichedGO Output from getEnrichedGO. All three main GO categories ("Biological Pro-
cess", "Molecular Function", "Cellular Component") are combined together and
returned. The argument is only returned when hasGOdb is TRUE.

If outDir is specified, then the above sigGRangesAnnotated is saved as RIPregions_annotated.txt
and RIPregions_annotated.RData, and enrichedGO as RIPregions_enrichedGO.txt in the outDir
directory.

Author(s)

Yue Li

8 annotateRIP

References

Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt.
Steffen Durinck, Paul T. Spellman, Ewan Birney and Wolfgang Huber, Nature Protocols 4, 1184-
1191 (2009).

BioMart and Bioconductor: a powerful link between biological databases and microarray data anal-
ysis. Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma and
Wolfgang Huber, Bioinformatics 21, 3439-3440 (2005).

Lihua Julie Zhu, Herve Pages, Claude Gazin, Nathan Lawson, Jianhong Ou, Simon Lin, David La-
pointe and Michael Green (2012). ChIPpeakAnno: Batch annotation of the peaks identified from
either ChIP-seq, ChIP-chip experiments or any experiments resulted in large number of chromo-
some ranges.. R package version 2.4.0.

See Also

useMart, getAnnotation, getEnrichedGO

Examples

if(interactive()) { # need internet connection
Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- NULL # automatically determine bin size
minBinSize <- 10000 # min bin size in automatic bin size selection
maxBinSize <- 12000 # max bin size in automatic bin size selection
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

biomart <- "ENSEMBL_MART_ENSEMBL" # use archive to get ensembl 65
dataset <- "mmusculus_gene_ensembl" # mouse dataset id name
host <- "dec2011.archive.ensembl.org" # use ensembl 65 for annotation

goAnno <- "org.Mm.eg.db"

################ run main function for HMM inference on all chromosomes ################
mainSeekOutputRIP <- mainSeek(

bamFiles=grep(pattern="SRR039214", bamFiles, value=TRUE, invert=TRUE),
binSize=binSize, minBinSize = minBinSize,
maxBinSize = maxBinSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = TRUE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

binCount 9

use defined binSize from RIP
RIPBinSize <- lapply(mainSeekOutputRIP$nbhGRList, function(x) median(width(x)))

mainSeekOutputCTL <- mainSeek(
bamFiles=grep(pattern="SRR039214", bamFiles, value=TRUE, invert=FALSE),

binSize=RIPBinSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = TRUE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

################ significance test on Viterbi predicted peaks ################
ripGR <- seekRIP(mainSeekOutputRIP$nbhGRList$chrX, mainSeekOutputCTL$nbhGRList)

################ Annotate peaks ################

annotatedRIPGR <- annotateRIP(sigGRanges = ripGR,
biomaRt_dataset = dataset, goAnno = goAnno,
strandSpecific = !is.null(strandType),
host=host, biomart=biomart)

head(annotatedRIPGR$sigGRangesAnnotated)
}

binCount Count reads in nonoverlapping bins across a chromosome

Description

Stratify chromosome into nonoverlapping bins of the same size and count the number of reads that
fall within each bin.

Usage

binCount(alignGR, binSize, returnBinCountOnly = FALSE)

Arguments

alignGR GRanges object containing the alignments for a single chromosome.

binSize An integer for the bin size.

returnBinCountOnly

Binary indicator. If TRUE, only the integer read count is returned; if FALSE,
GRanges of bins with value slot saved as the corresponding read counts is re-
turned.

10 binCount

Details

The funciton is designed to operate to a single chromosome to facilitate parallel computing on
multiple chromosomes independently. The function is used in evalBinSize to select the optimal
bin size based on the read counts and in mainSeekSingleChrom to provide the read count as input
for the HMM.

Value

If returnBinCountOnly is TRUE, then the integer read count is returned; if returnBinCountOnly
is FALSE, then the GRanges of bins with value slot saved for the corresponding read counts is
returned.

Author(s)

Yue Li

References

P. Aboyoun, H. Pages and M. Lawrence. GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

See Also

selectBinSize, evalBinSize

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

binSize <- 1000

binGR <- binCount(alignGRList$chrX, binSize)

combineAlignGals 11

combineAlignGals Combine alignment files into a single GAlignments object

Description

Import and process individual BAM/SAM/BED alignment files using getAlignGal and combine
them into a single GAlignments.

Usage

combineAlignGals(bamFiles, ...)

Arguments

bamFiles A list of paths to the alignment files.

... Arguments passed to getAlignGal.

Details

If there is only one BAM file, then simply return the output from getAlignGal; otherwise, all
processed alignments are pooled to form a single GAlignments object.

Value

combinedGal GAlignments object containning the (combined) processed alignments with the
values slot saved for the "uniqueHits" binary flag defined in getAlignGal and
metadata saved as a list containing argument setting for reverseComplement, returnDuplicate, flagMultiHits, returnOnlyUniqueHits
defined in getAlignGal

.

Note

User are recommanded to pool technical replicates but keep biological replicate separate for confir-
mation.

Author(s)

Yue Li

See Also

getAlignGal, readGAlignments, readGAlignmentPairs, import

12 combineRIP

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

combine the alignments for technical replicates
alignGal <-
combineAlignGals(bamFiles=grep(pattern="SRR039214",

bamFiles, value=TRUE, invert=TRUE),
reverseComplement=TRUE, genomeBuild="mm9")

combineRIP Combined predictions from (presumably) biological replicates.

Description

A simple helper function that combines multiple prediction lists from biological replicates into a
single list.

Usage

combineRIP(ripPath, pattern="gff3$",
combineOption="intersect",
pvalCutoff=1, pvalAdjCutoff=1, eFDRCutoff=1,
logOddCutoff=-Inf, maxgap=1e3, minIntersect, genomeBuild)

Arguments

ripPath Path to predictions list in a select format as indicated by the file extension.

pattern Pattern for the names of the prediction files to combine. The file names are
expected to have a common extension such as "bed", "gff3", "gtf", but this is
not enforced. Default: "gff3$" (i.e. the default output RIPregions.gff3 from
ripSeek).

combineOption Options on how to combine the peaks including:
"intersect": is selected (default), only peaks in each biological replicate list
that overlap with or are adjacent within maxgap nucleotides to at least minIntersect
other replicates will be kept. If minIntersect is unspecified, then only the
peaks that consistently predicted in all replicates are kept.
"merge": All overlapping peaks from the replicates will be merged into one
peak.
"union": All overlapping peaks from the replicates will be merged into one
peak.

combineRIP 13

pvalCutoff Threshold for the p-value cutoff. Only peaks with p-value less than the logOddCutoff
will be reported. Default: 1 (i.e. no cutoff).

pvalAdjCutoff Threshold for the adjusted p-value cutoff. Only peaks with adjusted p-value less
than the logOddCutoff will be reported. Default: 1 (i.e. no cutoff).

eFDRCutoff Threshold for the empirical false discovery rate (eFDR). Only peaks with eFDR
less than the eFDRCutoff will be reported. Default: 1 (i.e. no cutoff).

logOddCutoff Threshold for the log odd ratio of posterior for the RIP over the background
states (See seekRIP). Only peaks with logOdd score greater than the logOddCutoff
will be reported. Default: -Inf (i.e. no cutoff).

maxgap Maximum gap allowed to determine two peaks agree with each other.

minIntersect Mininum number of replicates required to have peaks either intersect or are
adjacent to the peak in other replciate.

genomeBuild Genome build used to obtain the chromosome information from online UCSC
database to assign chromosome length to the GRanges object created as the com-
bined peak list.

Value

gr GRanges object containning chromosome locations of the combined peaks.

Note

Please run ripSeek first on all biological replicates and renamed each "RIPregions.gff3" output to
correspond to different biological replicates and place all of the files into a single folder. The path
of this folder can then be used as the input argument for ripPath.

Author(s)

Yue Li

References

P. Aboyoun, H. Pages and M. Lawrence. GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

Michael Lawrence, Vince Carey and Robert Gentleman. rtracklayer: R interface to genome browsers
and their annotation tracks. R package version 1.16.3.

See Also

combineAlignGals, ripSeek, import, import, reduce, countOverlaps

Examples

Retrieve system files
ripPath <- system.file("extdata/RIPregions", package="RIPSeeker")

gr1 <- combineRIP(ripPath, combineOption="intersect", genomeBuild="mm9")

14 computeLogOdd

gr2 <- combineRIP(ripPath, combineOption="merge", genomeBuild="mm9")

gr3 <- combineRIP(ripPath, combineOption="union", genomeBuild="mm9")

length(gr1)

length(gr2)

length(gr3)

computeLogOdd Compute the log odd ratio of RIP over background.

Description

The RIPScore is computed as the log odd ratio of the posterior for the RIP state (zi = 2) over the
posterior for the background state (zi = 1)

Usage

computeLogOdd(nbhGR)

Arguments

nbhGR GRanges of bins with the value slot saved for the posterior probabilities for the
background and RIP state.

Details

To assess the statistical significance of the RIP predictions, we assign each bin a RIPScore defined
as the log odd ratio of the posterior for the RIP state (zi = 2) over the posterior for the background
state (zi = 1). When control is available, the RIPScore is updated as the difference between the
RIPScores evaluated separately for RIP and control libraries. The scoring system captures the
model confidence for the RIP state of each bin in the RIP library penalized by the false confidence
for the RIP state of the same bin in the control library. In addition, RIPScore obviates scaling of
read counts. Since sequencing depth usually differs between RIP and control libraries, scaling is
necessary if the statistical score were derived from the read count differences. On the other hand,
simplistic linear scaling may distort the data.

Value

A vector of log odd scores for each bin in nbhGR.

Author(s)

Yue Li

computeRPKM 15

See Also

seekRIP, scoreMergedBins, logScoreWithoutControl, logScoreWithControl

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

################ run main function for HMM inference on a single chromosome ################
nbhGR <- mainSeekSingleChrom(alignGR=alignGRList$chrX, K = 2, binSize=1e5)

ripscore <- computeLogOdd(nbhGR)

computeRPKM Compute RPKM based on gene annotations

Description

Given a list of single-end or paired-end read alignment files in BAM/SAM/BED format, compute
the read counts and normalized read counts as expression of annotated transcript in the unit of "reads
per kilobase of exon per million mapped reads" (RPKM).

Usage

computeRPKM(bamFiles, RIPSeekerRead = TRUE, paired = FALSE,
countMode = "IntersectionNotEmpty", featureGRanges,
idType = "ensembl_transcript_id", featureType = "exon",
ignore.strand = FALSE, txDbName = "biomart",
moreGeneInfo = FALSE, saveData, justRPKM = TRUE, ...)

16 computeRPKM

Arguments

bamFiles A list of one or more BAM/SAM/BED alignment files.

RIPSeekerRead Binary flag. If TRUE, then import and process the alignment files using the
built-in function combineAlignGals from RIPSeeker package; if FALSE, then
import the files by directly calling the required functions. The flag makes using
the function outside of RIPSeeker package become possible.

paired Binary to indicate whether the alignments files are paired-end. The alignments
file must be either paired-end or single-end but not both.

countMode An argument used to set the mode argument in the underlying function summarizeOverlaps
employed to compute the read counts for each feature. The possible mode
includes "Union", "IntersectionStrict", and "IntersectionNotEmpty". All three
modes avoid double counting the reads by either discarding reads that com-
pletely fall into multiple features or counting the read only once for the feature
that uniquely and completely includes it. Please refer to summarizeOverlaps
for details.

featureGRanges GRanges of features as an optional argument for function to compute RPKM/FPKM
just for those features without retrieving online annotations.

idType A character string that specifies the type of the annotations, which can "en-
sembl_transcript_id", "ensembl_gene_id", "ucsc", etc. Refer to listFilters
for more information.

featureType Features that will be groupped by genes/transcripts in a GRangesList. The avail-
able options are "exon" (Default), "intron", "fiveUTR", "threeUTR", and "CDS"
corresponding to the functions exonsBy, cdsBy, intronsByTranscript, fiveUTRsByTranscript,
threeUTRsByTranscript, and cdsBy, respectively.

ignore.strand Whether to ignore strand when counting the reads (Default: FALSE).

txDbName Name of the transcript database to use to retreive the annotation. The avail-
able options are "biomart" (Default) or "UCSC" corresponding to the functions
makeTxDbFromBiomart and makeTxDbFromUCSC, respectively.

moreGeneInfo Binary indicator to indicate whether to download more information for each
genes/transcripts rather than having only the gene/transcript IDs (Default: FALSE).

saveData Path of output file.

justRPKM Binary for whether to return only the RangedSummarizedExperiment.

... Extra arguments passed to functions makeTxDbFromBiomart, makeTxDbFromUCSC,
useMart, combineAlignGals.

Details

The function is a wrapper function making use of several external functions from several well main-
tained and freely available Bioconductor packages including GenomicFeatures, GenomicRanges,
biomaRt and Rsamtools packages. The paired-end alignments are converted into single-end using
function galp2gal and then subject to read count computation by summarizeOverlaps, which does
not yet directly support paired-end alignments.

computeRPKM 17

Value

rpkmSEobject A RangedSummarizedExperiment object with assays slot saved for counts,
rowRanges holds the features, metadata for RPKM/FPKM (normalized) gene
expression.

rpkmDF Data frame with or without the detailed gene information columns depending
on whether moreGeneInfo is TRUE or FALSE. rpkmDF is only returned within
in a list when justRPKM is FALSE.

featureGRanges The features in GRanges object that are used to compute the gene expression.
featureGRanges is only returned within in a list when justRPKM is FALSE.

Note

Also works for RNA-seq alignments.

Author(s)

Yue Li

References

M. Carlson, H. Pages, P. Aboyoun, S. Falcon, M. Morgan, D. Sarkar and M. Lawrence. Ge-
nomicFeatures: Tools for making and manipulating transcript centric annotations. R package ver-
sion 1.8.2.

P. Aboyoun, H. Pages and M. Lawrence (). GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt.
Steffen Durinck, Paul T. Spellman, Ewan Birney and Wolfgang Huber, Nature Protocols 4, 1184-
1191 (2009).

BioMart and Bioconductor: a powerful link between biological databases and microarray data anal-
ysis. Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma and
Wolfgang Huber, Bioinformatics 21, 3439-3440 (2005).

Martin Morgan and Herv\’e Pag\‘es (). Rsamtools: Binary alignment (BAM), variant call (BCF), or
tabix file import. R package version 1.8.5. http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

See Also

makeTxDbFromBiomart, makeTxDbFromUCSC, useMart, exonsBy, cdsBy, intronsByTranscript, fiveUTRsByTranscript, threeUTRsByTranscript, cdsBy, combineAlignGals, summarizeOverlaps, ScanBamParam, readGAlignmentPairs, readGAlignments

Examples

if(interactive()) { # need internet connection

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

18 disambiguateMultihits

use biomart
txDbName <- "biomart"
biomart <- "ENSEMBL_MART_ENSEMBL" # use archive to get ensembl 65
dataset <- "mmusculus_gene_ensembl"
host <- "dec2011.archive.ensembl.org" # use ensembl 65 for annotation

resultlist <- computeRPKM(bamFiles=grep(pattern="SRR039214",
bamFiles, value=TRUE, invert=TRUE), #featureGRanges=featureGRanges,

dataset=dataset, moreGeneInfo=TRUE, justRPKM=FALSE,
idType="ensembl_transcript_id", txDbName=txDbName,
biomart=biomart, host=host, by="tx")

}

disambiguateMultihits Assign each multihit to a unique region based on the posterior for the
read-enriched hidden state

Description

Among multiple alignments of the same read (i.e. multihit), select the alignment corresponding to
the bin with the maximum posterior for the enriched state.

Usage

disambiguateMultihits(alignGal, nbhGRList, postprobCutoff = 0)

Arguments

alignGal GAlignments object with an additional column in the values slot that indicates
whether the read corresponding to the current alignment is a unique hit (i.e.,
read mapped uniquely to a single loci) or multihit (i.e., read mapped to multiple
loci).

nbhGRList GRangesList each item containig the HMM training results on a single chromo-
some. Importantly, the posterior probabilities for the background and enriched
states need to be present the metadata slot and used to disambiguate multihits,
which is done by mainSeekSingleChrom.

postprobCutoff Posterior cutoff for returning only the reads with maximum posterior that is
greater than the threshold (Default: 0; i.e., no cutoff).

Details

Each multihit (i.e., read aligned to multiple loci) flagged in the getAlignGal function are assigned
to a unique locus corresponding to the jth bin with the highest posterior or responsibility from the
RIP state. Intuitively, the RIP state corresponds to the read-enriched loci. Disambiguating multihits
in this way will potentially improve the power of detecting more RIP regions but may also introduce

disambiguateMultihits 19

certain bias towards the idea of "rich gets richer". After this step, RIPSeeker will rerun the functions
from selectBinSize to nbh to improve the HMM model estimation with augmented read count
data. Optionally, user can choose not to reiterate the training process to go straight to the next step
to detect RIP regions (See seekRIP).

Value

GAlignments with each read mapped uniquely to a single locus.

Author(s)

Yue Li

See Also

getAlignGal, ripSeek, mainSeek, mainSeekSingleChrom

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- 1e5 # use a large fixed bin size for demo only
minBinSize <- NULL # turn off min bin size in automatic bin size selection
maxBinSize <- NULL # turn off max bin size in automatic bin size selection
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- combineAlignGals(bamFiles=grep(pattern="SRR039214",
bamFiles, value=TRUE, invert=TRUE), reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGR <- addPseudoAlignment(alignGR)

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

################ run mainSeekSingleChrom function for HMM inference on a single chromosome ################
nbhGRList <- lapply(alignGRList, mainSeekSingleChrom, K = 2, binSize=binSize,

20 empiricalFDR

minBinSize = minBinSize, maxBinSize = maxBinSize, runViterbi=FALSE)

nbhGRList <- GRangesList(nbhGRList)

alignGalFiltered <- disambiguateMultihits(alignGal, nbhGRList)

empiricalFDR Compute empirical false discovery rate

Description

At a p-value, find the number of regions in RIP library (denoted as "trueCount") and the number of
regions in control library (denoted as "falseCount"). The empirical false discovery rate (eFDR) is
estimated as the ratio of the falseCount over the trueCount.

Usage

empiricalFDR(pval, pvalRIP, pvalCTL)

Arguments

pval A scalar p-value.

pvalRIP A column vector of p-values for the peaks identifed from RIP v.s. control com-
parison.

pvalCTL A column vector of p-values for the peaks identifed from control v.s. RIP com-
parison.

Details

Only when the control is available, is an empirical false discovery rate (eFDR) estimated based on
the idea of "sample swap" inspired by MACS (a ChIP-seq algorithm from Zhange el al. (2008).
At each p-value, RIPSeeker finds the number of significnat RIP-regions over control (CTL) based
on pvalRIP and the number of significant control regions over RIP based on pvalCTL. The eFDR
is defined as the ratio of the number of "RIP" (false positive) regions identified from CTL-RIP
comparison over the number of RIP regions from the RIP-CTL comparison. The maximum value
for eFDR is 1 and minimum value for eFDR is max(p-value, 0). The former takes care of the case
where the numerator is bigger than the denominator, and the latter for zero numerator.

Value

A scalar probabibility value that represents the eFDR.

Note

This is an internal funciton used in seekRIP.

evalBinSize 21

Author(s)

Yue Li

References

Yong Zhang, Tao Liu, Clifford A Meyer, J\’er\^ome Eeckhoute, David S Johnson, Bradley E Bern-
stein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li, and X Shirley Liu. Model-based
analysis of ChIP-Seq (MACS). Genome Biology, 9(9):R137, 2008.

See Also

logScoreWithControl, seekRIP, computeLogOdd, scoreMergedBins

Examples

pvalRIP <- runif(100)

pvalCTL <- runif(100)

eFDR <- empiricalFDR(pvalRIP[1], pvalRIP, pvalCTL)

pvalRIP[1]

eFDR

more significant pval
pvalRIP[1] <- 1e-4

eFDR <- empiricalFDR(pvalRIP[1], pvalRIP, pvalCTL)

pvalRIP[1]

eFDR

evalBinSize Evaluate bin size using Shimazaki cost function

Description

Given a bin size and a GRanges alignment object, the funciton computes the bin count and returns
the cost of the bin size based on Shimazaki cost function.

Usage

evalBinSize(binSize, alignGR)

22 evalBinSize

Arguments

binSize An integer that indicates the bin size applied to the binning of the chromosome.
alignGR GRanges object of alignments to a single chromosome.

Details

The function implements the algorithm developed by Shimazaki and Shinomoto (2007), which is
based on the goodness of the fit of the time histogram to estimate the rate of neural response of an
animal to certain stimuli in a spike-in experiment. The algorithm involves four simple steps:

1. Divide chromosome sequence into N bins of width b.

2. Count number of read counts xi that enter the i’th bin.

3. Compute: x̄ = 1
N

∑N
i=1 xi and v = 1

N

∑N
i=1(xi − x̄)2.

4. Compute: C(b) = 2x̄−v
b2

Value

cost A scalar value for the cost of the bin size.

Author(s)

Yue Li

References

Hideaki Shimazaki and Shigeru Shinomoto. A method for selecting the bin size of a time histogram.
Neural computation, 19(6):1503-1527, June 2007.

See Also

selectBinSize, binCount

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

binSize <- 1000

costs <- evalBinSize(binSize, alignGRList$chrX)

exportGRanges 23

exportGRanges Export GRanges object in a specified format

Description

A wrapper function of export with additional support for exporting tab-delimted format with no
re-arrangement of the original GRanges output.

Usage

exportGRanges(gRanges, outfile, exportFormat)

Arguments

gRanges GRanges object to export.

outfile File path for output.

exportFormat Desirable format including "txt" and other formats specified in export.

Value

Output the text to the file stream defined in outfile.

Note

The function is used in ripSeek to export desired format and can be used as general purpose function.

Author(s)

Yue Li

References

Michael Lawrence, Vince Carey and Robert Gentleman. rtracklayer: R interface to genome browsers
and their annotation tracks. R package version 1.16.3.

See Also

export

Examples

if(interactive()) { # need permission to write to the current dir
gr <-

GRanges(seqnames =
Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)),
ranges =
IRanges(1:10, width = 10:1, names = head(letters,10)),
strand =

24 galp2gal

Rle(strand(c("-", "+", "*", "+", "-")),
c(1, 2, 2, 3, 2)),

score = 1:10,
GC = seq(1, 0, length=10))

outfile <- paste(getwd(), "/gr.txt", sep="/")

exportGRanges(gr, outfile=outfile, exportFormat="txt")
}

galp2gal Convert GAlignmentPairs to GAlignments

Description

Convert GAlignmentPairs to GAlignments using CIGAR to mark flanked portion of the pairs as
’N’.

Usage

galp2gal(galp)

Arguments

galp

Details

Each proper read pairs is combined into a single alignment record making use of the CIGAR flag
‘N’ to indicate the number of bases between the mate pairs (i.e., the difference between the start of
the right mate pair and the end of the left mate pair). In other words, the paired-end alignments are
treated as gapped alignments of long fragments. The function is used within getAlignGal but can
be used as a stand-alone function as well.

Value

gal GAlignments object containing for each paired alignments a single alignment
record.

Author(s)

Yue Li

References

P. Aboyoun, H. Pages and M. Lawrence. GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

getAlignGal 25

See Also

getAlignGal, combineAlignGals, readGAlignments, readGAlignmentPairs, import

Examples

library(Rsamtools)

extdata.dir <- system.file("extdata", package="RIPSeeker")

ex1_file <- list.files(extdata.dir, "ex1.bam", recursive=TRUE, full.names=TRUE)

galp <- readGAlignmentPairs(ex1_file, use.names=TRUE)

galp

gal <- galp2gal(galp)

gal

getAlignGal Import and processs in BAM/SAM/BED format

Description

Import and process single-end or paired-end alignments in a BAM/SAM/BED file to retain valid
alignments defined by the arguments below. Multihits (same read mapped to multiple loci) are
flagged for the subsequent disambiguation with function disambiguateMultihits). The final out-
put is a GAlignments object.

Usage

getAlignGal(alignFilePath, format, genomeBuild,
deleteGeneratedBAM = FALSE, reverseComplement = FALSE,
returnDuplicate = FALSE, flagMultiHits = TRUE,
returnOnlyUniqueHits = FALSE, paired = FALSE, ...)

Arguments

alignFilePath Path to the alignment file.

format The alignmnet format can be determiend automatically from the file extension
or specified by the user. The supported formats are BAM, SAM, and BED.

genomeBuild Genome build used to obtain the chromosome information from online UCSC
database in order to construct GAlignments object. Since the BAM/SAM header
provides the chromosome information, the argument needs to be set only in the
absence of the header information for some BAM/SAM files or when BED file is
used. Examples for the common genomeBuild are "mm9" for mouse or "hg19"

26 getAlignGal

for human reference genomes. Note that an appropriate genome build that has
been used in the alignment is important for desirable outcome. For instance, user
should use "mm10" if the alignments are based on "mm10" rather than "mm9"
genome build.

deleteGeneratedBAM

Binary indicator to indicate whether the converted BAM from the original SAM
input file needs to be deleted from the local disk (Default: FALSE).

reverseComplement

Binary indicator to indicate whether the reads were sequenced from the oppo-
site strand of the original RNA molecule. reverseComplement only applies
to strand-specific sequencing in which case only the strand generated during
second strand synthesis is sequenced. Thus, if reverseComplement=TRUE, the
strand signs of the alignments are switched (i.e. + to -, - to +, and * unchanged);
otherwise (reverseComplement=FALSE) retian the original the strand signs.

returnDuplicate

Indicator (TRUE, FALSE, NA) to instruct whether the duplicate alignmnets
need to be returned (Default: FALSE). Duplicate reads are a set of reads that
align to exactly the same genomic coordinate. Because transcripts are usually
hundreds or thousands of base pairs long and thus much longer than the read
(25-100 nt), the chance that the same 25-100 nt portion of the transcript be-
ing sequenced multiple times is very small and may very likely be due to PCR
artifact. This argument is acutally passed to ’isDuplicate’ in scanBamFlag.

flagMultiHits Binary indicator for whether to add additional binary column named "unique-
Hits" to indicate whether the corresponding aligned reads are unique hit (unique-
Hits==TRUE) or multihit (uniqueHits==FALSE). Multihits represent multiple
alignments of the same read due to gene duplications or repetitive elements of
the genome. The multhits typically constitute a substantial proportion of the
total mapped reads. Rather than being removed, these multihits are flagged
(flagMultiHits=TRUE by default) and in the later step assigned to a unique
region by (disambiguateMultihits).

returnOnlyUniqueHits

Binary indicator to return only the unique hits and discard all of the multihits
(Default: FALSE).

paired Binary indicator to indicate whether the alignments are paired-end (Default:
FALSE). For paired-end alignments, properly paired reads are combined into
a single alignment record making use of the CIGAR flag ‘N’ to indicate the
number of bases between the mate pairs (i.e., the length of the insert fragment).
In other words, the paired-end alignments are treated as gapped alignments of
long fragments (See galp2gal).

... Extra arguments are ignored.

Details

The BAM file is imported using readGAlignments for single-end or readGAlignmentPairs for
paired-end alignments. The SAM file is converted to BAM first and then imported as above. The
BED file is first imported by import as GRanges object and subsequently converted to GAlignments
via the constructor function GAlignments.

logScoreWithControl 27

Value

alignGal GAlignments object containning the processed alignments with the values slot
saved for the "uniqueHits" binary flag (See flagMultiHits above) and metadata
saved as a list containing argument setting for reverseComplement, returnDuplicate, flagMultiHits, returnOnlyUniqueHits

Author(s)

Yue Li

References

P. Aboyoun, H. Pages and M. Lawrence. GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

Michael Lawrence, Vince Carey and Robert Gentleman. rtracklayer: R interface to genome browsers
and their annotation tracks. R package version 1.16.3.

See Also

combineAlignGals, readGAlignments, readGAlignmentPairs, import

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

logScoreWithControl Compute RIPScore based on RIP and control posteriors and test for
significance

Description

Compute the RIPScore using both RIP and control posteriors for each bins, merge and summa-
rize the scores for the merged bins, and finally compute the p-value and adjusted p-value for the
summary RIPScore.

Usage

logScoreWithControl(nbhGRRIP, nbhGRCTL, padjMethod = "BH", getControlStats = TRUE)

28 logScoreWithControl

Arguments

nbhGRRIP GRanges object for the RIP library created from mainSeek containing the pos-
terior probabilities of the hidden states for each observed read count.

nbhGRCTL An optional arugment as a GRanges object for the control library created from
mainSeek containing the posterior probabilities of the hidden states for each
observed read count.

padjMethod Method used to adjust multiple testing performed in p.adjust (Default: "BH").
getControlStats

Binary indicator to whether return statistics including computed for the control
library alone. If TRUE, then all control specific score columns will be reported
with a prefix "CTL".

Details

The RIPScore is compupted in computeLogOdd as the log odd ratio of the posterior for the RIP state
(zi = 2) over the posterior for the background state (zi = 1) in RIP library subtracted by the log odd
ratio computed from the control library. The adjacent bins with hidden states predicted by nbh_vit
as the enriched state (corresponding to the NB with larger mean) are merged. The RIPSscores
are averaged over the merged bins. To assess the statistical significance of the RIPScore for each
region, we assume that the RIPScore follows a Gaussian (Normal) distribution with mean and
standard deviation estimated using the RIPScores over all of the bins. The rationale is based on the
assumption that most of the RIPScores correspond to the background state and together contribute
to a stable estimate of the test statistics (TS) and p-value computed using the R built-in function
pnorm. The p-value is adjusted by p.adjust with BH method by default. The same procedure is
applied optionally to the control library.

Value

GRanges of merged bins with values slot saved for RIPScore (lodOdd), p-value (pval), adjusted
p-value (pvalAdj) for RIP and optionally for control.

Note

Internal function used by seekRIP.

Author(s)

Yue Li

See Also

logScoreWithoutControl, seekRIP, computeLogOdd, scoreMergedBins

Examples

if(interactive()) { # check the example in seekRIP
Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

logScoreWithoutControl 29

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- 1e5 # use a large fixed bin size for demo only
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

################ run main function for HMM inference on all chromosomes ################
mainSeekOutputRIP <-

mainSeek(bamFiles=grep(pattern="SRR039214",
bamFiles, value=TRUE, invert=TRUE),

binSize=binSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = FALSE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

mainSeekOutputCTL <- mainSeek(bamFiles=grep(pattern="SRR039214",
bamFiles, value=TRUE, invert=FALSE),

binSize=binSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = FALSE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

################ Compute log score and test for significance WITH control ################
ripGR.wicontrol <- logScoreWithControl(mainSeekOutputRIP$nbhGRList$chrX, mainSeekOutputCTL$nbhGRList$chrX)

ripGR.wicontrol
}

logScoreWithoutControl

Compute RIPScore based on RIP posteriors alone and test for signifi-
cance

Description

Compute the RIPScore using only the RIP (typically when control is unavailable) posteriors for
each bins, merge and summarize the scores for the merged bins, and finally compute the p-value
and adjusted p-value for the summary RIPScore.

Usage

logScoreWithoutControl(nbhGRRIP, padjMethod = "BH")

30 logScoreWithoutControl

Arguments

nbhGRRIP GRanges object for the RIP library created from mainSeek containing the pos-
teriors probabilities of the hidden states for each observed read count.

padjMethod Method used to adjust multiple testing performed in p.adjust (Default: "BH").

Details

The RIPScore is compupted in computeLogOdd as the log odd ratio of the posterior for the RIP state
(zi = 2) over the posterior for the background state (zi = 1) in RIP library alone (typically when
control is unavailable). The adjacent bins with hidden states predicted by nbh_vit as the enriched
state (corresponding to the NB with larger mean) are merged. The RIPSscores are averaged over the
merged bins. To assess the statistical significance of the RIPScore for each region, we assume that
the RIPScore follows a Gaussian (Normal) distribution with mean and standard deviation estimated
using the RIPScores over all of the bins. The rationale is based on the assumption that most of the
RIPScores correspond to the background state and together contribute to a stable estimate of the test
statistics (TS) and p-value computed using the R built-in function pnorm. The p-value is adjusted
by p.adjust with BH method by default.

Value

GRanges of merged bins with values slot saved for RIPScore (lodOdd), p-value (pval), adjusted
p-value (pvalAdj) for RIP

Note

Internal function used by seekRIP.

Author(s)

Yue Li

See Also

logScoreWithControl, seekRIP, computeLogOdd, scoreMergedBins

Examples

if(interactive()) { # check the example in seekRIP
Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- 1e5 # use a large fixed bin size for demo only
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

mainSeek 31

################ run main function for HMM inference on all chromosomes ################
mainSeekOutputRIP <- mainSeek(bamFiles=grep(pattern="SRR039214",

bamFiles, value=TRUE, invert=TRUE),
binSize=binSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = FALSE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

################ Compute log score and test for significance WITHOUT control ################
ripGR.wocontrol <- logScoreWithoutControl(mainSeekOutputRIP$nbhGRList$chrX)
}

mainSeek Train HMM paramters on each chromosome independently from the
alignments.

Description

A back-end function used by the front-end function ripSeek to train HMM paramters on all of the
chromosomes indepdently. This function in turn calls another function mainSeekSingleChrom to
compute HMM paramters on each chromosome separately or in parallel (if multicore is TRUE).

Usage

mainSeek(bamFiles, reverseComplement = FALSE,
genomeBuild = "mm9", uniqueHit = TRUE,
assignMultihits = TRUE, strandType = NULL,
paired=FALSE, rerunWithDisambiguatedMultihits = TRUE,
silentMain = FALSE, multicore = TRUE,
returnAllResults = TRUE, ...)

Arguments

bamFiles A list of paths to individual BAM files. BED and SAM files are also accepted.

reverseComplement

Whether the reads came from the original or the opposite strand of the RNA
being sequenced. If former, then reverseComplement should be FALSE; oth-
erwise TRUE, in which case the strand signs will be switched from + to -, - to
+, and * is unchanged.

genomeBuild When the input alignment format is BED, genomeBuild is only required in
getAlignGal to determine the chromosome lengths for the GAlignments obejct
using function SeqinfoForUCSCGenome. BAM and SAM header have chromo-
some information, and thus genomeBuild is not needed.

32 mainSeek

uniqueHit Binary indicator. If uniqueHit=TRUE, only reads mapped to single unique loci
are used to train the HMM. Otherwise, all of the reads including multihits will
be used for the HMM. A multihit is a read mapped to more than one loci. The
flags for uniqueHits and multihits are the metadata values of GAlignments object
constructed in getAlignGal.

assignMultihits

Binary indicator used by ripSeek to tell the function whether disambiguate mul-
tihits by assigning them to unique loci with the maximum posterior probability
obtained from running HMM (See nbh_em)

strandType A character variable indicate which strand the RIPSeeker needs to operate on.
The options are NULL, ’+’, ’-’, ’*’. If NULL or ’*’, then all of the reads will
be used (preferable for non-strand specific sequencing). If ’+’ or ’-’, only reads
from ’+’ or ’-’ strand will be used, respectively. Note that the sign is assumed
to be THE SAME AS the strand sign of the processed alignment object and will
be the opposite sign if reverseComplement is TRUE (See reverseComplement
above).

paired Binary to indicate whether the library is paired-end (TRUE) or single-end (FALSE
by default) (see getAlignGal).

rerunWithDisambiguatedMultihits

After multihits have been asigned to unique loci, rerunWithDisambiguatedMultihits
(Default: TRUE) indicates whether to re-run the HMM on the augmented read
alignmnet data. If FALSE, the HMM step will not be re-run, and the workflow
will proceed to RIP detection (See seekRIP) using the nondisambiguated align-
ments, which can either be the alignments containing only the uniqueHits (if
uniqueHit=TRUE) or the alignments containing both the uniqueHits and multi-
Hits (if uniqueHit=FALSE).

silentMain Binary indicator to indicate whether to disable the verbose from the mainSeekSingleChrom
function. If FALSE (by default), the EM training process will be output to the
console for user to keep track of the training progress.

multicore Binary indicator to indicate whether to use mclapplyfunction to compute HMM
on chromosomes in parallel. The multicore function will speed up the compu-
tation by a factor proportional to the total number of CPU cores on the machine
but may impose larger memory overhead than the singe-threading approach.

returnAllResults

Binary indicator to indicate whether to return all (HMM trained parameters,
original, and disambiguated GAlignments) or just the HMM results.

... Arguments passed to mainSeekSingleChrom.

Value

A list containing:

nbhGRList GRangesList each item containig the HMM training results on a single chromo-
some.

alignGal Original alignment data in GAlignments object
alignGalFiltered

Disambiguated alignmnet data with multihits assigned to unique loci.

mainSeekSingleChrom 33

Author(s)

Yue Li

See Also

ripSeek, mainSeekSingleChrom, mclapply

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- 1e5 # use a large fixed bin size for demo only
minBinSize <- NULL # min bin size in automatic bin size selection
maxBinSize <- NULL # max bin size in automatic bin size selection
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

################ run mainSeekSingleChrom function for HMM inference on all chromosomes ################
mainSeekOut <- mainSeek(bamFiles=grep(pattern="SRR039214",

bamFiles, value=TRUE, invert=TRUE),
binSize=binSize, minBinSize = minBinSize,
maxBinSize = maxBinSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = FALSE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

mainSeekSingleChrom Automatic bin size selection, bin count, and HMM parameters opti-
mization on read count vector from a single chromosome (Internal
function)

Description

This an internal function used by mainSeek to accomplish three major tasks on a single chromo-
some: automatically select bin size, compute read counts within the bins, and obtain optimal HMM
paramters.

34 mainSeekSingleChrom

Usage

mainSeekSingleChrom(alignGR, K = 2, binSize = NULL, minReadCount = 10,
backupNumBins = 10, minBinSize = 200, maxBinSize = 1200,
increment = 5, pathToSavePlotsOfBinSizesVersusCosts,
verbose = TRUE, allowSecondAttempt = TRUE, ...)

Arguments

alignGR GRanges containing the alignments on a single chromosome .

K Number of hidden states (Default: 2). By default, state 1 specifies the back-
ground and state 2 the RIP regions. The two states are recognized by the means
for the two distributions (See nbh_em).

binSize Size to use for binning the read counts across each chromosome. If NULL,
optimal bin size within a range (default: minBinSize=200, maxBinSize=1200)
will be automatically selected (See selectBinSize).

minReadCount Minimum aligned read counts needed for HMM to converge (Default: 10). Note
that HMM may not converge some times when majority of the read counts are
zero even if some read count > 10. When that happens, a back-up function
addDummyProb comes in to create a placeholder for the corresponding chromo-
some in GRangeList to maintain the data structure to preserve all information
(successfully) obtained from other chromosomes.

backupNumBins If read count is less than minReadCount, then use backupNumBins (Default: 10)
to bin the chromosome.

minBinSize Minimum bin size to start with the bin selection (See selectBinSize). De-
fault to 200, common minimum band size selected in RIP or RNA-seq library
construction.

maxBinSize Maximum bin size to stop with the bin selection (See selectBinSize). Default:
1200.

increment Step-wise increment in bin size selection (See selectBinSize). Default: 5.
pathToSavePlotsOfBinSizesVersusCosts

Directory used to save the diagnostic plots for bin size selection.

verbose Binary indicator for disable (FALSE) or enable (TRUE) HMM training message
from function nbh to output to the console.

allowSecondAttempt

In case HMM fails to converge due to malformed paramters in EM iteraction, re-
iterating the HMM process each time with a different suboptimal bin size in at-
tempt to succeed in some trial. If all yeild nothing, fall back up to addDummyProb
to return the place holder for the chromosome.

... Argumnets passed to nbh.

Value

nbhGR GRanges object containing the optimized HMM parameters (and the Viterbi
hidden state sequence) accompanied with the read count vector following the
(automatic) binning scheme.

mainSeekSingleChrom 35

Note

Unless a highly customized workflow is needed, ripSeek is the high-level front-end main function
that should be used in most cases.

Author(s)

Yue Li

See Also

ripSeek, mainSeek, nbh_em

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- 1e5 # use a large fixed bin size for demo only
minBinSize <- NULL # min bin size in automatic bin size selection
maxBinSize <- NULL # max bin size in automatic bin size selection
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

################ run main function for HMM inference on a single chromosome ################
nbhGR <- mainSeekSingleChrom(alignGR=alignGRList$chrX, K = 2, binSize=binSize,

minBinSize = minBinSize, maxBinSize = maxBinSize)

nbhGR

36 nbh

nbh Generic function of negative binomial HMM

Description

Generic function for nbh.GRanges and nbh.integer

Usage

nbh(x, ...)

Arguments

x Object of class Integer or GRanges.

... Extra arguments passed to either nbh.GRanges or nbh.integer.

Author(s)

Yue Li

References

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition (Vol. 77, pp. 257-286). Presented at the Proceedings of the IEEE. doi:10.1109/5.18626

Bishop, Christopher. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

mainSeekSingleChrom, nbh.integer, nbh.GRanges

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

http://perso.telecom-paristech.fr/cappe/h2m/

nbh.GRanges 37

binSize <- 1e5 # use a large fixed bin size for demo only

binGR <- binCount(alignGRList$chrX, binSize)

test on GRanges object
nbhGR <- nbh(binGR, 2, runViterbi=TRUE)

test on integer object
nbhList <- nbh(values(binGR)$count, 2, runViterbi=TRUE)

nbh.GRanges Optimize HMM parameters based on the read counts on a chromo-
some

Description

Inheritance function from nbh that receives an object of GRanges class with additional column of
read counts (for each strand) and call nbh.integer to derive the most probable sequence of hidden
states

Usage

S3 method for class 'GRanges'
nbh(x, K, ...)

Arguments

x GRanges with ’values’ slot used for bin counts in 1D vector of integers.

K Number of hidden states.

... Extra arguments passed to nbh.integer for the actual HMM computation.

Value

binGR GRanges of bin counts with metadata slot saved for the optimized HMM param-
eters including alpha, beta for the K negative binomial mixture components and
TRANS (the transition probabilities)

Author(s)

Yue Li

38 nbh.integer

References

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition (Vol. 77, pp. 257-286). Presented at the Proceedings of the IEEE. doi:10.1109/5.18626

Bishop, Christopher. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

mainSeekSingleChrom, nbh.integer

Examples

if(interactive()) ?nbh # see nbh for example of nbh running on GRanges object

nbh.integer HMM posterior decoding and NB parameter optimization

Description

Inherithance function from nbh that receives a vector of integers and compute optimal HMM pa-
rameters via EM algorithm.

Usage

S3 method for class 'integer'
nbh(x, K, NBM_NIT_MAX = 250,
NBM_TOL = 0.01, NBH_NIT_MAX = 250,
NBH_TOL = 0.001, runViterbi = FALSE, ...)

Arguments

x A vector of integers, conceptaully representing the read counts within bins of
chromosome.

K Number of hidden states.

NBM_NIT_MAX Maximum number of EM iterations (Default: 250) for the negative binomial
mixture model (NBM) intialization step (See nbm_em).

NBM_TOL Threshold as fraction of increase in likelihood (given the current NBM param-
eters) comparing with the likelihood from the last iteration. EM for the NBM
stops when the improvement is below the threshold (Default: 0.01).

NBH_NIT_MAX Maximum number of EM iterations (Default: 250) for the negative binomial
hidden Markov model (NBH).

NBH_TOL Threshold as fraction of increase in likelihood (given the current NBH param-
eters) comparing with the likelihood from the last iteration. EM for the NBH
stops when the improvement is below the threshold (Default: 0.001).

http://perso.telecom-paristech.fr/cappe/h2m/

nbh.integer 39

runViterbi Binary indicator. If TRUE, Viterbi algorithm will be applied to derive the max-
imum likelihood hidden state sequence using the optimized HMM paramters
obtained from the EM (See nbh_em).

... Extra arguments are ignored.

Details

The function consists of three major steps: (1) negarive binomail mixture model used to initialized
HMM parameters; (2) optimization of HMM paramters using EM algorithm; (3) Viterbi maximum-
liklihood estimation of hidden state sequence. Step (1) involves optimization of NBM parameters
assuming the data points are independently sampled from a mixture of K NB distributions (See
nbh_init). Given the optimized paramters for K-NBM, step (2) drops the independence assump-
tion by introducing the transition probibility between hidden variables, which is initlaized as the
mixing proportions of NBM (See nbh_init). Given the optimized HMM paramters, step (3) de-
rives the maximum liklihood hidden state sequence using Viterbi algorithm. Step (3) is run only
when runViterbi is TRUE.

Value

A list containing:

initAlpha Initialized alpha of NBM from nbh_init.

initBeta Initialized beta of NBM from nbh_init.

initTRANS Initialized mixing proportion of NBM from nbh_init.

postprob Posteriors of the K hidden states for each observed count derived from nbh_em
(e.g., posteriors of background and enriched state in a two-state HMM).

alpha Optimized alpha of the NB mixture components in the HMM using nbh_em.

TRANS Optimized transition probability of the HMM using nbh_em.

viterbi_state Sequence of discrete values representing the hidden states derived from the
maxmium likelihood estimation using Viterbi algorithm (See nbh_vit).

Author(s)

Yue Li

References

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition (Vol. 77, pp. 257-286). Presented at the Proceedings of the IEEE. doi:10.1109/5.18626

Bishop, Christopher. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

mainSeekSingleChrom, nbh, nbh.GRanges

http://perso.telecom-paristech.fr/cappe/h2m/

40 nbh_chk

Examples

if(interactive()) ?nbh # see nbh for example of nbh running on integer object

nbh_chk Check the parameters of the negative binomial HMM

Description

The function verifies the numerical range and dimension of the NBH paramters alpha, beta, and
TRANS and returns the number of hidden states. It is used in nbh_em before running EM.

Usage

nbh_chk(TRANS, alpha, beta)

Arguments

TRANS Expected a squared matrix of probabilities (0 ≤ p ≤ 1) with row and column
length equal to that of alpha and beta and row sum and column sum both equal
to 1 (within some numerical deviation of 1e-6).

alpha Expected a vector of positive values with length equal to that of beta and the
row/column of TRANS.

beta Expected a vector of positive values with length equal to that of alpha and the
row/column of TRANS.

Value

N Number of components or equivalently the length of alpha, beta, or wght.

Author(s)

Yue Li

References

Bishop, Christopher. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbh_em, nbm_chk

http://perso.telecom-paristech.fr/cappe/h2m/

nbh_em 41

Examples

two hidden states
TRANS <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)

alpha <- c(2, 4)

beta <- c(1, 0.25)

nbh_chk(TRANS, alpha, beta)

nbh_em Expectation conditional maximization of negative binomial HMM pa-
rameters using forward-backward algorithm

Description

Given an input read count vector of integers, the function optimizes the parameters for the nega-
tive binomial HMM of K hidden states using expectation conditional maximization with forward-
backward algorithm to acheive the exact inference.

Usage

nbh_em(count, TRANS, alpha, beta, NBH_NIT_MAX = 250,
NBH_TOL = 1e-05, MAXALPHA = 1e+07, MAXBETA = 1e+07)

Arguments

count A vector of integers, conceptaully representative of the read counts within bins
of chromosome.

TRANS Transition probability matrix, a squared matrix of probabilities (0 ≤ p ≤ 1)
with row and column length equal to that of alpha and beta and row sum and
column sum both equal to 1 (within some numerical deviation of 1e-6).

alpha Shape parameter of the NB as a vector of positive values with length equal to
that of beta and the row/column of TRANS.

beta Inverse scale parameter of the NB as a vector of positive values with length
equal to that of beta and the row/column of TRANS.

NBH_NIT_MAX Maximum number of EM iterations (Default: 250) for the negative binomial
hidden Markov model (NBH).

NBH_TOL Threshold as fraction of increase in likelihood (given the current NBH param-
eters) comparing with the likelihood from the last iteration. EM for the NBH
stops when the improvement is below the threshold (Default: 0.001).

MAXALPHA The maximum value of alpha in case the update goes beyond the numerical
upper limit of the system. Once alpha becomes larger than MAXALPHA, the EM
itaration is prematurely terminated to prevent malfunction.

42 nbh_em

MAXBETA The maximum value of beta in case the update goes beyond the numerical upper
limit of the system. Once beta becomes larger than MAXBETA, the EM itaration
is prematurely terminated to prevent malfunction.

Details

Given a K-state HMM with NB emission (NBH), the goal is to maximize the likelihood function
with respect to the parameters comprising of αk and βk for the K NB components and the transition
probabilities Ajk between any state j and k, which are the priors p(z = k). Because there is no
analytical solution for the maximum likelihood (ML) estimators of the above quantities, a modified
EM procedures called Expectation Conditional Maximization is employed (Meng and Rubin, 1994).

In E-step, the posterior probability is evaluated by forward-backward algorithm using NB density
functions with initialized alpha, beta, and TRANS. In the CM step, Ajk is evaluated first followed
by Newton updates of αk and βk. EM iteration terminates when the percetnage of increase of log
likelihood drop below NBH_TOL, which is deterministic since EM is guaranteed to converge. For
more details, please see the manuscript of RIPSeeker.

Value

A list containing:

alpha optimized alpha_k for NB at state K

beta optimized beta_k for NB at state K

TRANS optimized transition probability matrix

logl Log likelihood in each EM iteration.

postprob Posterior probabilities for each observed data point at the last EM iteration.

dens the negative binomial probabilities computed at the last EM iteration

Author(s)

Yue Li

References

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition (Vol. 77, pp. 257-286). Presented at the Proceedings of the IEEE. doi:10.1109/5.18626

Christopher Bishop. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

X. L. Meng, D. B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general
framework, Biometrika, 80(2):267-278 (1993).

J. A. Fessler, A. O. Hero, Space-alternating generalized expectation-maximization algorithm, IEEE
Tr. on Signal Processing, 42(10):2664 -2677 (1994).

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

http://perso.telecom-paristech.fr/cappe/h2m/

nbh_em 43

See Also

nbh_init, nbh, nbh.GRanges, nbh_vit,nbm_em

Examples

Simulate data
TRANS_s <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)
alpha_s <- c(2, 4)
beta_s <- c(1, 0.25)
Total <- 100

x <- nbh_gen(TRANS_s, alpha_s, beta_s, Total);

count <- x$count
label <- x$label

Total <- length(count)

dummy initialization
TRANS0 <- matrix(rep(0.5,4), 2)

alpha0 <- c(1, 20)

beta0 <- c(1, 1)

NIT_MAX <- 50
TOL <- 1e-100
nbh <- nbh_em(count, TRANS0, alpha0, beta0, NIT_MAX, TOL)

map.accuracy <- length(which(max.col(nbh$postprob) == label))/Total

vit <- nbh_vit(count, nbh$TRANS, nbh$alpha, nbh$beta)

vit.accuracy <- length(which(vit$class == label))/Total

Plots
par(mfrow=c(2,2), cex.lab=1.2, cex.main=1.2)

plot(count, col="blue", type="l", main=sprintf("A. Simulated Data (Total = %i)",Total))

plot(as.numeric(nbh$logl), xlab="EM Iteration", ylab="Log-Likelihood",
main="B. Log-Likelihood via EM");grid()

Marginal postprob
plot(nbh$postprob[,2], col="blue", type="l", ylim = c(0,1),
ylab="Marginal Posteriror or True State")
points(label-1, col="red")
title(main = sprintf("C. MAP Prediciton Accuracy = %.2f%s", 100 * map.accuracy, "%"))

Viterbi states

44 nbh_gen

plot(vit$class - 1, col="dark green", type="l", ylim = c(0,1),
ylab="Viterbi or True State")
points(label-1, col="red")
title(main = sprintf("D. Viterbi Prediciton Accuracy = %.2f%s", 100 * vit.accuracy, "%"))

nbh_gen Simulate data from a negative binomial HMM.

Description

Generate count data and the hidden states based on the user-supplied HMM paramters.

Usage

nbh_gen(TRANS, alpha, beta, Total)

Arguments

TRANS Expected a squared matrix of probabilities (0 ≤ p ≤ 1) with row and column
length equal to that of alpha and beta and row sum and column sum both equal
to 1 (within some numerical deviation of 1e-6).

alpha Expected a vector of positive values with length equal to that of beta and the
row/column of TRANS.

beta Expected a vector of positive values with length equal to that of alpha and the
row/column of TRANS.

Total Total number of data points to generate.

Value

A list containing:

count Simulation count data.

label Hidden states associated with the simulated data.

Author(s)

Yue Li

References

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbh_em, nbm_chk, randindx

http://perso.telecom-paristech.fr/cappe/h2m/

nbh_init 45

Examples

Simulate data using user-supplied transition prob, alpha and beta for the NB HMM parameters
TRANS_s <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)
alpha_s <- c(2, 4)
beta_s <- c(1, 0.25)
Total <- 100
x <- nbh_gen(TRANS_s, alpha_s, beta_s, Total)

nbh_init Initialize negative binomial HMM parameters using negative binomial
mixture model

Description

The function finds a sensible set of initial NB HMM parameters by fitting a NB mixture model of
K components using the read count data.

Usage

nbh_init(count, K, NBM_NIT_MAX = 250, NBM_TOL = 0.001)

Arguments

count A vector of integers, conceptaully representing the read counts within bins of
chromosome.

K Number of hidden states.

NBM_NIT_MAX Maximum number of EM iterations (Default: 250) for the negative binomial
mixture model (NBM) intialization step (See nbm_em).

NBM_TOL Threshold as fraction of increase in likelihood (given the current NBM param-
eters) comparing with the likelihood from the last iteration. EM for the NBM
stops when the improvement is below the threshold (Default: 0.01).

Details

Because the EM algorithm in HMM tends to fall into local optimal with poor initialization, NB
mixture model with K mixture components (K-NBM) is first applied to the data to obtain a reason-
able estimate for the HMM parameters. Given the read count vector, the function applied the lower
level function nbm_em (NB mixture model) to find alpha, beta, and mixing proportion of the K NB
mixture components. Alpha and beta are the parameters of the NB mixture components initialized
as the last K quantiles of the nonzero read counts and 1, respectively. The mixing proportions or
component weights (wght) of the NB distributions are first initialized as uniform and after EM opti-
mization are used to form a symmetrical transition probability matrix such that probability of state
1 transitioning to state 2 is equal to the probability of state 2 transitioning to state 1. Such matrix is
used as the initial transition probability for the HMM model tranining (See nbh_em).

46 nbh_init

Value

A list containing:

alpha Alpha paramter of the K NB components optimized using nbm_em

beta Beta paramter of the K NB components optimized using nbm_em

TRANS Transition probability intialized as a symmetrical matrix of mixing proportion
of the K NB components optimized using nbm_em.

Author(s)

Yue Li

References

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition (Vol. 77, pp. 257-286). Presented at the Proceedings of the IEEE. doi:10.1109/5.18626

Christopher Bishop. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbm_em, nbh, nbh.GRanges, nbh_em

Examples

Simulate data
Total_train <- 1000

Total_test <- 200

TRANS_s <- matrix(c(0.9, 0.1, 0.5, 0.5), nrow=2, byrow=TRUE)
alpha_s <- c(2, 2)
beta_s <- c(1, 0.25)

train <- nbh_gen(TRANS_s, alpha_s, beta_s, Total_train)

test <- nbh_gen(TRANS_s, alpha_s, beta_s, Total_test)

nbhInit <- nbh_init(train$count, ncol(TRANS_s))

count <- train$count
label <- train$label

NBH initialization
nbhInit <- nbh_init(count, ncol(TRANS_s))

TRANS0 <- nbhInit$TRANS
alpha0 <- nbhInit$alpha

http://perso.telecom-paristech.fr/cappe/h2m/

nbh_vit 47

beta0 <- nbhInit$beta

NBH EM
nbh <- nbh_em(count, TRANS0, alpha0, beta0)

map.accuracy <- length(which(max.col(nbh$postprob) == label))/Total_train

vit <- nbh_vit(count, nbh$TRANS, nbh$alpha, nbh$beta)

vit.accuracy <- length(which(vit$class == label))/Total_train

vit_test <- nbh_vit(test$count, nbh$TRANS, nbh$alpha, nbh$beta)

vit_test.accuracy <- length(which(vit_test$class == test$label))/Total_test

nbh_wt_KMLinit <- list(mapAccuracy_train=map.accuracy, vitAccuracy_train=vit.accuracy,
vitLogl_train=vit$logl, vitAccuracy_test=vit_test.accuracy,
vitLogl_test=vit_test$logl)

nbh_vit Derive maximum likelihood hidden state sequence using Viterbi algo-
rithm

Description

Given read counts and HMM parameters (optimized by nbh_em), derive the sequence of hidden
states that maximizes the joint likelihood of observed and latent data.

Usage

nbh_vit(count, TRANS, alpha, beta)

Arguments

count A vector of integers, conceptaully representative of the read counts within bins
of chromosome.

TRANS Optimized transition probability matrix, a squared matrix of probabilities (0 ≤
p ≤ 1) with row and column length equal to that of alpha and beta and row sum
and column sum both equal to 1 (within some numerical deviation of 1e-6).

alpha Optimized shape parameter of the NB as a vector of positive values with length
equal to that of beta and the row/column of TRANS.

beta Optimized inverse scale parameter of the NB as a vector of positive values with
length equal to that of beta and the row/column of TRANS.

48 nbh_vit

Details

Given a K-state HMM with NB emission (NBH), the goal is to find the latent states corresponding
to the observed data that maximize the joint likelihood lnp(X,Z) = lnp(x1, . . . , xN , z1, . . . , zN).
The optimal solution is obtained via Viterbi algorithm, which essentially belongs to the more gen-
eral framework of Dynamic Programming.

Briefly, starting from the second node of the Markov chain, we select state of the first node that
maximizes lnp(x1, x2, z2|z1) for every state of z2. Then, we move on to the next node and the next
until reaching to the last node. In the end, we make choice for the state of the last node that together
leads to the maximum lnp(X,Z). Finally, we backtrack to find the choices of states in all of the
intermeidate nodes to form the final solution.

Value

A list containing:

class ML sequence of latent states

logl Log-likelihood corresponding to the latents states class

Note

The function is expected to run after learning the model parameters of HMM using nbh_em and
(optionally) disambiguating the multihits using nbh_vit. However, nothing prevents user from
running it with a random set of HMM parameters. Also, note that Viterbi algorithm finds the most
probable sequence of states, which is not the same as maximizing the posterior probabilities for all
the individual latent variables. For instance, a observed data point may be classified as from state 2
in the most probable chain in spite its marginal posterior probability for state 2 is zero.

Author(s)

Yue Li

References

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition (Vol. 77, pp. 257-286). Presented at the Proceedings of the IEEE. doi:10.1109/5.18626

Christopher Bishop. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

X. L. Meng, D. B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general
framework, Biometrika, 80(2):267-278 (1993).

J. A. Fessler, A. O. Hero, Space-alternating generalized expectation-maximization algorithm, IEEE
Tr. on Signal Processing, 42(10):2664 -2677 (1994).

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbh_init, nbh, nbh.GRanges, nbh_em,nbm_em

http://perso.telecom-paristech.fr/cappe/h2m/

nbh_vit 49

Examples

Simulate data
TRANS_s <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)
alpha_s <- c(2, 4)
beta_s <- c(1, 0.25)
Total <- 100

x <- nbh_gen(TRANS_s, alpha_s, beta_s, Total);

count <- x$count
label <- x$label

Total <- length(count)

dummy initialization
TRANS0 <- matrix(rep(0.5,4), 2)

alpha0 <- c(1, 20)

beta0 <- c(1, 1)

NIT_MAX <- 50
TOL <- 1e-100
nbh <- nbh_em(count, TRANS0, alpha0, beta0, NIT_MAX, TOL)

map.accuracy <- length(which(max.col(nbh$postprob) == label))/Total

vit <- nbh_vit(count, nbh$TRANS, nbh$alpha, nbh$beta)

vit.accuracy <- length(which(vit$class == label))/Total

Plots
par(mfrow=c(2,2), cex.lab=1.2, cex.main=1.2)

plot(count, col="blue", type="l", main=sprintf("A. Simulated Data (Total = %i)",Total))

plot(as.numeric(nbh$logl), xlab="EM Iteration", ylab="Log-Likelihood",
main="B. Log-Likelihood via EM");grid()

Marginal postprob
plot(nbh$postprob[,2], col="blue", type="l", ylim = c(0,1),
ylab="Marginal Posteriror or True State")
points(label-1, col="red")
title(main = sprintf("C. MAP Prediciton Accuracy = %.2f%s", 100 * map.accuracy, "%"))

Viterbi states
plot(vit$class - 1, col="dark green", type="l", ylim = c(0,1),
ylab="Viterbi or True State")
points(label-1, col="red")
title(main = sprintf("D. Viterbi Prediciton Accuracy = %.2f%s", 100 * vit.accuracy, "%"))

50 nbm_chk

nbm_chk Check the parameters of the negative binomial mixture model

Description

The function verifies the numerical range and dimension of the NBM paramters alpha, beta, and
wght and returns the number of components. It is used in nbm_em before running EM.

Usage

nbm_chk(alpha, beta, wght)

Arguments

alpha Expected a vector of positive values with length equal to that of beta and wght.

beta Expected a vector of positive values with length equal to that of alpha and wght.

wght Expected a vector of probabilities (0 ≤ p ≤ 1) with length equal to that of alpha
and beta and summed to 1 (within some numerical deviation of 1e-6).

Value

N Number of components or equivalently the length of alpha, beta, or wght.

Author(s)

Yue Li

References

Christopher Bishop. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbm_em, nbh_chk

http://perso.telecom-paristech.fr/cappe/h2m/

nbm_em 51

Examples

two mixing components
wght <- c(0.5,0.5)

alpha <- c(1, 20)

beta <- c(1, 1)

nbm_chk(alpha, beta, wght)

nbm_em Expectation conditional maximization of likelihood for negative bino-
mial mixture model

Description

Given an input read count vector of integers, the function optimzes the parameters for the negative
binomial mixture model of K components using expectation conditional maximization.

Usage

nbm_em(count, alpha, beta, wght, NBM_NIT_MAX = 250, NBM_TOL = 0.01)

Arguments

count A vector of integers, conceptaully representing the read counts within bins of
chromosome.

alpha Initial values for αk for all K NB.
beta Initial values for βk for all K NB.
wght Initial values for πk for all K NB.
NBM_NIT_MAX Maximum number of EM iterations (Default: 250).
NBM_TOL Threshold as fraction of increase in likelihood (given the current NBM param-

eters) comparing with the likelihood from the last iteration. EM for the NBM
stops when the improvement is below the threshold (Default: 0.01).

Details

Given a K-NBM, the goal is to maximize the likelihood function with respect to the parameters
comprising of αk and βk for the K NB components and the mixing coefficients πk, which are
the priors p(z = k). Because there is no analytical solution for the maximum likelihood (ML)
estimators of the above quantities, a modified EM procedures called Expectation Conditional Max-
imization is employed (Meng and Rubin, 1994).

In E-step, the posterior probability is evaluated using NB density functions with initialized αk, βk,
and πk. In the CM step, πk is evaluated first followed by Newton updates of αk and βk. EM
iteration terminates when the percetnage of increase of log likelihood drop below NBM_TOL, which
is deterministic since EM is guaranteed to converge. For more details, please see the manuscript of
RIPSeeker.

52 nbm_em

Value

A list containing:

alpha alpha_k for all K components of NB.

beta beta_k for all K components of NB.

wght pi_k for all K components of NB.

logl Log likelihood in each EM iteration.

postprob Posterior probabilities for each observed data point in the last EM iteration.

Author(s)

Yue Li

References

Bishop, Christopher. Pattern recognition and machine learning. Number 605-631 in Information
Science and Statisitcs. Springer Science, 2006.

X. L. Meng, D. B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general
framework, Biometrika, 80(2):267-278 (1993).

J. A. Fessler, A. O. Hero, Space-alternating generalized expectation-maximization algorithm, IEEE
Tr. on Signal Processing, 42(10):2664 -2677 (1994).

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbh_init, nbh, nbh.GRanges, nbh_em

Examples

Simulate data
TRANS_s <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)
alpha_s <- c(2, 4)
beta_s <- c(1, 0.25)
Total <- 1000
x <- nbh_gen(TRANS_s, alpha_s, beta_s, Total);

N <- 2

cnt <- x$count
label <- x$label

Total <- length(cnt)

dummy initialization
wght0 <- c(0.5,0.5)

alpha0 <- c(1, 20)

http://perso.telecom-paristech.fr/cappe/h2m/

plotCoverage 53

beta0 <- c(1, 1)

NIT_MAX <- 50
TOL <- 1e-100

initialize param with nbm

nbm <- nbm_em(cnt, alpha0, beta0, wght0, NIT_MAX, TOL)

map.accuracy <- length(which(max.col(nbm$postprob) == label))/Total

print(map.accuracy)

plotCoverage Plot read coverage for a GRanges object

Description

An internal function used by plotStrandedCoverage to plot read counts within each fixed bin
across the entire chromosome.

Usage

plotCoverage(x, plotLegend = FALSE, legend.cex = 1, ...)

Arguments

x GRanges object with values slot saved for read counts within the corresponding
ranges.

plotLegend Binary indcator. If TRUE, legend will be plotted on the top left the plot. Legend
is expected to be the chromsome name and length, which must be available in
the GRange object argument.

legend.cex Font size of the legend.

... Extra arguments passed to either the plot or the legend.

Details

The read counts is plotted in blue bars as positive integer across the x-axis as the sorted positions
across the chromosome. The plot can be used to examine the overall alignment properties for each
chromosome.

Note

Users are not recommanded run this function directly but rather via a much more user friendly
function plotStrandedCoverage.

54 plotStrandedCoverage

Author(s)

Yue Li

References

P. Aboyoun, H. Pages and M. Lawrence (). GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

See Also

plotStrandedCoverage, plot, legend

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

binSize <- 1000

binGR <- binCount(alignGRList$chrX, binSize)

plotCoverage(binGR, plotLegend=TRUE)

plotStrandedCoverage Plot strand-specific read coverage for a GRanges object

Description

Plot read counts within fixed bin across the entire chromosome.

Usage

plotStrandedCoverage(gr, binSize = 1000, plotLegend = FALSE, ylim, ...)

plotStrandedCoverage 55

Arguments

gr GRanges object containing the alignments.

binSize Integer indicate the size of the bin used to compute and plot the read counts.

plotLegend Binary indcator. If TRUE, legend will be plotted on the top left the plot. Legend
is expected to be the chromsome name and length, which must be available in
the GRange object argument.

ylim A two element scale on the y-axis, indicating the maximum read counts on the
+ and - strand to be plotted (e.g., ylim=c(-200, 200)).

... Extra arguments passed to plotCoverage.

Details

Read count on + and - strand are displayed as red and blue bars on the positive and negative y-axis,
respectively. The x-axis indicates the positions across the chromosmoe. The plot can be used to
examine for each chromosome the overall alignment properties such as strand specificity (expected
in non-strand-specific sequencing) and aggregation of reads.

Author(s)

Yue Li

References

P. Aboyoun, H. Pages and M. Lawrence (). GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

See Also

plotCoverage, plot, legend

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

binSize <- 1000

plotStrandedCoverage(gr=alignGRList$chrX, binSize=binSize,

56 randindx

xlab="", ylab="", plotLegend=TRUE, box.lty=0, legend.cex=2)

randindx Generates random indexes with a specified probability distribution

Description

Returns an array of T indexes distributed as specified by p (which should be a normalized probability
vector).

Usage

randindx(p, Total, NO_CHK)

Arguments

p A row vector of normalized probabilities that dictate the transition probability
from the current state to the next state. For example, p = [0.2, 0.8] indicates that
the current state transitoins to state 1 at 0.2 and 2 at 0.8. The current state itself
can either be the state 1 or 2.

Total Total number of states needed to be generated using the input transition vector.

NO_CHK Check whether the first argument is a valid row vector of normalized probabili-
ties.

Details

The function is used by nbh_gen to generate random data point based on the user-supplied transition
probability matrix.

Value

I Index/Indices or state(s) sampled following the transition.

probability.

Author(s)

Yue Li

References

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbh_gen

http://perso.telecom-paristech.fr/cappe/h2m/

ripSeek 57

Examples

Total contains the length of data to simulate
Total <- 100

number of states
N <- 2

transition probabilities between states
TRANS <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)

label <- matrix(0, Total, 1)

Simulate initial state
label[1] <- randindx(matrix(1,ncol=N)/N, 1, 1)

Use Markov property for the following time index
for(t in 2:Total) {

label[t] <- randindx(TRANS[label[t-1],], 1, 1)
}

plot(label)

ripSeek HMM-based de novo RIP predictions using alignment data

Description

This function is the main interface to most essential functions of RIPSeeker package.

Usage

ripSeek(bamPath, cNAME, binSize = NULL, strandType = NULL,
paired=FALSE, biomaRt_dataset, goAnno, exportFormat = "gff3",
annotateFormat = "txt", annotateType = "TSS", outDir,
padjMethod = "BH", logOddCutoff = 0, pvalCutoff = 1,
pvalAdjCutoff = 1, eFDRCutoff = 1, ...)

Arguments

bamPath Either a path to all of the bam files or a list of paths to individual BAM files.
BED and SAM files are also accepted.

cNAME An identifer pattern found in the control alignment files. Once specified, these
files will be used as control and the remaining files as RIP for discriminative
analysis (see seekRIP).

binSize Size to use for binning the read counts across each chromosome. If NULL,
optimal bin size within a range (default: minBinSize=200, maxBinSize=1200)
will be automatically selected (see selectBinSize).

58 ripSeek

strandType Type of strand can be +, -, or * as in GAlignments, GAlignmentPairs, or GRanges
(see GenomicRanges).

paired Binary to indicate whether the library is paired-end (TRUE) or single-end (FALSE
by default) (see getAlignGal).

biomaRt_dataset

The dataset name used in biomaRt for retrieving genomic information for a
given species name (see annotateRIP).

goAnno GO dataset name used for GO enrichment analysis (See annotateRIP).
exportFormat Format to export the RIP predictions. The commonly used ones are GFF and

BED, which can be directly imported as a track to a genomic viewer such as
Integrative Genomic Viewer, SAVANT or USCSC browser.

annotateFormat Format to export the annotated RIP predictions. The default "txt" is a tab-
delimited format, recommanded for viewing in Excel.

annotateType Type of genomic information in association with the RIP predictions that can be
retrieved from Ensembl database (Default: TSS; See annotateRIP).

outDir Output directory to save the results. The output data include ...
padjMethod Method to adjust multiple testing (Benjamini-Hocherge method by default).
logOddCutoff Threshold for the log odd ratio of posterior for the RIP over the background

states (See seekRIP). Only peaks with logOdd score greater than the logOddCutoff
will be reported. Default: 1.

pvalCutoff Threshold for the p-value for the logOdd score. Only peaks with p-value less
than the pvalCutoff will be reported. Default: 1 (i.e. no cutoff).

pvalAdjCutoff Threshold for the adjusted p-value for the logOdd score. Only peaks with ad-
justed p-value less than the pvalAdjCutoff will be reported. Default: 1 (i.e. no
cutoff).

eFDRCutoff Threshold for the empirical false discovery rate (eFDR). Only peaks with eFDR
less than the eFDRCutoff will be reported. Default: 1 (i.e. no cutoff).

... Arguments passed to mainSeek.

Details

This is the main front-end function of RIPSeeker and in many cases the only function that users
need to get RIP predictions and all relevant information.

Value

A list is returned with the following items:

mainSeekOutputRIP

A (inner) list comprising three items:
nbhGRList: GRangesList of the HMM trained parameters for each chromo-
some on RIP.
alignGal, alignGalFiltered: GAlignments objects of the RIP alignment
outputs from combineAlignGals and disambiguateMultihits, respectively.
The former may contain multiple alignments due to the same reads whereas the
latter contains a one-to-one mapping from read to alignment after disambiguat-
ing the multihits.

ripSeek 59

mainSeekOutputCTL

Same as mainSeekOutputRIP but for the control library (if available).

RIPGRList The results as GRangesList generated from the RIP peak detection. Each list
item represents the RIP peaks on a chromosome accompanied with statistical
scores including (read) count, logOddScore, pval, pvalAdj, eFDR for the RIP
and control (if available). Please refer to seekRIP for more details.

annotatedRIPGR If annotatedRIPGR is TRUE, the additional genomic information will be re-
treived according to the genomic coordinates of the peaks in RIPGRList. The
results are saved in this separate GRanges object as the final results that user
will find the most useful.

Note

You may only want to know the expression/abundance of known transcripts/genes or the foldchange
between two conditions. In that case, use rulebaseRIPSeek and computeRPKM, respectively. Both
singl-end and paired-end alignments are supported in these functions.

Author(s)

Yue Li

References

Zhao, J., Ohsumi, T. K., Kung, J. T., Ogawa, Y., Grau, D. J., Sarma, K., Song, J. J., et al. (2010).
Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Molecular Cell, 40(6),
939D953. doi:10.1016/j.molcel.2010.12.011

The RIPSeeker manuscript has been submitted to NAR for review.

See Also

rulebaseRIPSeek

Examples

if(interactive()) { # need internet connection

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

cNAME <- "SRR039214" # specify control name

output file directory
outDir <- paste(getwd(), "ripSeek_example", sep="/")

Parameters setting
binSize <- NULL # automatically determine bin size

60 rulebaseRIPSeek

minBinSize <- 10000 # min bin size in automatic bin size selection
maxBinSize <- 12000 # max bin size in automatic bin size selection
multicore <- TRUE # use multicore
strandType <- "-" # set strand type to minus strand

biomart <- "ENSEMBL_MART_ENSEMBL" # use archive to get ensembl 65
dataset <- "mmusculus_gene_ensembl" # mouse dataset id name
host <- "dec2011.archive.ensembl.org" # use ensembl 65 for annotation

goAnno <- "org.Mm.eg.db"

################ run main function ripSeek to predict RIP ################
seekOut <- ripSeek(bamPath=bamFiles, cNAME=cNAME,
binSize=binSize, minBinSize = minBinSize,
maxBinSize = maxBinSize, strandType=strandType,
outDir=outDir, silentMain=FALSE,
verbose=TRUE, reverseComplement=TRUE, genomeBuild="mm9",
biomart=biomart, host=host,
biomaRt_dataset = dataset,
goAnno = goAnno,
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = TRUE, multicore=multicore)

################ visualization ################

viewRIP(seekOut$RIPGRList$chrX, seekOut$mainSeekOutputRIP$alignGalFiltered,
seekOut$mainSeekOutputCTL$alignGalFiltered, scoreType="eFDR")

}

rulebaseRIPSeek Compute the RPKM and foldchange between two conditions for the
annotated genes

Description

The function takes alignments in two conditions (with replicates) as input and computes the gene
expression in the two conditions in the unit of RPKM (reads per kilobase of exon per million
mapped reads) or FPKM for paired-end alignments (where "F" stands for the fragment the mate-
pairs are derived from), and then the foldchange ratio of the RPKM of each gene in RIP or treatment
condition in general over control condition. The control files (i.e. the denominator in the foldchange
ratio) is specified by user in the "cNAME" argument.

Usage

rulebaseRIPSeek(bamFiles, cNAME, featureGRanges, rpkmCutoff = 0.4,
fcCutoff = 3, moreRIPGeneInfo = TRUE, idType = "ensembl_transcript_id",
myMin = .Machine$double.xmin, saveRData, ...)

rulebaseRIPSeek 61

Arguments

bamFiles A list of one or more BAM/SAM/BED alignment files.

cNAME An identifer pattern found in the control alignment files. Once specified, these
files will be used as control as the denomenator of the foldchange ratio and the
remaining files as RIP, the numarator of the foldchange ratio.

featureGRanges GRanges of features as an optional argument for function to compute RPKM/FPKM
just for those features without retrieving online annotations.

rpkmCutoff Cutoff for RPKM in RIP above which the genes will be reported if the fcCutoff
is also satisfied (Default: 0.4).

fcCutoff Cutoff for foldchange in RIP relative to the control above which the genes will
be reported if the rpkmCutoff is also satisfied (Default: 3).

moreRIPGeneInfo

Binary indicator to indicate whether to download more information for each
genes/transcripts rather than having only the gene/transcript IDs (Default: TRUE).

idType A character string that specifies the type of the annotations, which can "en-
sembl_transcript_id" (Default), "ensembl_gene_id", "ucsc", etc. Refer to listFilters
for more information.

myMin Add a small value to both the numerator and denomenator as "pseudocount" to
prevent the case where the denomenator is zero and the ratio becomes infinity
regardless the value of the numerator (Default: .Machine$double.xmin).

saveRData Path of output RData and tab-delim results.

... Extra arguments passed to computeRPKM and/oruseMart.

Details

The function uses computeRPKM to download annotation and compute RPKM/FPKM of the anno-
tated genes in the list of files. The alignments file are separated into control as identified by the
"cNAME" and the RIP (or any treatment) that do not have the cNAME in their file names. The align-
ments in either group are pooled together. If moreRIPGeneInfo is specified, the function witll query
the Ensembl database. The chromosome ID in the numerical format used in Ensembl is prefixed
with "chr" and the strand 1 and -1 converted to + and - for convenience.

Value

A list containing the following items:

nRPKM RPKM of genes in RIP or treatment condition (’n’ stands for numerator in the
foldchange ratio).

dRPKM RPKM of genes in control condition (’d’ stands for denomenator in the fold-
change ratio)

rpkmDF Data frame containing read count, RPKM for the RIP (or treatment) and con-
trol, foldchange, and optional gene information including "chromosome_name",
"start_position", "end_position", "strand", "external_gene_id", "ensembl_transcript_id",
"ensembl_gene_id", "ucsc", "description"

rpkmCutoff Cutoff used for RPKM as book keeping value.

62 rulebaseRIPSeek

fcCutoff Cutoff used for foldchange as book keeping value.

featureGRanges GRanges object of the features for which the RPKM and foldchange are com-
puted.

Note

Also works for RNA-seq alignments.

Author(s)

Yue Li

References

Zhao, J., Ohsumi, T. K., Kung, J. T., Ogawa, Y., Grau, D. J., Sarma, K., Song, J. J., et al. (2010).
Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Molecular Cell, 40(6),
939D953. doi:10.1016/j.molcel.2010.12.011

M. Carlson, H. Pages, P. Aboyoun, S. Falcon, M. Morgan, D. Sarkar and M. Lawrence. Ge-
nomicFeatures: Tools for making and manipulating transcript centric annotations. R package ver-
sion 1.8.2.

P. Aboyoun, H. Pages and M. Lawrence (). GenomicRanges: Representation and manipulation of
genomic intervals. R package version 1.8.9.

Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt.
Steffen Durinck, Paul T. Spellman, Ewan Birney and Wolfgang Huber, Nature Protocols 4, 1184-
1191 (2009).

BioMart and Bioconductor: a powerful link between biological databases and microarray data anal-
ysis. Steffen Durinck, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma and
Wolfgang Huber, Bioinformatics 21, 3439-3440 (2005).

Martin Morgan and Herv\’e Pag\‘es (). Rsamtools: Binary alignment (BAM), variant call (BCF), or
tabix file import. R package version 1.8.5. http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

See Also

makeTxDbFromBiomart, makeTxDbFromUCSC, useMart, exonsBy, cdsBy, intronsByTranscript, fiveUTRsByTranscript, threeUTRsByTranscript, cdsBy, combineAlignGals, summarizeOverlaps, ScanBamParam, readGAlignmentPairs, readGAlignments

Examples

if(interactive()) {

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

cNAME <- "SRR039214" # specify control name

output file directory

scoreMergedBins 63

outDir <- paste(getwd(), "ripSeek_example")

use biomart
txDbName <- "biomart"
biomart <- "ENSEMBL_MART_ENSEMBL" # use archive to get ensembl 65
dataset <- "mmusculus_gene_ensembl"
host <- "dec2011.archive.ensembl.org" # use ensembl 65 for annotation

resultlist <- rulebaseRIPSeek(bamFiles, "SRR039214", dataset=dataset,
txDbName=txDbName, biomart=biomart, host=host, by="tx")

}

scoreMergedBins Average log odd scores over bins being merged into a single region

Description

Sum, normalize the read counts, and average the logOdd score over the bins being merged into a
single enriced region.

Usage

scoreMergedBins(findOverlapsHits, unmergedGRAll, mergedGRAll)

Arguments

findOverlapsHits

Output from findOverlaps as two columns indices with the first column con-
taining the indices for unmerged GRanges and the second column the indices of
the matched merged GRanges.

unmergedGRAll GRanges before merging.

mergedGRAll GRanges after merging.

Details

The consecutive RIP-bins predicted by the Viterbi function (See nbh_vit) are merged into a sin-
gle RIP region. An aggregate RIPScore as the averaged RIPScores over the associated merged
bins is assigned to each merged RIP region. In the RIPSeeker workflow, the averaged RIPScore
then becomes the representative score for the region and subject to significance test carried out in
seekRIP.

Value

A merged GRanges each with scores including summed read count, averaged log odd scores, and
FPK (fragment per kilobase of region length). The latter score represent a normalized read count.

64 scoreMergedBins

Note

This function is expected to be called only from logScoreWithoutControl and logScoreWithControl.

Author(s)

Yue Li

See Also

seekRIP, computeLogOdd logScoreWithControl, logScoreWithoutControl

Examples

if(interactive()) { # see example in seekRIP
Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- 1e5 # use a large fixed bin size for demo only
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

################ run main function for HMM inference on all chromosomes ################
mainSeekOutputRIP <- mainSeek(bamFiles=

grep(pattern="SRR039214", bamFiles, value=TRUE, invert=TRUE),
binSize=binSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = TRUE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

nbhGRRIP <- mainSeekOutputRIP$nbhGRList$chrX

logOddScore <- computeLogOdd(nbhGRRIP)

values(nbhGRRIP) <- cbind(as.data.frame(values(nbhGRRIP)), logOddScore)

enrichIdx <- which(values(nbhGRRIP)$viterbi_state == 2)

unmergedRIP <- nbhGRRIP[enrichIdx]

mergedRIP <- reduce(unmergedRIP, min.gapwidth = median(width(unmergedRIP)))

overlapIdx <- findOverlaps(mergedRIP, unmergedRIP)

a list with query hits as names and subject hits as items
findOverlapsHits <- split(overlapIdx, queryHits(overlapIdx))

seekRIP 65

get the score for the first merged region
x <- scoreMergedBins(findOverlapsHits[[1]], unmergedRIP, mergedRIP)

get scores for all of the merged regions
mergedRIPList <- lapply(split(overlapIdx, queryHits(overlapIdx)),

scoreMergedBins, unmergedRIP, mergedRIP)

names(mergedRIPList) <- NULL

mergedRIP <- do.call(c, mergedRIPList)

logOddScore is the averaged logOddScore across merged bins
mergedRIP
}

seekRIP Identify significant peaks

Description

Based on the posteriors derived from HMM by mainSeek, find the significant RIP regions derived
from merging the adjacent RIP bins. The significance test makes use of the log odd ratio of the
posteriors for RIP over the background states.

Usage

seekRIP(nbhGRRIP, nbhGRCTL = NULL, padjMethod = "BH",
logOddCutoff = -Inf, pvalCutoff = 1, pvalAdjCutoff = 1,
eFDRCutoff = 1)

Arguments

nbhGRRIP GRanges object for the RIP library created from mainSeek containing the pos-
terior probabilities of the hidden states for each observed read count.

nbhGRCTL An optional argument as a GRanges object for the control library created from
mainSeek containing the posterior probabilities of the hidden states for each
observed read count.

padjMethod Method used to adjust multiple testing performed in p.adjust (Default: "BH").

logOddCutoff Threshold for the log odd ratio of posterior for the RIP over the background
states (See seekRIP). Only peaks with logOdd score greater than the logOddCutoff
will be reported. Default: -Inf (i.e. no cutoff).

pvalCutoff Threshold for the adjusted p-value for the logOdd score. Only peaks with ad-
justed p-value less than the pvalAdjCutoff will be reported. Default: 1 (i.e. no
cutoff).

66 seekRIP

pvalAdjCutoff Threshold for the adjusted p-value for the logOdd score. Only peaks with ad-
justed p-value less than the pvalAdjCutoff will be reported. Default: 1 (i.e. no
cutoff).

eFDRCutoff Threshold for the empirical false discovery rate (eFDR). Only peaks with eFDR
less than the pvalAdjCutoff will be reported. Default: 1 (i.e. no cutoff).

Details

The RIPScore is compupted in computeLogOdd as the log odd ratio of the posterior for the RIP state
(zi = 2) over the posterior for the background state (zi = 1) in RIP library. When control is avail-
able, the RIPScore is updated by the difference between the RIPScores between RIP and control.
The adjacent bins with hidden states predicted by nbh_vit as the enriched state (corresponding to
the NB with larger mean) are merged. The RIPSscores are averaged over the merged bins. To assess
the statistical significance of the RIPScore for each region, we assume that the RIPScore follows
a Gaussian (Normal) distribution with mean and standard deviation estimated using the RIPScores
over all of the bins. The rationale is based on the assumption that most of the RIPScores correspond
to the background state and together contribute to a stable estimate of the test statistics (TS) and
p-value computed using the R built-in function pnorm.

The p-value is adjusted by p.adjust with BH method by default. The same procedure is applied
optionally to the control library. Only when the control is available, is an empirical false discovery
rate (eFDR) estimated based on the idea of "sample swap" inspired by MACS (a ChIP-seq algorithm
from Zhange el al. (2008). At each p-value, RIPSeeker finds the number of significnat RIP-regions
over control (CTL) based on pvalRIP and the number of significant control regions over RIP based
on pvalCTL. The eFDR is defined as the ratio of the number of "RIP" (false positive) regions iden-
tified from CTL-RIP comparison over the number of RIP regions from the RIP-CTL comparison.
The maximum value for eFDR is 1 and minimum value for eFDR is max(p-value, 0). The former
takes care of the case where the numerator is bigger than the denominator, and the latter for zero
numerator.

Value

GRanges object containing the merged bins with values slot saved for RIPScore (lodOdd), p-value
(pval), adjusted p-value (pvalAdj) for RIP and optionally for control.

Note

Internal function used by ripSeek.

Author(s)

Yue Li

References

Yong Zhang, Tao Liu, Clifford A Meyer, J\’er\^ome Eeckhoute, David S Johnson, Bradley E Bern-
stein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li, and X Shirley Liu. Model-based
analysis of ChIP-Seq (MACS). Genome Biology, 9(9):R137, 2008.

selectBinSize 67

See Also

logScoreWithControl, logScoreWithoutControl, empiricalFDR, computeLogOdd, scoreMergedBins, ripSeek

Examples

if(interactive()) {
Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

Parameters setting
binSize <- 1e5 # use a large fixed bin size for demo only
multicore <- FALSE # use multicore
strandType <- "-" # set strand type to minus strand

################ run main function for HMM inference on all chromosomes ################
mainSeekOutputRIP <- mainSeek(bamFiles=grep(pattern="SRR039214",

bamFiles, value=TRUE, invert=TRUE),
binSize=binSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = FALSE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

mainSeekOutputCTL <- mainSeek(bamFiles=grep(pattern="SRR039214",
bamFiles, value=TRUE, invert=FALSE),

binSize=binSize, strandType=strandType,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = FALSE,
multicore=multicore, silentMain=FALSE, verbose=TRUE)

with control
ripGR.wicontrol <- seekRIP(mainSeekOutputRIP$nbhGRList$chrX, mainSeekOutputCTL$nbhGRList)

without control
ripGR.wocontrol <- seekRIP(mainSeekOutputRIP$nbhGRList$chrX)
}

selectBinSize Select optimal bin size based on Shimazaki formula

Description

The function iteratively estimates the cost of increasing bin size within a defined range and finally
selects the bin size with minimum cost.

68 selectBinSize

Usage

selectBinSize(alignGR, minBinSize, maxBinSize = 1000,
increment = 5, getFullResults = FALSE)

Arguments

alignGR GRanges object of alignments on a single chromosome

minBinSize Minimum bin size to start with (Default: 5 * read length)

maxBinSize Maximum bin size to end with (Default: 1000).

increment Number of bases to increment the bin size in searching for the optimal bin size
within the defined range (Default: 5).

getFullResults Binary indicator. If TRUE, the optimal bin size (with the minimum cost), min-
imum cost, and all of the bin sizes considered and their costs are returned. If
FALSE, only the optimal bin size is returned.

Details

Based on the preprocessed alignments for a chromosome, RIPSeeker divides the chromosome into
bins of equal size b and compute the number of reads that b needs to be determined either empirically
(e.g., based on the gel-selected length of the RNA fragment) or computationally. If the bin size is
too small, the read counts fluctuates greatly, making it difficult to discern the underlying read count
distribution. Additionally, input size to HMM increases as bin size decreases. A very small bin size
results in a very long Markov chain of read counts to model, making the computation inefficient.
On the other hand, if a bin size is too large, resolution becomes poor. Consequently, one cannot
detect the local RIP region with subtle but intrinsic difference from the background, and the RIP
regions tend to be too wide for designing specific primer for validation.

Intuitively, selecting an appropriate bin size for each chromosome is metaphorically equivalent
to choosing an optimal intervals for building a histogram (Song, 2011). Here we implement the
algorithm developed by Shimazaki and Shinomoto (2007), which is based on the goodness of the
fit of the time histogram to estimate the rate of neural response of an animal to certain stimuli in a
spike-in experiment. This approach has been successfully applied in a recently developed ChIP-seq
program (Song and Smith, 2011). Algorithm 1 describes the pseudocode adapted from Shimazaki
and Shinomoto (2007) that iteratively estimates the cost C of increasing bin size b within a defined
range is outlined as follows.

For b = minBinSize to maxBinSize; do

1. Divide chromosome sequence into N bins of width b.

2. Count number of read counts xi that enter the i’th bin.

3. Compute: x̄ = 1
N

∑N
i=1 xi and v = 1

N

∑N
i=1(xi − x̄)2.

4. Compute: C(b) = 2x̄−v
b2

End For

Choose b that minimize C(b)

selectBinSize 69

Value

When getFullResults is TRUE, return a list containing:

bestBinSize the optimal bin size (with the minimum cost)

minCosts cost of the optimal bin size

binSizes all of the bin sizes considered

costs all of the costs

When getFullResults is FALSE, only the optimal bin size (bestBinSize) is returned.

Author(s)

Yue Li

References

Hideaki Shimazaki and Shigeru Shinomoto. A method for selecting the bin size of a time histogram.
Neural computation, 19(6):1503-1527, June 2007.

Qiang Song and Andrew D. Smith. Identifying dispersed epigenomic domains from ChIP-Seq data.
Bioinformatics (Oxford, England), 27(6):870-871, March 2011.

See Also

evalBinSize, binCount

Examples

Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

alignGal <- getAlignGal(bamFiles[1], reverseComplement=TRUE, genomeBuild="mm9")

alignGR <- as(alignGal, "GRanges")

alignGRList <- GRangesList(as.list(split(alignGR, seqnames(alignGR))))

minBinSize <- 200

maxBinSize <- 1200

gr <- alignGRList$chrX

b <- selectBinSize(gr, minBinSize, maxBinSize, increment=100, getFullResults=TRUE)

plot(b$binSizes, b$costs)

70 statdis

chrname <- as.character(runValue(seqnames(gr)))

chrlen <- seqlengths(gr)[chrname]

legend("topright", box.lty=0,

sprintf("%s: 1-%d;\nTotal mapped reads: %d;\nOptimal bin size = %d bp",

chrname, chrlen, length(gr), b$bestBinSize))

statdis Returns the stationary distribution of a Markov chain.

Description

Given a transition matrix A, returns the stationary distribution of a Markov chain by computing the
eigen vectors of A.

Usage

statdis(A)

Arguments

A Transition probability matrix, a squared matrix of probabilities (0 ≤ p ≤ 1)
with row and column length equal to that of alpha and beta and row sum and
column sum both equal to 1 (within some numerical deviation of 1e-6).

Value

w Stationary weights for the distributions of K components based on the transition
probability matrix.

Author(s)

Yue Li

References

Capp\’e, O. (2001). H2M : A set of MATLAB/OCTAVE functions for the EM estimation of mix-
tures and hidden Markov models. (http://perso.telecom-paristech.fr/cappe/h2m/)

See Also

nbh_em

http://perso.telecom-paristech.fr/cappe/h2m/

statdis 71

Examples

Simulate data
TRANS_s <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow=2, byrow=TRUE)
alpha_s <- c(2, 4)
beta_s <- c(1, 0.25)
Total <- 100

x <- nbh_gen(TRANS_s, alpha_s, beta_s, Total);

count <- x$count
label <- x$label

Total <- length(count)

dummy initialization
TRANS0 <- matrix(rep(0.5,4), 2)

alpha0 <- c(1, 20)

beta0 <- c(1, 1)

NIT_MAX <- 50
TOL <- 1e-100
nbh <- nbh_em(count, TRANS0, alpha0, beta0, NIT_MAX, TOL)

map.accuracy <- length(which(max.col(nbh$postprob) == label))/Total

vit <- nbh_vit(count, nbh$TRANS, nbh$alpha, nbh$beta)

vit.accuracy <- length(which(vit$class == label))/Total

Plot the marginal distribution (in the stationnary regime)
Compute negative binomial distributions for all model states
t <- 0:max(count)

tmp <- nbh_em(t, nbh$TRANS, nbh$alpha, nbh$beta, 1)

dens <- tmp$dens

w <- statdis(nbh$TRANS)

Plot estimate of marginal probabilities
marprob <- apply(t(dens) * (t(w) %*% matrix(1, ncol=length(t))), 2, sum)

plot(t, marprob, pch=8, col="blue", main="Estimated marginal distribution")

Plot empirical estimated probabilities
dhist <- matrix(0, ncol=length(t))

for(i in t){
dhist[1+i] <- sum(count == i)/Total

72 viewRIP

}

points(t, dhist, pch=3, col="red")

viewRIP Visualize peaks from UCSC genome browser.

Description

Upload alignments, peaks, statistical scores to UCSC genome browser for comparative visualization
of the results and data available in the UCSC database.

Usage

viewRIP(seekedRIP, alignGR, alignGRCTL,
binGR = seekedRIP, scoreType = "eFDR",
cutoffLine = 0.001, displayALLChr = FALSE, ...)

Arguments

seekedRIP GRangesList obtained from ripSeek. Each list item represents the RIP peaks
on a chromosome accompanied with statistical scores including (read) count,
logOddScore, pval, pvalAdj, eFDR for the RIP and control (if available). Please
refer to seekRIP for more details.

alignGR GRanges of read alignments for the RIP.

alignGRCTL GRanges of read alignments for the control.

binGR GRanges containing read count column corresponding to the peaks. By default,
alignGR is used as binGR to display the read count in RIP condition.

scoreType Type of statistical score to display as another track in the browser (Default:
eFDR). eFDR/pval/pvalAdj is displayed at -log10 scale.

cutoffLine Draw a cutoffline in the browser to indicate the significance level above which
the peaks are considered significant.

displayALLChr Binary indicator when TRUE upload and display the information for only one
chromosome rather than upload all chromosomes (Default: TRUE).

... Extra arguments are ignored.

Details

The function is a wrapper function of browserSession, track, and browserView.

Note

If input contain multiple chromosomes, then multiple browser window will be open to display each
chromosome. A more user-friendly way is to upload all of the information to UCSC and open a
single browser for visualization, which may become one of the new features in future release.

viewRIP 73

Author(s)

Yue Li

References

Michael Lawrence, Vince Carey and Robert Gentleman (). rtracklayer: R interface to genome
browsers and their annotation tracks. R package version 1.16.3.

See Also

ripSeek, browserSession, track, browserView

Examples

if(interactive()) { # need internet connection
Retrieve system files
extdata.dir <- system.file("extdata", package="RIPSeeker")

bamFiles <- list.files(extdata.dir, ".bam$", recursive=TRUE, full.names=TRUE)

bamFiles <- grep("PRC2", bamFiles, value=TRUE)

cNAME <- "SRR039214" # specify control name

Parameters setting
binSize <- NULL # automatically determine bin size
minBinSize <- 10000 # min bin size in automatic bin size selection
maxBinSize <- 12000 # max bin size in automatic bin size selection
multicore <- TRUE # use multicore
strandType <- "-" # set strand type to minus strand

################ run main function ripSeek to predict RIP ################
seekOut <- ripSeek(bamPath=bamFiles, cNAME=cNAME,
binSize=binSize, minBinSize = minBinSize,
maxBinSize = maxBinSize, strandType=strandType,
silentMain=TRUE, verbose=FALSE,
reverseComplement=TRUE, genomeBuild="mm9",
uniqueHit = TRUE, assignMultihits = TRUE,
rerunWithDisambiguatedMultihits = TRUE, multicore=multicore)

################ visualization ################

viewRIP(seekOut$RIPGRList$chrX, seekOut$mainSeekOutputRIP$alignGalFiltered,
seekOut$mainSeekOutputCTL$alignGalFiltered, scoreType="eFDR")
}

Index

∗Topic Hidden Markov model
RIPSeeker-package, 2

∗Topic RIP-seq
RIPSeeker-package, 2

∗Topic high-throughput sequencing
analysis

RIPSeeker-package, 2
∗Topic package

RIPSeeker-package, 2
∗Topic

RIPSeeker-package, 2

addDummyProb, 4, 34
addPseudoAlignment, 5
annotatePeakInBatch, 7
annotateRIP, 6, 58

binCount, 4, 9, 22, 69
browserSession, 72, 73
browserView, 72, 73

cdsBy, 16, 17, 62
combineAlignGals, 6, 11, 13, 16, 17, 25, 27,

58, 62
combineRIP, 12
computeLogOdd, 14, 21, 28, 30, 64, 66, 67
computeRPKM, 15, 59, 61
countOverlaps, 13

disambiguateMultihits, 18, 25, 26, 58

empiricalFDR, 20, 67
evalBinSize, 10, 21, 69
exonsBy, 16, 17, 62
export, 23
exportGRanges, 7, 23

findOverlaps, 63
fiveUTRsByTranscript, 16, 17, 62

GAlignments, 26, 58

galp2gal, 16, 24, 26
GenomicRanges, 58
getAlignGal, 11, 18, 19, 24, 25, 25, 31, 32, 58
getAnnotation, 7, 8
getEnrichedGO, 7, 8
GRanges, 6, 13, 23, 28, 30, 55, 62, 65, 66, 72
GRangesList, 58, 59, 72

import, 6, 11, 13, 25–27
intronsByTranscript, 16, 17, 62

legend, 53–55
listDatasets, 6
listFilters, 16, 61
logScoreWithControl, 15, 21, 27, 30, 64, 67
logScoreWithoutControl, 15, 28, 29, 64, 67

mainSeek, 19, 28, 30, 31, 33, 35, 58, 65
mainSeekSingleChrom, 4, 10, 18, 19, 32, 33,

33, 36, 38, 39
makeTxDbFromBiomart, 16, 17, 62
makeTxDbFromUCSC, 16, 17, 62
mclapply, 32, 33

nbh, 19, 34, 36, 37–39, 43, 46, 48, 52
nbh.GRanges, 36, 37, 39, 43, 46, 48, 52
nbh.integer, 36–38, 38
nbh_chk, 40, 50
nbh_em, 32, 34, 35, 39, 40, 41, 44–48, 52, 70
nbh_gen, 44, 56
nbh_init, 39, 43, 45, 48, 52
nbh_vit, 28, 30, 39, 43, 47, 48, 63, 66
nbm_chk, 40, 44, 50
nbm_em, 38, 43, 45, 46, 48, 50, 51

p.adjust, 28, 30, 65, 66
plot, 53–55
plotCoverage, 53, 55
plotStrandedCoverage, 53, 54, 54
pnorm, 28, 30, 66

74

INDEX 75

randindx, 44, 56
RangedSummarizedExperiment, 16, 17
readGAlignmentPairs, 6, 11, 17, 25–27, 62
readGAlignments, 6, 11, 17, 25–27, 62
reduce, 13
ripSeek, 3, 12, 13, 19, 31, 33, 35, 57, 66, 67,

72, 73
RIPSeeker, 16
RIPSeeker (RIPSeeker-package), 2
RIPSeeker-package, 2
rulebaseRIPSeek, 2, 3, 59, 60

scanBamFlag, 26
ScanBamParam, 17, 62
scoreMergedBins, 15, 21, 28, 30, 63, 67
seekRIP, 13, 15, 19–21, 28, 30, 32, 57–59,

63–65, 65, 72
selectBinSize, 10, 19, 22, 34, 57, 67
SeqinfoForUCSCGenome, 31
statdis, 70
summarizeOverlaps, 16, 17, 62

threeUTRsByTranscript, 16, 17, 62
track, 72, 73

useMart, 7, 8, 16, 17, 61, 62

viewRIP, 72

	RIPSeeker-package
	addDummyProb
	addPseudoAlignment
	annotateRIP
	binCount
	combineAlignGals
	combineRIP
	computeLogOdd
	computeRPKM
	disambiguateMultihits
	empiricalFDR
	evalBinSize
	exportGRanges
	galp2gal
	getAlignGal
	logScoreWithControl
	logScoreWithoutControl
	mainSeek
	mainSeekSingleChrom
	nbh
	nbh.GRanges
	nbh.integer
	nbh_chk
	nbh_em
	nbh_gen
	nbh_init
	nbh_vit
	nbm_chk
	nbm_em
	plotCoverage
	plotStrandedCoverage
	randindx
	ripSeek
	rulebaseRIPSeek
	scoreMergedBins
	seekRIP
	selectBinSize
	statdis
	viewRIP
	Index

