
Package ‘OncoSimulR’
April 23, 2016

Type Package

Title Forward Genetic Simulation of Cancer Progresion with Epistasis

Version 2.0.1

Date 2016-04-15

Author Ramon Diaz-Uriarte.

Maintainer Ramon Diaz-Uriarte <rdiaz02@gmail.com>

Description Functions for forward population genetic simulation in
asexual populations, with special focus on cancer progression.
Fitness can be an arbitrary function of genetic interactions between
multiple genes or modules of genes, including epistasis, order
restrictions in mutation accumulation, and order effects. Simulations
use continuous-time models and can include driver and passenger genes
and modules. Also included are functions for simulating random DAGs
of the type found in Oncogenetic Tress, Conjunctive Bayesian Networks,
and other tumor progression models, and for plotting and sampling from
single or multiple realizations of the simulations, including
single-cell sampling, as well as functions for plotting the true
phylogenetic relationships of the clones.

biocViews BiologicalQuestion, SomaticMutation

License GPL (>= 3)

URL https://github.com/rdiaz02/OncoSimul,

https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/

BugReports https://github.com/rdiaz02/OncoSimul/issues

Depends R (>= 3.1.0)

Imports Rcpp (>= 0.11.1), parallel, data.table, graph, Rgraphviz,
gtools, igraph, methods

Suggests BiocStyle, knitr, Oncotree, testthat

LinkingTo Rcpp

VignetteBuilder knitr

NeedsCompilation yes

1

https://github.com/rdiaz02/OncoSimul
https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/
https://github.com/rdiaz02/OncoSimul/issues

2 allFitnessEffects

R topics documented:
allFitnessEffects . 2
evalAllGenotypes . 5
examplePosets . 8
examplesFitnessEffects . 9
mcfLs . 10
oncoSimulIndiv . 11
plot.fitnessEffects . 21
plot.oncosimul . 24
plotClonePhylog . 26
plotPoset . 28
poset . 30
samplePop . 31
simOGraph . 33

Index 35

allFitnessEffects Create fitness effects specification from restrictions, epistasis, and or-
der effects.

Description

Given one or more of a set of poset restrictions, epistatic interactions, order effects, and genes
without interactions, as well as, optionally, a mapping of genes to modules, return the complete
fitness specification.

The output of this function is not intended for user consumption, but as a way of preparing data to
be sent to the C++ code.

Usage

allFitnessEffects(rT = NULL, epistasis = NULL, orderEffects = NULL,
noIntGenes = NULL, geneToModule = NULL, drvNames = NULL, keepInput =
TRUE)

Arguments

rT A restriction table that is an extended version of a poset (see poset). A restric-
tion table is a data frame where each row shows one edge between a parent and
a child. A restriction table contains exactly these columns, in this order:

parent The identifiers of the parent nodes, in a parent-child relationship. There
must be at least on entry with the name "Root".

child The identifiers of the child nodes.
s A numeric vector with the fitness effect that applies if the relationship is sat-

isfied.

allFitnessEffects 3

sh A numeric vector with the fitness effect that applies if the relationship is not
satisfied. This provides a way of explicitly modeling deviatons from the
restrictions in the graph, and is discussed in Diaz-Uriarte, 2015.

typeDep The type of dependency. Three possible types of relationship exist:
AND, monotonic, or CMPN Like in the CBN model, all parent nodes

must be present for a relationship to be satisfied. Specify it as "AND"
or "MN" or "monotone".

OR, semimonotonic, or DMPN A single parent node is enough for a rela-
tionship to be satisfied. Specify it as "OR" or "SM" or "semimonotone".

XOR or XMPN Exactly one parent node must be mutated for a relation-
ship to be satisfied. Specify it as "XOR" or "xmpn" or "XMPN".

In addition, for the nodes that depend only on the root node, you can use
"–" or "-" if you want (though using any of the other three would have the
same effects if a node that connects to root only connects to root).

epistasis A named numeric vector. The names identify the relationship, and the numeric
value is the fitness effect. For the names, each of the genes or modules involved
is separated by a ":". A negative sign denotes the absence of that term.

orderEffects A named numeric vector, as for epistasis. A ">" separates the names of the
genes of modules of a relationship, so that "U > Z" means that the relationship
is satisfied when mutation U has happened before mutation Z.

noIntGenes A numeric vector (optionally named) with the fitness coefficients of genes (only
genes, not modules) that show no interactions.

geneToModule A named character vector that allows to match genes and modules. The names
are the modules, and each of the values is a character vector with the gene names,
separated by a comma, that correspond to a module. Note that modules cannot
share genes. There is no need for modules to contain more than one gene. If you
specify a geneToModule argument, it must necessarily contain "Root".

drvNames The names of genes that are considered drivers. This is only used for: a) de-
ciding when to stop the simulations, in case you use number of drivers as a
simulation stopping criterion (see oncoSimulIndiv); b) for summarization pur-
poses (e.g., how many drivers are mutated); c) in figures. But you need not
specifiy anything if you do not want to, and you can pass an empty vector
(as character(0)). The default is to assume that all genes that are not in the
noIntGenes are drivers.

keepInput If TRUE, whether to keep the original input. This is only useful for human
consumption of the output. It is useful because it is easier to decode, say, the
restriction table from the data frame than from the internal representation. But
if you want, you can set it to FALSE and the object will be a little bit smaller.

Details

This function is used for extremely flexible specification of fitness effects, including posets, XOR
relationships, synthetic mortality and synthetic viability, arbitrary forms of epistatis, arbitrary forms
of order effects, etc. Please, see the vignette for detailed and commented examples.

4 allFitnessEffects

Value

An object of class "fitnessEffects". This is just a list, but it is not intended for human consumption.
The components are:

long.rt The restriction table in "long format", so as to be easy to parse by the C++ code.

long.epistasis Ditto, but for the epistasis specification.

long.orderEffects

Ditto for the order effects.

long.geneNoInt Ditto for the non-interaction genes.

geneModule Similar, for the gene-module correspondence.

graph An igraph object that shows the restrictions, epistasis and order effects, and is
useful for plotting.

drv The numeric identifiers of the drivers. The numbers correspond to the internal
numeric coding of the genes.

rT If keepInput is TRUE, the original restriction table.

epistasis If keepInput is TRUE, the original epistasis vector.

orderEffects If keepInput is TRUE, the original order effects vector.

noIntGenes If keepInput is TRUE, the original noIntGenes.

Note

Please, note that the meaning of the fitness effects in the McFarland model is not the same as in the
original paper; the fitness coefficients are transformed to allow for a simpler fitness function as a
product of terms. This differs with respect to v.1. See the vignette for details.

Author(s)

Ramon Diaz-Uriarte

References

Diaz-Uriarte, R. (2015). Identifying restrictions in the order of accumulation of mutations dur-
ing tumor progression: effects of passengers, evolutionary models, and sampling http://www.
biomedcentral.com/1471-2105/16/41/abstract

McFarland, C.~D. et al. (2013). Impact of deleterious passenger mutations on cancer progression.
Proceedings of the National Academy of Sciences of the United States of America\/, 110(8), 2910–5.

See Also

evalGenotype, oncoSimulIndiv, plot.fitnessEffects

http://www.biomedcentral.com/1471-2105/16/41/abstract
http://www.biomedcentral.com/1471-2105/16/41/abstract

evalAllGenotypes 5

Examples

A simple poset or CBN-like example

cs <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s = 0.1,
sh = -0.9,
typeDep = "MN")

cbn1 <- allFitnessEffects(cs)

plot(cbn1)

A more complex example, that includes a restriction table
order effects, epistasis, genes without interactions, and moduels
p4 <- data.frame(parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"),

child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM", "SM"))

oe <- c("C > F" = -0.1, "H > I" = 0.12)
sm <- c("I:J" = -1)
sv <- c("-K:M" = -.5, "K:-M" = -.5)
epist <- c(sm, sv)

modules <- c("Root" = "Root", "A" = "a1",
"B" = "b1, b2", "C" = "c1",
"D" = "d1, d2", "E" = "e1",
"F" = "f1, f2", "G" = "g1",
"H" = "h1, h2", "I" = "i1",
"J" = "j1, j2", "K" = "k1, k2", "M" = "m1")

set.seed(1) ## for repeatability
noint <- rexp(5, 10)
names(noint) <- paste0("n", 1:5)

fea <- allFitnessEffects(rT = p4, epistasis = epist, orderEffects = oe,
noIntGenes = noint, geneToModule = modules)

plot(fea)

evalAllGenotypes Evaluate fitness of one or all possible genotypes.

Description

Given a fitnessEffects description, obtain the fitness of a single or all genotypes.

6 evalAllGenotypes

Usage

evalAllGenotypes(fitnessEffects, order = TRUE, max = 256, addwt = FALSE,
model = "")

evalGenotype(genotype, fitnessEffects, verbose = FALSE, echo = FALSE,
model = "")

Arguments

genotype (For evalGenotype). A genotype, as a character vector, with genes separated
by "," or ">", or as a numeric vector. Use the same integers or characters used
in the fitnessEffects object. This is a genotype in terms of genes, not modules.
Using "," or ">" makes no difference: the sequence is always taken as the order
in which mutations occurred. Whether order matters or not is encoded in the
fitnessEffects object.

fitnessEffects A fitnessEffects object, as produced by allFitnessEffects.
order (For evalAllGenotypes). Does order matter? If it does, then generate not only

all possible combinations of the genes, but all possible permutations for each
combination.

max (For evalAllGenotypes). By default, no output is shown if the number of
possible genotypes exceeds the max. Increase as needed.

addwt (For evalAllGenotypes). Add the wildtype (no mutations) explicitly?
model Either nothing (the default) or "Bozic". If "Bozic" then the fitness effects con-

tribute to decreasing the Death rate. Otherwise Birth rate is shown (and labeled
as Fitness).

verbose (For evalGenotype). If set to TRUE, print out the individual terms that are
added to 1 (or subtracted from 1, if model is "Bozic").

echo (For evalGenotype). If set to TRUE, show the input genotype and print out
a message with the death rate or fitness value. Useful for some examples, as
shown in the vignette.

Value

For evalGenotype either the value of fitness or (if verbose = TRUE) the value of fitness and its
individual components.

For evalAllGenotypes a data frame with two columns, the Genotype and the Fitness (or Death
Rate, if Bozic).

Note

Fitness is used in a slight abuse of the language. Right now, mutations contribute to the birth rate
for all models except Bozic, where they modify the death rate. The general expression for fitness
is the usual multiplicative one of

∏
(1 + si), where each si refers to the fitness effect of the given

gene. When dealing with death rates, we use
∏
(1− si).

Modules are, of course, taken into account if present (i.e., fitness is specified in terms of modules,
but the genotype is specified in terms of genes).

evalAllGenotypes 7

Author(s)

Ramon Diaz-Uriarte

See Also

allFitnessEffects.

Examples

A three-gene epistasis example
sa <- 0.1
sb <- 0.15
sc <- 0.2
sab <- 0.3
sbc <- -0.25
sabc <- 0.4

sac <- (1 + sa) * (1 + sc) - 1

E3A <- allFitnessEffects(epistasis =
c("A:-B:-C" = sa,

"-A:B:-C" = sb,
"-A:-B:C" = sc,
"A:B:-C" = sab,
"-A:B:C" = sbc,
"A:-B:C" = sac,
"A : B : C" = sabc)

)

evalAllGenotypes(E3A, order = FALSE, addwt = FALSE)
evalAllGenotypes(E3A, order = FALSE, addwt = TRUE, model = "Bozic")

evalGenotype("B, C", E3A, verbose = TRUE)

Order effects and modules
ofe2 <- allFitnessEffects(orderEffects = c("F > D" = -0.3, "D > F" = 0.4),

geneToModule =
c("Root" = "Root",

"F" = "f1, f2, f3",
"D" = "d1, d2"))

evalAllGenotypes(ofe2, max = 325)[1:15,]

Next two are identical
evalGenotype("d1 > d2 > f3", ofe2, verbose = TRUE)
evalGenotype("d1 , d2 , f3", ofe2, verbose = TRUE)

This is different
evalGenotype("f3 , d1 , d2", ofe2, verbose = TRUE)
but identical to this one
evalGenotype("f3 > d1 > d2", ofe2, verbose = TRUE)

8 examplePosets

Restrictions in mutations as a graph. Modules present.

p4 <- data.frame(parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"),
child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM", "SM"))
fp4m <- allFitnessEffects(p4,

geneToModule = c("Root" = "Root", "A" = "a1",
"B" = "b1, b2", "C" = "c1",
"D" = "d1, d2", "E" = "e1",
"F" = "f1, f2", "G" = "g1"))

evalAllGenotypes(fp4m, order = FALSE, max = 1024, addwt = TRUE)[1:15,]

evalGenotype("b1, b2, e1, f2, a1", fp4m, verbose = TRUE)

Of course, this is identical; b1 and b2 are same module
and order is not present here

evalGenotype("a1, b2, e1, f2", fp4m, verbose = TRUE)

evalGenotype("a1 > b2 > e1 > f2", fp4m, verbose = TRUE)

We can use the exact same integer numeric id codes as in the
fitnessEffects geneModule component:

evalGenotype(c(1L, 3L, 7L, 9L), fp4m, verbose = TRUE)

examplePosets Example posets

Description

Some example posets. For simplicity, all the posets are in a single list. You can access each poset
by accessing each element of the list. The first digit or pair of digits denotes the number of nodes.

Poset 1101 is the same as the one in Gerstung et al., 2009 (figure 2A, poset 2). Poset 701 is the
same as the one in Gerstung et al., 2011 (figure 2B, left, the pancreatic cancer poset). Those posets
were entered manually at the command line: see poset.

Usage

data("examplePosets")

examplesFitnessEffects 9

Format

The format is: List of 13 $ p1101: num [1:10, 1:2] 1 1 3 3 3 7 7 8 9 10 ... $ p1102: num [1:9, 1:2]
1 1 3 3 3 7 7 9 10 2 ... $ p1103: num [1:9, 1:2] 1 1 3 3 3 7 7 8 10 2 ... $ p1104: num [1:9, 1:2] 1 1 3
3 7 7 9 2 10 2 ... $ p901 : num [1:8, 1:2] 1 2 4 5 7 8 5 1 2 3 ... $ p902 : num [1:6, 1:2] 1 2 4 5 7 5 2
3 5 6 ... $ p903 : num [1:6, 1:2] 1 2 5 7 8 1 2 3 6 8 ... $ p904 : num [1:6, 1:2] 1 4 5 5 1 7 2 5 8 6 ...
$ p701 : num [1:9, 1:2] 1 1 1 1 2 3 4 4 5 2 ... $ p702 : num [1:6, 1:2] 1 1 1 1 2 4 2 3 4 5 ... $ p703
: num [1:6, 1:2] 1 1 1 1 3 5 2 3 4 5 ... $ p704 : num [1:6, 1:2] 1 1 1 1 4 5 2 3 4 5 ... $ p705 : num
[1:6, 1:2] 1 2 1 1 1 2 2 5 4 6 ...

Source

Gerstung et al., 2009. Quantifying cancer progression with conjunctive Bayesian networks. Bioin-
formatics, 21: 2809–2815.

Gerstung et al., 2011. The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis.
PLoS ONE, 6.

See Also

poset

Examples

data(examplePosets)

Plot all of them
par(mfrow = c(3, 5))

invisible(sapply(names(examplePosets),
function(x) {plotPoset(examplePosets[[x]],

main = x,
box = TRUE)}))

examplesFitnessEffects

Examples of fitness effects

Description

Some examples fitnessEffects objects. This is a collection, in a list, of most of the fitnessEffects
created (using allFitnessEffects) for the vignette. See the vignette for descriptions and refer-
ences.

Usage

data("examplesFitnessEffects")

10 mcfLs

Format

The format is a list of fitnessEffects objects.

See Also

allFitnessEffects

Examples

data(examplesFitnessEffects)

plot(examplesFitnessEffects[["fea"]])

evalAllGenotypes(examplesFitnessEffects[["cbn1"]], order = FALSE)

mcfLs mcfLs simulation from the vignette

Description

Trimmed output from the simulation mcfLs in the vignette. This is a somewhat long run, and we
have stored here the object (after trimming the Genotype matrix) to allow for plotting it.

Usage

data("mcfLs")

Format

An object of class "oncosimul2". A list.

See Also

plot.oncosimul

Examples

data(mcfLs)

plot(mcfLs, addtot = TRUE, lwdClone = 0.9, log = "")
summary(mcfLs)

oncoSimulIndiv 11

oncoSimulIndiv Simulate tumor progression for one or more individuals, optionally
returning just a sample in time.

Description

Simulate tumor progression including possible restrictions in the order of driver mutations. Op-
tionally add passenger mutations. Simulation is done using the BNB algorithm of Mather et al.,
2012.

Usage

oncoSimulIndiv(fp, model = "Exp", numPassengers = 30, mu = 1e-6,
detectionSize = 1e8, detectionDrivers = 4,
sampleEvery = ifelse(model %in% c("Bozic", "Exp"), 1,

0.025),
initSize = 500, s = 0.1, sh = -1,
K = initSize/(exp(1) - 1), keepEvery = sampleEvery,
minDetectDrvCloneSz = "auto",
extraTime = 0,
finalTime = 0.25 * 25 * 365, onlyCancer = TRUE,
keepPhylog = FALSE,
max.memory = 2000, max.wall.time = 200,
max.num.tries = 500,
errorHitWallTime = TRUE,
errorHitMaxTries = TRUE,
verbosity = 0,
initMutant = NULL,
seed = NULL)

oncoSimulPop(Nindiv, fp, model = "Exp", numPassengers = 30, mu = 1e-6,
detectionSize = 1e8, detectionDrivers = 4,
sampleEvery = ifelse(model %in% c("Bozic", "Exp"), 1,

0.025),
initSize = 500, s = 0.1, sh = -1,
K = initSize/(exp(1) - 1), keepEvery = sampleEvery,
minDetectDrvCloneSz = "auto",
extraTime = 0,
finalTime = 0.25 * 25 * 365, onlyCancer = TRUE,
keepPhylog = FALSE,
max.memory = 2000, max.wall.time = 200,
max.num.tries = 500,
errorHitWallTime = TRUE,
errorHitMaxTries = TRUE,
initMutant = NULL,
verbosity = 0,
mc.cores = detectCores(),

12 oncoSimulIndiv

seed = "auto")

oncoSimulSample(Nindiv,
fp,
model = "Exp",
numPassengers = 0,
mu = 1e-6,
detectionSize = round(runif(Nindiv, 1e5, 1e8)),

detectionDrivers = {
if(inherits(fp, "fitnessEffects")) {

if(length(fp$drv)) {
nd <- (2: round(0.75 * length(fp$drv)))

} else {
nd <- 0

}
} else {

nd <- (2 : round(0.75 * max(fp)))
}
if (length(nd) == 1)

nd <- c(nd, nd)
sample(nd, Nindiv,

replace = TRUE)
},

sampleEvery = ifelse(model %in% c("Bozic", "Exp"), 1,
0.025),

initSize = 500,
s = 0.1,
sh = -1,
K = initSize/(exp(1) - 1),
minDetectDrvCloneSz = "auto",
extraTime = 0,
finalTime = 0.25 * 25 * 365,
onlyCancer = TRUE, keepPhylog = FALSE,
max.memory = 2000,
max.wall.time.total = 600,
max.num.tries.total = 500 * Nindiv,
typeSample = "whole",
thresholdWhole = 0.5,
initMutant = NULL,
verbosity = 1,
seed = "auto")

Arguments

Nindiv Number of individuals or number of different trajectories to simulate.

oncoSimulIndiv 13

fp Either a poset that specifies the order restrictions (see poset if you want to use
the specification as in v.1. Otherwise, a fitnessEffects object (see allFitnessEffects).
Other arguments below (s, sh) make sense only if you use a poset, as they are
included in the fitnessEffects object.

model One of "Bozic", "Exp", "McFarlandLog" (the last one can be abbreviated to
"McFL").

numPassengers The number of passenger genes.The total number of genes (drivers plus passen-
gers) must be smaller than 64.
All driver genes should be included in the poset (even if they depend on no one
and no one depends on them), and will be numbered from 1 to the total number
of driver genes. Thus, passenger genes will be numbered from (number of driver
genes + 1):(number of drivers + number of passengers).

mu Mutation rate.

detectionSize What is the minimal number of cells for cancer to be detected. For oncoSimulSample
this can be a vector.

detectionDrivers

The minimal number of drivers present in any clone for cancer to be detected.
For oncoSimulSample this can be a vector. The default in this case is a vector
of drivers from a uniform between 2 and 0.75 the total number of drivers

sampleEvery How often the whole population is sampled. This is not the same as the interval
between successive samples that keep stored (for that, see keepEvery).
For very fast growing clones, you might need to have a small value here to min-
imize possible numerical problems (such as huge increase in population size be-
tween two successive samples that can then lead to problems for random number
generators). Likewise, for models with density dependence (such as McF) this
value should be very small.

initSize Initial population size.

s Selection coefficient for drivers. Only relevant if using a poset as this is included
in the fitnessEffects object.

sh Selection coefficient for drivers with restrictions not satisfied. A value of 0
means there are no penalties for a driver appearing in a clone when its restric-
tions are not satisfied.
To specify "sh=Inf" (in Diaz-Uriarte, 2014) use sh = -1.
Only relevant if using a poset as this is included in the fitnessEffects object.

K Initial population equilibrium size in the McFarland models.

keepEvery Time interval between successive whole population samples that are actually
stored. This must be larger or equal to sampleEvery. If keepEvery is not a mul-
tiple integer of sampleEvery, the keepEvery in use will be the smallest multiple
integer of keepEvery larger than the specified keepEvery.
If you want nice plots, set sampleEvery and keepEvery to small values (say, 1
or 0.5). Otherwise, you can use a sampleEvery of 1 but a keepEvery of 15, so
that the return objects are not huge.

minDetectDrvCloneSz

A value of 0 or larger than 0 (by default equal to initSize in the McFarland
model). If larger than 0, when checking if we are done with a simulation, we

14 oncoSimulIndiv

verify that the sum of the population sizes of all clones that have a number of
mutated drivers larger or equal to detectionDrivers is larger or equal to this
minDetectDrvCloneSz.
The reason for this parameter is to ensure that, say, a clone with a certain number
of drivers that would cause the simulation to end has not just appeared and is
present in only one individual that might then immediately go extinct. This can
be relevant in secenarios such as the McFarland model.
See also extraTime.

extraTime A value larger than zero waits those many additional time periods before exiting
after having reached the exit condition (population size, number of drivers).
The reason for this setting is to prevent the McFL models from always exiting at
a time when one clone is increasing its size quickly (see minDetectDrvCloneSz).
By setting an extraTime larger than 0, we can sample at points when we are at
the plateau.

finalTime What is the maximum number of time units that the simulation can run.

onlyCancer Return only simulations that reach cancer?
If set to TRUE, only simulations that satisfy the detectionDrivers or the
detectionSize requirements will be returned: the simulation will be repeated,
within the limits set by max.num.tries and max.wall.time (and, for oncoSimulSample
also max.num.tries.total and max.wall.time.total), until one which meets
the detectionDrivers or detectionSize is obtained. Otherwise, the simula-
tion is returned regardless of final population size or number of drivers in any
clone and this includes simulations where the population goes extinct.

keepPhylog If TRUE, keep track of when and from which clone each clone is created. See
also plotClonePhylog.

initMutant For v.2, a string with the mutations of the initial mutant, if any. This is the same
format as for evalGenotype. For v.1, the single mutation of the initial clone for
the simulations. The default (if you pass nothing) is to start the simulation from
the wildtype genotype with nothing mutated.

max.num.tries Only applies when onlyCancer = TRUE. What is the maximum number of
times, for an individual simulation, we can repeat the simulation for it to reach
cancer? There are certain parameter settings where reaching cancer is extremely
unlikely and you might not want to run forever in those cases.

max.num.tries.total

Only applies when onlyCancer = TRUE and for oncoSimulSample. What is
the maximum number of times, over all simulations for all individuals in a pop-
ulation sample, that we can repeat the simulations so that cancer is reached for
all individuals? The idea is to set a limit on the average minimal probability of
reaching cancer for a set of simulations to be accepted.

max.wall.time Maximum wall time for each individual simulation run. If the simulation is not
done in this time, it is aborted.

max.wall.time.total

Maximum wall time for all the simulations (when using oncoSimulSample),
in seconds. If the simulation is not completed in this time, it is aborted. To
prevent problems from a single individual simulation going wild, this limit is
also enforced per simulation (so the run can be aborted directly from C++).

oncoSimulIndiv 15

errorHitMaxTries

If TRUE (the default) a simulation that reaches the maximum number of repeti-
tions allowed is considered not to have succesfully finished and, thus, an error,
and no output from it will be reported. This is often what you want.
See Details.

errorHitWallTime

If TRUE (the default) a simulation that reaches the maximum wall time is con-
sidered not to have succesfully finished and, thus, an error, and no output from
it will be reported. This is often what you want.
See Details.

max.memory The largest size (in MB) of the matrix of Populations by Time. If it creating it
would use more than this amount of memory, it is not created. This prevents you
from accidentally passing parameters that will return an enormous object.

verbosity If 0, run as silently as possible. Otherwise, increasing values of verbosity pro-
vide progressively more information about intermediate steps, possible numeri-
cal notes/warnings from the C++ code, etc.

typeSample "singleCell" (or "single") for single cell sampling, where the probability of sam-
pling a cell (a clone) is directly proportional to its population size. "wholeTu-
mor" (or "whole") for whole tumor sampling (i.e., this is similar to a biopsy
being the entire tumor). See samplePop.

thresholdWhole In whole tumor sampling, whether a gene is detected as mutated depends on
thresholdWhole: a gene is considered mutated if it is altered in at least thresh-
oldWhole proportion of the cells in that individual. See samplePop.

mc.cores Number of cores to use when simulating more than one individual (i.e., when
calling oncoSimulPop).

seed The seed for the C++ PRNG. You can pass a value. If you set it to NULL, then
a seed will be generated in R and passed to C++. If you set it to "auto", then
if you are using v.1, the behavior is the same as if you set it to NULL (a seed
will be generated in R and passed to C++) but if you are using v.2, a random
seed will be produced in C++. need reproducibility, either pass a value or set
it to NULL (setting it to NULL will make the C++ seed reproducible if you
use the same seed in R via set.seed). However, even using the same value of
seed is unlikely to give the exact same results between platforms and compilers.
Moreover, note that the defaults for seed are not the same in oncoSimulIndiv,
oncoSimulPop and oncoSimulSample.

Details

The basic simulation algorithm implemented is the BNB one of Mather et al., 2012, where I have
added modifications to fitness based on the restrictions in the order of mutations.

Full details about the algorithm are provided in Mather et al., 2012. The evolutionary models,
including references, and the rest of the parameters are explained in Diaz-Uriarte, 2014, especially
in the Supplementary Material. The model called "Bozic" is based on Bozic et al., 2010, and the
model called "McFarland" in McFarland et al., 2013.

oncoSimulPop simply calls oncoSimulIndiv multiple times. When run on POSIX systems, it can
use multiple cores (via mclapply).

16 oncoSimulIndiv

The summary methods for these classes return some of the return values (see next) as a one-row
(for class oncosimul) or multiple row (for class oncosimulpop) data frame. The print methods for
these classes simply print the summary.

Changing options errorHitMaxTries and errorHitWallTime can be useful when conducting
many simulations, as in the call to oncoSimulPop: setting them to TRUE means nothing is recorded
for those simulations where ending conditions are not reached but setting them to FALSE would
allow you to record the output; this would potentially result in a mixture where some simulations
would not have reached the ending condition, but this might sometimes be what you want. Note,
however, that oncoSimulSample always has both them to TRUE, as it could not be otherwise.

GenotyesWDistinctOrderEff provides the information about order effects that is missing from
Genotyoes. When there are order effects, the Genotypes matrix can contain genotypes that are
not distinguishable. Suppose there are two genes, the first and the second. In the Genotype
output you can get two columns where there is a 1 in both genes: those two columns corre-
spond to the two possible orders (first gene mutated first, or first gene mutated after the second).
GenotypesWDistinctOrderEff disambiguates this. The same is done by GenotypeLabels; this is
easier to decode for a human (a string of gene labels) but a little bit harder to parse automatically.

Value

For oncoSimulIndiv a list, of class "oncosimul", with the following components:

pops.by.time A matrix of the population sizes of the clones, with clones in columns and time
in row. Not all clones are shown here, only those that were present in at least on
of the keepEvery samples.

NumClones Total number of clones in the above matrix. This is not the total number of
distinct clones that have appeared over all simulations (which is likely to be
larger or much larger).

TotalPopSize Total population size at the end.

Genotypes A matrix of genotypes. For each of the clones in the pops.by.time matrix, its
genotype, with a 0 if the gene is not mutated and a 1 if it is mutated.

MaxNumDrivers The largest number of mutated driver genes ever seen in the simulation in any
clone.

MaxDriversLast The largest number of mutated drivers in any clone at the end of the simulation.
NumDriversLargestPop

The number of mutated driver genes in the clone with largest population size.

LargestClone Population size of the clone with largest number of population size.
PropLargestPopLast

Ratio of LargestClone/TotalPopSize

FinalTime The time (in time units) at the end of the simulation.

NumIter The number of iterations of the BNB algorithm.

HittedWallTime TRUE if we reached the limit of max.wall.time. FALSE otherwise.
TotalPresentDrivers

The total number of mutated driver genes, whether or not in the same clone. The
number of elements in OccurringDrivers, below.

oncoSimulIndiv 17

CountByDriver A vector of length number of drivers, with the count of the number of clones
that have that driver mutated.

OccurringDrivers

The actual number of drivers mutated.

PerSampleStats A 5 column matrix with a row for each sampling period. The columns are: total
population size, population size of the largest clone, the ratio of the two, the
largest number of drivers in any clone, and the number of drivers in the clone
with the largest population size.

other A list that contains statistics for an estimate of the simulation error when us-
ing the McFarland model as well as other statistics. For the McFarland model,
the relevant value is errorMF, which is -99 unless in the McFarland model. For
the McFarland model it is the largest difference of successive death rates. The
entries names minDMratio and minBMratio are the smallest ratio, over all sim-
ulations, of death rate to mutation rate or birth rate to mutation rate. The BNB
algorithm thrives when those are large.

For oncoSimulPop a list of length Nindiv, and of class "oncosimulpop", where each element of
the list is itself a list, of class oncosimul, with components as described above.

In v.2, the output is of both class "oncosimul" and "oncosimul2". The oncoSimulIndiv return object
differs in

GenotypesWDistinctOrderEff

A list of vectors, where each vector corresponds to a genotype in the Genotypes,
showing (where it matters) the order of mutations. Each vector shows the geno-
types, with the numeric codes, showing explicitly the order when it matters. So
if you have genes 1, 2, 7 for which order relationships are given, and genes 3, 4,
5, 6 for which other interactions exist, any mutations in 1, 2, 7 are shown first,
and in the order they occurred, before showing the rest of the mutations. See
details.

GenotypesLabels

The genotypes, as character vectors with the original labels provided (i.e., not
the integer codes). As before, mutated genes, for those where order matters,
come first, and are separated by the rest by a "_". See details.

OccurringDrivers

This is the same as in v.1, but we use the labels, not the numeric id codes. Of
course, if you entered integers as labels for the genes, you will see numbers
(however, as a character string).

Note

Please, note that the meaning of the fitness effects in the McFarland model is not the same as in the
original paper; the fitness coefficients are transformed to allow for a simpler fitness function as a
product of terms. This differs with respect to v.1. See the vignette for details.

Author(s)

Ramon Diaz-Uriarte

18 oncoSimulIndiv

References

Bozic, I., et al., (2010). Accumulation of driver and passenger mutations during tumor progression.
Proceedings of the National Academy of Sciences of the United States of America\/, 107, 18545–
18550.

Diaz-Uriarte, R. (2015). Identifying restrictions in the order of accumulation of mutations dur-
ing tumor progression: effects of passengers, evolutionary models, and sampling http://www.
biomedcentral.com/1471-2105/16/41/abstract

Gerstung et al., 2011. The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis.
PLoS ONE, 6.

McFarland, C.~D. et al. (2013). Impact of deleterious passenger mutations on cancer progression.
Proceedings of the National Academy of Sciences of the United States of America\/, 110(8), 2910–5.

Mather, W.~H., Hasty, J., and Tsimring, L.~S. (2012). Fast stochastic algorithm for simulating
evolutionary population dynamics. Bioinformatics (Oxford, England)\/, 28(9), 1230–1238.

See Also

plot.oncosimul, examplePosets, samplePop, allFitnessEffects

Examples

#################################
#####
Examples using v.1
#####
#################################

use poset p701
data(examplePosets)
p701 <- examplePosets[["p701"]]

Bozic Model

b1 <- oncoSimulIndiv(p701)
summary(b1)

plot(b1, addtot = TRUE)

McFarland; use a small sampleEvery, but also a reasonable
keepEvery.
We also modify mutation rate to values similar to those in the
original paper.
Note that detectionSize will play no role
finalTime is large, since this is a slower process
initSize is set to 4000 so the default K is larger and we are likely
to reach cancer. Alternatively, set K = 2000.

m1 <- oncoSimulIndiv(p701,
model = "McFL",

http://www.biomedcentral.com/1471-2105/16/41/abstract
http://www.biomedcentral.com/1471-2105/16/41/abstract

oncoSimulIndiv 19

mu = 5e-7,
initSize = 4000,
sampleEvery = 0.025,
finalTime = 15000,
keepEvery = 10,
onlyCancer = FALSE)

plot(m1, addtot = TRUE, log = "")

Simulating 4 individual trajectories
(I set mc.cores = 2 to comply with --as-cran checks, but you
should either use a reasonable number for your hardware or
leave it at its default value).

p1 <- oncoSimulPop(4, p701,
keepEvery = 10,
mc.cores = 2)

summary(p1)
samplePop(p1)

p2 <- oncoSimulSample(4, p701)

###
######
Examples using v.2:
######
###

A model similar to the one in McFarland. We use 2070 genes.

set.seed(456)
nd <- 70
np <- 2000
s <- 0.1
sp <- 1e-3
spp <- -sp/(1 + sp)
mcf1 <- allFitnessEffects(noIntGenes = c(rep(s, nd), rep(spp, np)),

drv = seq.int(nd))
mcf1s <- oncoSimulIndiv(mcf1,

model = "McFL",
mu = 1e-7,
detectionSize = 1e8,
detectionDrivers = 100,
sampleEvery = 0.02,
keepEvery = 2,
initSize = 2000,
finalTime = 1000,

20 oncoSimulIndiv

onlyCancer = FALSE)
plot(mcf1s, addtot = TRUE, lwdClone = 0.6, log = "")
summary(mcf1s)
plot(mcf1s)

Order effects with modules, and 5 genes without interactions
with fitness effects from an exponential distribution

oi <- allFitnessEffects(orderEffects =
c("F > D" = -0.3, "D > F" = 0.4),
noIntGenes = rexp(5, 10),

geneToModule =
c("Root" = "Root",
"F" = "f1, f2, f3",
"D" = "d1, d2"))

oiI1 <- oncoSimulIndiv(oi, model = "Exp")
oiI1$GenotypesLabels
oiI1 ## note the order and separation by "_"

oiP1 <- oncoSimulPop(2, oi,
keepEvery = 10,
mc.cores = 2)

summary(oiP1)

Even if order exists, this cannot reflect it;
G1 to G10 are d1, d2, f1..,f3, and the 5 genes without
interaction
samplePop(oiP1)

oiS1 <- oncoSimulSample(2, oi)

The output contains only the summary of the runs AND
the sample:
oiS1

And their sizes do differ
object.size(oiS1)
object.size(oiP1)

######## Using a poset for pancreatic cancer from Gerstung et al.
(s and sh are made up for the example; only the structure
and names come from Gerstung et al.)

pancr <- allFitnessEffects(data.frame(parent = c("Root", rep("KRAS", 4), "SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMAD4", "CDNK2A",

plot.fitnessEffects 21

"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s = 0.05,
sh = -0.3,
typeDep = "MN"))

plot(pancr)

Use an exponential growth model

pancr1 <- oncoSimulIndiv(pancr, model = "Exp")
pancr1
summary(pancr1)
plot(pancr1)
pancr1$GenotypesLabels

Pop and Sample
pancrPop <- oncoSimulPop(4, pancr,

keepEvery = 10,
mc.cores = 2)

summary(pancrPop)
pancrSPop <- samplePop(pancrPop)
pancrSPop

pancrSamp <- oncoSimulSample(2, pancr)
pancrSamp

plot.fitnessEffects Plot fitnessEffects objects.

Description

Plot the restriction table/graph of restrictions, the epistasis, and the order effects in a fitnessEffects
object.

Usage

S3 method for class 'fitnessEffects'
plot(x, type = "graphNEL", layout = NULL,
expandModules = FALSE, autofit = FALSE,
scale_char = ifelse(type == "graphNEL", 1/10, 5),
return_g = FALSE, ...)

Arguments

x A fitnessEffects object, as produced by allFitnessEffects.

22 plot.fitnessEffects

type Whether you want a "graphNEL" or an "igraph" graph.

layout For "igraph", the layout. For example, if you know you really have only a tree
you might want to use layout.reingold.tilford. Note that there is very
limited support for passing options, etc. In most cases, it is either the default or
the layout.reingold.tilford.

expandModules If there are modules with multiple genes, if you set this to TRUE modules will
be replaced by their genes.

autofit If TRUE, we try to fit the edges to the labels. This is a very experimental feature,
likely to be not very robust.

scale_char If using autofit = TRUE, the scaling factor for the size of the rectangles as a
function of the number of characters. You have to play with this because the
best value can depend on a number of things.

return_g It TRUE, the graph object (graphNEL or igrap) is returned.

... Other arguments passed to plot. Not used for now.

Value

A plot.

Order and epistatic relationships have orange edges. OR (semimonotone) relationships blue, and
XOR red. All others have black edges (so AND and unique edges from root). Epistatic rela-
tionships, being symmetrical, have no arrows between nodes and have a dotted line type. Order
relationships have an arrow from the earlier to the later event and have a different dotted line (lty 3).

If return_g is TRUE, you are returned also the graph object (igraph or graphNEL) so that you can
manipulate it further.

Note

The purpose of the plot is to get a quick idea of the relationships. Note that three-way (or higher
order) epistatic relationships cannot be shown as such (we would show all possible pairs, but that is
not quite the same thing). Likewise, there is no reasonable way to convey the pressence of a "-" in
the epistatic relationship.

Genes without interactions are not shown.

Author(s)

Ramon Diaz-Uriarte

See Also

allFitnessEffects

Examples

cs <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s = 0.1,

plot.fitnessEffects 23

sh = -0.9,
typeDep = "MN")

cbn1 <- allFitnessEffects(cs)
plot(cbn1, "igraph")

library(igraph) ## to make layouts available
plot(cbn1, "igraph", layout = layout.reingold.tilford)

A DAG with the three types of relationships
p3 <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c", "f"),

child = c("a", "b", "d", "e", "c", "c", "f", "f", "g", "g"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM", "SM"))
fp3 <- allFitnessEffects(p3)

plot(fp3)

plot(fp3, "igraph", layout = layout.reingold.tilford)

A more complex example, that includes a restriction table
order effects, epistasis, genes without interactions, and moduels
p4 <- data.frame(parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"),

child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM", "SM"))

oe <- c("C > F" = -0.1, "H > I" = 0.12)
sm <- c("I:J" = -1)
sv <- c("-K:M" = -.5, "K:-M" = -.5)
epist <- c(sm, sv)

modules <- c("Root" = "Root", "A" = "a1",
"B" = "b1, b2", "C" = "c1",
"D" = "d1, d2", "E" = "e1",
"F" = "f1, f2", "G" = "g1",
"H" = "h1, h2", "I" = "i1",
"J" = "j1, j2", "K" = "k1, k2", "M" = "m1")

noint <- rexp(5, 10)
names(noint) <- paste0("n", 1:5)

fea <- allFitnessEffects(rT = p4, epistasis = epist, orderEffects = oe,
noIntGenes = noint, geneToModule = modules)

plot(fea)

24 plot.oncosimul

plot(fea, expandModules = TRUE)
plot(fea, type = "igraph")

plot.oncosimul Plot simulated tumor progression data.

Description

Plots data generated from the simulations, either for a single individual or for a population of indi-
viduals, with time units in the x axis and nubmer of cells in the y axis. By default, all clones with
the same number of drivers are plotted using the same colour (but different line types), and clones
with different number of drivers are plotted in different colours.

Usage

S3 method for class 'oncosimul'
plot(x, col = c(8, "orange", 6:1), log = "y",

ltyClone = 2:6, lwdClone = 0.9,
ltyDrivers = 1, lwdDrivers = 3,
xlab = "Time units",
ylab = "Number of cells", plotClones = TRUE,
plotDrivers = TRUE, addtot = FALSE,
addtotlwd = 0.5, yl = NULL, thinData = FALSE,
thinData.keep = 0.1, thinData.min = 2,
plotDiversity = FALSE, ...)

S3 method for class 'oncosimulpop'
plot(x, ask = TRUE, col = c(8, "orange", 6:1),

log = "y",
ltyClone = 2:6, lwdClone = 0.9,
ltyDrivers = 1, lwdDrivers = 3,
xlab = "Time units",
ylab = "Number of cells", plotClones = TRUE,
plotDrivers = TRUE, addtot = FALSE,
addtotlwd = 0.5, yl = NULL, thinData = FALSE,
thinData.keep = 0.1, thinData.min = 2,
plotDiversity = FALSE, ...)

Arguments

x An object of class oncosimul (for plot.oncosimul) or oncosimulpop (for
plot.oncosimulpop).

plot.oncosimul 25

ask Same meaning as in par.

col Colour of the lines, where each type of clone (where type is defined by number
of drivers) has a different color. If there are many drivers, col is recycled, so you
might want to increase the number of possible colours.

log See log in plot.default. The default, "y", will make the y axis logarithmic.

ltyClone Line type for each clone. Recycled as needed. You probably do not want to use
lty=1 for any clone, to differentiate from the clone type, unless you change the
setting for ltyDrivers.

lwdClone Line width for clones.

ltyDrivers Line type for the driver type.

lwdDrivers Line width for the driver type.

xlab Same as xlab in plot.default.

ylab Same as ylab in plot.default.

plotClones Should clones be plotted?

plotDrivers Should clone types (which are defined by number of drivers), be plotted?

addtot If TRUE, add a line with the total populatino size.

addtotlwd Line width for total population size.

yl If non NULL, limits of the y axis. Same as in plot.default. If NULL, the
limits are calculated automatically.

thinData If TRUE, the data plotted is a subset of the original data. The original data are
"thinned" in such a way that the origin of each clone is not among the non-shown
data (i.e., so that we can see when each clone/driver originates).
Thining is done to reduce the plot size and to speed up plotting..

thinData.keep The fraction of the data to keep (actually, a lower bound on the fraction of data
to keep).

thinData.min Any time point for which a clone has a population size < thinData.min will be
kept (i.e., will not be removed from) in the data.

plotDiversity If TRUE, we also show, on top of the main figure, Shannon’s diversity index
(and we considers as distinct those genotypes with different order of mutations
when order matters).

... Other arguments passed to plots. For instance, main.

Author(s)

Ramon Diaz-Uriarte

See Also

oncoSimulIndiv

26 plotClonePhylog

Examples

data(examplePosets)
p701 <- examplePosets[["p701"]]

Simulate and plot a single individual, including showing
Shannon's diversity index
b1 <- oncoSimulIndiv(p701)
plot(b1, addtot = TRUE, plotDiversity = TRUE)

simulate and plot 2 individuals
(I set mc.cores = 2 to comply with --as-cran checks, but you
should either use a reasonable number for your hardware or
leave it at its default value).

p1 <- oncoSimulPop(2, p701, mc.cores = 2)

par(mfrow = c(1, 2))
plot(p1, ask = FALSE)

plotClonePhylog Plot a phylogeny of the clones.

Description

Plot a phylogeny of the clones, controlling which clones are displayed, and whether to shown num-
ber of times of appearance, and time of first appearance of a clone.

Usage

plotClonePhylog(x, N = 1, t ="last", timeEvents = FALSE,
keepEvents = FALSE, fixOverlap = TRUE,
returnGraph = FALSE, ...)

Arguments

x The output from a simulation, as obtained from oncoSimulIndiv, oncoSimulPop,
or oncoSimulSample (see oncoSimulIndiv). This must be from v.2 and for-
ward (no phylogenetic information is stored for earlier objects).

N Show in the plot all clones that have a population size of at least N at time time
and the parents of those clones (parents are shown regardless of population size
—i.e., you can see extinct parents). If you want to show everything that ever
appeared, set N = 0.

t The time at which N should be satisfied. This can either be the string "last",
meaning the last time of the simulation, or a range of two values. In the sec-
ond case, all clones with population size of at least N in at least one time point
between time[1] and time[2] will be shown (togheter with their parents).

plotClonePhylog 27

timeEvents If TRUE, the vertical position of the nodes in the plot will be proportional to
their time of first appearance.

keepEvents If TRUE, the graph will show all the birth events. Thus, the number of arrows
shows the number of times a clone give rise to another. For large graphs with
many events, this slows the graph considerably.

fixOverlap When using timeEvents = TRUE nodes can overlap (as we modify their ver-
tical location after igraph has done the initial layout). This attempts to fix that
problem by randomly relocating, along the X axis, the nodes that have the same
X value.

returnGraph If TRUE, the igraph object is returned. You can use this to plot the object how-
ever you want or obtain the adjacency matrix.

... Additional arguments. Currently not used..

Value

A plot is produced. If returnGraph the igraph object is returned.

Note

If you want to obtain the adjacency matrix, this is trivial: just set returnGraph = TRUE and use
get.adjacency. See an example below.

Author(s)

Ramon Diaz-Uriarte

See Also

oncoSimulIndiv

Examples

data(examplesFitnessEffects)
tmp <- oncoSimulIndiv(examplesFitnessEffects[["o3"]],

model = "McFL",
mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.025,
max.num.tries = 10,
keepEvery = 5,
initSize = 2000,
finalTime = 3000,
onlyCancer = FALSE,
keepPhylog = TRUE)

Show only those with N > 10 at end
plotClonePhylog(tmp, N = 10)

28 plotPoset

Show only those with N > 1 between times 5 and 1000
plotClonePhylog(tmp, N = 1, t = c(5, 1000))

Show everything, even if teminal nodes are extinct
plotClonePhylog(tmp, N = 0)

Show time when first appeared
plotClonePhylog(tmp, N = 10, timeEvents = TRUE)

Not run:
Show each event
This can take a few seconds
plotClonePhylog(tmp, N = 10, keepEvents = TRUE)

End(Not run)

Adjacency matrix
require(igraph)
get.adjacency(plotClonePhylog(tmp, N = 10, returnGraph = TRUE))

plotPoset Plot a poset.

Description

Plot a poset. Optionally add a root and change names of nodes.

Usage

plotPoset(x, names = NULL, addroot = FALSE, box = FALSE, ...)

Arguments

x A poset. A matrix with two columns where, in each row, the first column is
the ancestor and the second the descendant. Note that there might be multiple
rows with the same ancestor, and multiple rows with the same descendant. See
poset.

names If not NULL, a vector of names for the nodes, with the same length as the total
number of nodes in a poset (which need not be the same as the number of rows;
see poset). If addroot = TRUE, then 1 + the number of nodes in the poset.

addroot Add a "Root" node to the graph?

box Should the graph be placed inside a box?

... Additional arguments to plot (actually, plot.graphNEL in the Rgraphviz pack-
age).

plotPoset 29

Details

The poset is converted to a graphNEL object.

Value

A plot is produced.

Author(s)

Ramon Diaz-Uriarte

See Also

examplePosets, poset

Examples

data(examplePosets)
plotPoset(examplePosets[["p1101"]])

If you will be using that poset a lot, maybe simpler if

poset701 <- examplePosets[["p701"]]
plotPoset(poset701, addroot = TRUE)

Compare to Pancreatic cancer figure in Gerstung et al., 2011

plotPoset(poset701,
names = c("KRAS", "SMAD4", "CDNK2A", "TP53",

"MLL3","PXDN", "TGFBR2"))

If you want to show Root explicitly do

plotPoset(poset701, addroot = TRUE,
names = c("Root", "KRAS", "SMAD4", "CDNK2A", "TP53",

"MLL3","PXDN", "TGFBR2"))

Of course, names are in the order of nodes, so KRAS is for node 1,
etc, but the order of entries in the poset does not matter:

poset701b <- poset701[nrow(poset701):1,]

plotPoset(poset701b,
names = c("KRAS", "SMAD4", "CDNK2A", "TP53",

"MLL3","PXDN", "TGFBR2"))

30 poset

poset Poset

Description

Poset: explanation.

Arguments

x The poset. See details.

Details

A poset is a two column matrix. In each row, the first column is the ancestor (or the restriction)
and the second column the descendant (or the node that depends on the restriction). Each node is
identified by a positive integer. The graph includes all nodes with integers between 1 and the largest
integer in the poset.

Each node can be necessary for several nodes: in this case, the same node would appear in the first
column in several rows.

A node can depend on two or more nodes (conjunctions): in this case, the same node would appear
in the second column in several rows.

There can be nodes that do not depend on anything (except the Root node) and on which no other
nodes depend. The simplest and safest way to deal with all possible cases, including these cases,
is to have all nodes with at least one entry in the poset, and nodes that depend on no one, and on
which no one depends should be placed on the second column (with a 0 on the first column).

Alternatively, any node not named explicitly in the poset, but with a number smaller than the largest
number in the poset, is taken to be a node that depends on no one and on which no one depends.
See examples below.

This specification of restrictions is for version 1. See allFitnessEffects for a much more flexible
one for version 2. Both can be used with oncoSimulIndiv.

Author(s)

Ramon Diaz-Uriarte

References

Posets and similar structures appear in several places. The following two papers use them exten-
sively.

Gerstung et al., 2009. Quantifying cancer progression with conjunctive Bayesian networks. Bioin-
formatics, 21: 2809–2815.

Gerstung et al., 2011. The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis.
PLoS ONE, 6.

samplePop 31

See Also

examplePosets, plotPoset, oncoSimulIndiv

Examples

Node 2 and 3 depend on 1, and 4 depends on no one
p1 <- cbind(c(1L, 1L, 0L), c(2L, 3L, 4L))
plotPoset(p1, addroot = TRUE)

Node 2 and 3 depend on 1, and 4 to 7 depend on no one.
We do not have nodes 4 to 6 explicitly in the poset.
p2 <- cbind(c(1L, 1L, 0L), c(2L, 3L, 7L))
plotPoset(p2, addroot = TRUE)

But this is arguably cleaner
p3 <- cbind(c(1L, 1L, rep(0L, 4)), c(2L, 3L, 4:7))
plotPoset(p3, addroot = TRUE)

A simple way to create a poset where no gene (in a set of 15) depends
on any other.

p4 <- cbind(0L, 15L)
plotPoset(p4, addroot = TRUE)

Specifying the pancreatic cancer poset in Gerstung et al., 2011
(their figure 2B, left). We use numbers, but for nicer plotting we
will use names: KRAS is 1, SMAD4 is 2, etc.

pancreaticCancerPoset <- cbind(c(1, 1, 1, 1, 2, 3, 4, 4, 5),
c(2, 3, 4, 5, 6, 6, 6, 7, 7))

storage.mode(pancreaticCancerPoset) <- "integer"

plotPoset(pancreaticCancerPoset,
names = c("KRAS", "SMAD4", "CDNK2A", "TP53",

"MLL3","PXDN", "TGFBR2"))

Specifying poset 2 in Figure 2A of Gerstung et al., 2009:

poset2 <- cbind(c(1, 1, 3, 3, 3, 7, 7, 8, 9, 10),
c(2, 3, 4, 5, 6, 8, 9, 10, 10, 11))

storage.mode(poset2) <- "integer"
plotPoset(poset2)

samplePop Obtain a sample from a population of simulations.

32 samplePop

Description

Obtain a sample (a matrix of individuals/samples by genes or, equivalently, a vector of "genotypes")
from an oncosimulpop object (i.e., a simulation of multiple individuals) or a single oncosimul ob-
ject. Sampling schemes include whole tumor and single cell sampling, and sampling at the end of
the tumor progression or during the progression of the disease.

Usage

samplePop(x, timeSample = "last", typeSample = "whole",
thresholdWhole = 0.5, geneNames = NULL)

Arguments

x An object of class oncosimulpop.

timeSample "last" means to sample each individual in the very last time period of the simu-
lation. "unif" (or "uniform") means sampling each individual at a time choosen
uniformly from all the times recorded in the simulation between the time when
the first driver appeared and the final time period. "unif" means that it is almost
sure that different individuals will be sampled at different times. "last" does not
guarantee that different individuals will be sampled at the same time unit, only
that all will be sampled in the last time unit of their simulation.

typeSample "singleCell" (or "single") for single cell sampling, where the probability of sam-
pling a cell (a clone) is directly proportional to its population size. "wholeTu-
mor" (or "whole") for whole tumor sampling (i.e., this is similar to a biopsy
being the entire tumor).

thresholdWhole In whole tumor sampling, whether a gene is detected as mutated depends on
thresholdWhole: a gene is considered mutated if it is altered in at least thresh-
oldWhole proportion of the cells in that individual.

geneNames An optional vector of gene names so as to label the column names of the output.

Details

samplePop simply repeats the sampling process in each individual of the oncosimulpop object.

Please see oncoSimulSample for a much more efficient way of sampling when you are sure what
you want to sample.

Note that if you have set onlyCancer = FALSE in the call to oncoSimulSample, you can end
up trying to sample from simulations where the population size is 0. In this case, you will get a
vector/matrix of NAs and a warning.

Similarly, when using timeSample = "last" you might end up with a vector of 0 (not NAs)
because you are sampling from a population that contains no clones with mutated genes. This event
(sampling from a population that contains no clones with mutated genes), by construction, cannot
happen when timeSample = "unif" as "uniform" sampling is taken here to mean sampling at a
time choosen uniformly from all the times recorded in the simulation between the time when the
first driver appeared and the final time period. However, you might still get a vector of 0, with
uniform sampling, if you sample from a population that contains only a few cells with any mutated
genes, and most cells with no mutated genes.

simOGraph 33

Value

A matrix. Each row is a "sample genotype", where 0 denotes no alteration and 1 alteration. When
using v.2, columns are named with the gene names.

We quote "sample genotype" because when not using single cell, a row (a sample genotype) need
not be, of course, any really existing genotype in a population as we are genotyping a whole tumor.
Suppose there are really two genotypes present in the population, genotype A, which has gene A
mutated and genotype B, which has gene B mutated. Genotype A has a frequency of 60% (so B’s
frequency is 40%). If you use whole tumor sampling with thresholdWhole = 0.4 you will
obtain a genotype with A and B mutated.

Author(s)

Ramon Diaz-Uriarte

References

Diaz-Uriarte, R. (2015). Identifying restrictions in the order of accumulation of mutations dur-
ing tumor progression: effects of passengers, evolutionary models, and sampling http://www.
biomedcentral.com/1471-2105/16/41/abstract

See Also

oncoSimulPop, oncoSimulSample

Examples

data(examplePosets)
p705 <- examplePosets[["p705"]]

(I set mc.cores = 2 to comply with --as-cran checks, but you
should either use a reasonable number for your hardware or
leave it at its default value).

p1 <- oncoSimulPop(4, p705, mc.cores = 2)
samplePop(p1)

Now single cell sampling

r1 <- oncoSimulIndiv(p705)
samplePop(r1, typeSample = "single")

simOGraph Simulate oncogenetic/CBN/XMPN DAGs.

Description

Simulate DAGs that represent restrictions in the accumulation of mutations.

http://www.biomedcentral.com/1471-2105/16/41/abstract
http://www.biomedcentral.com/1471-2105/16/41/abstract

34 simOGraph

Usage

simOGraph(n, h = 4, conjunction = TRUE, nparents = 3,
multilevelParent = TRUE, removeDirectIndirect = TRUE, rootName = "Root")

Arguments

n Number of nodes, or edges, in the graph. Like the number of genes.

h Approximate height of the graph. See details.

conjunction If TRUE, conjunctions (i.e., multiple parents for a node) are allowed.

nparents Maximum number of parents of a node, when conjunction is TRUE.
multilevelParent

Can a node have parents at different heights (i.e., parents that are at different
distance from the root node)?

removeDirectIndirect

Ensure that no two nodes are connected both directly (i.e., with an edge between
them) and indirectly, through intermediate nodes. If TRUE, the direct connec-
tions are removed from the graph starting from the bottom.

rootName The name you want to give the "Root" node.

Details

This is a simple, heuristic procedure for generating graphs of restrictions that seem compatible with
published trees in the oncogenetic literature.

The basic procedure is as follows: nodes (argument n) are split into approximately equally sized
h groups, and then each node from a level is connected to nodes chosen randomly from nodes of
the remaing superior (i.e., closer to the Root) levels. The number of edges comes from a uniform
distribution between 1 and nparents.

The actual depth of the graph can be smaller than h because nodes from a level might be connected
to superior levels skipping intermediate ones.

See the vignette for further discussion about arguments.

Value

An adjacency matrix for a directed graph.

Author(s)

Ramon Diaz-Uriarte

Examples

(a1 <- simOGraph(10))
library(graph) ## for simple plotting
plot(as(a1, "graphNEL"))

Index

∗Topic datagen
simOGraph, 33

∗Topic datasets
examplePosets, 8
examplesFitnessEffects, 9
mcfLs, 10

∗Topic graphs
simOGraph, 33

∗Topic hplot
plot.fitnessEffects, 21
plot.oncosimul, 24
plotClonePhylog, 26
plotPoset, 28

∗Topic iteration
oncoSimulIndiv, 11

∗Topic list
allFitnessEffects, 2

∗Topic manip
allFitnessEffects, 2
poset, 30
samplePop, 31

∗Topic misc
evalAllGenotypes, 5
oncoSimulIndiv, 11

allFitnessEffects, 2, 6, 7, 9, 10, 13, 18, 21,
22, 30

evalAllGenotypes, 5
evalGenotype, 4, 14
evalGenotype (evalAllGenotypes), 5
examplePosets, 8, 18, 29, 31
examplesFitnessEffects, 9

get.adjacency, 27

mcfLs, 10

oncoSimulIndiv, 3, 4, 11, 25–27, 30, 31
oncoSimulPop, 33
oncoSimulPop (oncoSimulIndiv), 11

oncoSimulSample, 32, 33
oncoSimulSample (oncoSimulIndiv), 11

par, 25
plot.default, 25
plot.fitnessEffects, 4, 21
plot.oncosimul, 10, 18, 24
plot.oncosimulpop (plot.oncosimul), 24
plotClonePhylog, 14, 26
plotPoset, 28, 31
poset, 2, 8, 9, 13, 28, 29, 30
print.oncosimul (oncoSimulIndiv), 11
print.oncosimulpop (oncoSimulIndiv), 11

samplePop, 15, 18, 31
simOGraph, 33
summary.oncosimul (oncoSimulIndiv), 11
summary.oncosimulpop (oncoSimulIndiv),

11

35

	allFitnessEffects
	evalAllGenotypes
	examplePosets
	examplesFitnessEffects
	mcfLs
	oncoSimulIndiv
	plot.fitnessEffects
	plot.oncosimul
	plotClonePhylog
	plotPoset
	poset
	samplePop
	simOGraph
	Index

