Package 'CoGAPS'

April 22, 2016
Version 2.4.0
Date 2014-08-23
Title Coordinated Gene Activity in Pattern Sets
Author Elana J. Fertig, Michael F. Ochs
Description Coordinated Gene Activity in Pattern Sets (CoGAPS) implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis.
Maintainer Elana J. Fertig <ejfertig@jhmi .edu>
Depends R ($>=3.0 .1$), Rcpp ($>=0.11 .2$), RColorBrewer ($>=1.0 .5$), gplots ($>=2.8 .0$)
Imports graphics, grDevices, methods, stats, utils
LinkingTo Rcpp, BH
License GPL (==2)
biocViews GeneExpression, Transcription, GeneSetEnrichment, DifferentialExpression, Bayesian, Clustering, TimeCourse, RNASeq, Microarray, MultipleComparison, DimensionReduction
NeedsCompilation yes

R topics documented:

CoGAPS-package 2
binaryA 3
calcCoGAPSStat 3
calcZ 4
CoGAPS 5
computeGeneGSProb 7
gapsInterPattern 9
gapsIntraPattern 10
gapsMapRun 12
gapsMapTestRun 14
gapsRun 17
gapsTestRun 19
GIST.D 21
GIST.S 22
GSets 22
plotAtoms 23
plotDiag 23
plotGAPS 24
plotP 24
plotSmoothPatterns 25
reorderByPatternMatch 26
residuals 27
SimpSim.A 27
SimpSim.D 27
SimpSim.P 28
SimpSim.S 28
tf2ugFC 28
Index 30
CoGAPS-package CoGAPS: Coordinated Gene Analysis Pattern Sets

Description

CoGAPS implements a Bayesian MCMC matrix factorization algorithm, GAPS, and links it to gene set statistic methods to infer biological process activity. It can be used to perform sparse matrix factorization on any data, and when this data represents biomolecules, to do gene set analysis.

Package:	CoGAPS
Type:	Package
Version:	1.0
Date:	$2014-07-23$
License:	LGPL

Author(s)

Maintainer: Elana J. Fertig ejfertig@jhmi.edu, Michael F. Ochs ochsm@tcnj.edu

References

Fertig EJ, Ding J, Favorov AV, Parmigiani G, Ochs MF. CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data. Bioinformatics. 2010 Nov 1;26(21):2792-3
binaryA
binaryA creates a binarized heatmap of the A matrix in which the value is 1 if the value in Amean is greater than threshold $*$ Asd and 0 otherwise

Description

binaryA creates a binarized heatmap of the A matrix in which the value is 1 if the value in Amean is greater than threshold * Asd and 0 otherwise

Usage

binaryA(Amean, Asd, threshold $=3$)

Arguments

Amean the mean estimate for the A matrix
Asd the standard deviations on Amean
threshold the number of standard deviations above zero that an element of Amean must be to get a value of 1

```
calcCoGAPSStat CoGAPS gene set statistic
```


Description

Computes the p-value for the association of underlying patterns from microarray data to activity in gene sets.

```
Usage
calcCoGAPSStat(Amean, Asd, GStoGenes, numPerm=500)
```


Arguments

Amean	Sampled mean value of the amplitude matrix A. row. names (Amean) must cor- respond to the gene names contained in GStoGenes.
Asd	Sampled standard deviation of the amplitude matrix A.
GStoGenes	List or data frame containing the genes in each gene set. If a list, gene set names are the list names and corresponding elements are the names of genes contained in each set. If a data frame, gene set names are in the first column and corresponding gene names are listed in rows beneath each gene set name.
numPerm	Number of permuations used for the null distribution in the gene set statistic. (optional; default=500)

Details

This script links the patterns identified in the columns of P to activity in each of the gene sets specified in GStoGenes using a novel z-score based statistic developed in Ochs et al. (2009). Specifically, the z -score for pattern p and gene set G_{i} containing G total genes is given by

$$
Z_{i, p}=\frac{1}{G} \sum_{g i n G_{i}} A_{g p} / \sigma_{g p}
$$

, where g indexes the genes in the set and $\sigma_{g p}$ is the standard deviation of $A_{g p}$ obtained from MCMC sampling. CoGAPS then uses the specified numPerm random sample tests to compute a consistent p value estimate from that z score.

Value

A list containing:

GSUpreg	p-values for upregulation of each gene set in each pattern.
GSDownreg	p-values for downregulation of each gene set in each pattern.
GSActEst	p-values for activity of each gene set in each pattern.

Author(s)

Elana J. Fertig ejfertig@jhmi.edu

References

M.F. Ochs, L. Rink, C. Tarn, S. Mburu, T. Taguchi, B. Eisenberg, and A.K. Godwin. (2009) Detection and treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Research, 69:9125-9132.

See Also

CoGAPS

```
calcZ calcZ calculates the Z-score for each element based on input mean and standard deviation matrices
```


Description

calcZ calculates the Z-score for each element based on input mean and standard deviation matrices

Usage

calcZ(meanMat, sdMat)

Arguments

meanMat	matrix of mean values
sdMat	matrix of standard deviation values

CoGAPS

CoGAPS calls the C++ MCMC code through gapsRun and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix and then calls calcCoGAPSStat to estimate gene set activity with nPerm set to 500

Description

CoGAPS calls the C++ MCMC code through gapsRun and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix and then calls calcCoGAPSStat to estimate gene set activity with nPerm set to 500

Usage

CoGAPS(data, unc, ABins = data.frame(), PBins = data.frame(), GStoGenes, nFactor = 7, simulation_id = "simulation", nEquil = 1000, nSample = 1000, nOutR = 1000, output_atomic = FALSE, fixedBinProbs = FALSE, fixedDomain = "N", sampleSnapshots = TRUE, numSnapshots $=100$, plot $=$ TRUE, nPerm $=500$, alphaA $=0.01$, nMaxA $=1 \mathrm{e}+05$, max_gibbmass_paraA $=100$, alphaP $=0.01$, nMaxP $=1 \mathrm{e}+05$, max_gibbmass_paraP = 100)

Arguments

data	data matrix
unc	uncertainty matrix (std devs for chi-squared of Log Likelihood)
ABins	a matrix of same size as A which gives relative probability of that element being non-zero
PBins	a matrix of same size as P which gives relative probability of that element being non-zero
GStoGenes	data.frame or list with gene sets
nFactor	number of patterns (basis vectors, metagenes)
simulation_id	name to attach to atoms files if created
nEquil	number of iterations for burn-in
nSample	number of iterations for sampling
nOutR	how often to print status into R by iterations
output_atomic	whether to write atom files (large)
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins
fixedDomain	character to indicate whether A or P is domain for relative probabilities
sampleSnapshots	
	Boolean to indicate whether to capture individual samples from Markov chain during sampling
numSnapshots	the number of individual samples to capture

```
plot Boolean to indicate whether to produce output graphics
nPerm number of permutations in gene set test
alphaA sparsity parameter for A domain
nMaxA PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraA
    limit truncated normal to max size
alphaP sparsity parameter for P domain
nMaxP PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraP
limit truncated normal to max size
```


Details

CoGAPS first decomposes the data matrix using GAPS, \mathbf{D}, into a basis of underlying patterns and then determines the gene set activity in each of these patterns.
The GAPS decomposition is achieved by finding amplitude and pattern matrices (A and \mathbf{P}, respectively) for which

$$
\mathbf{D}=\mathbf{A} \mathbf{P}+\Sigma
$$

where Σ is the matrix of uncertainties given by unc. The matrices \mathbf{A} and \mathbf{P} are assumed to have the atomic prior described in Sibisi and Skilling (1997) and are found with MCMC sampling.
Then, the patterns identified in the columns of \mathbf{P} are linked to activity in each of the gene sets specified in GStoGenes using a novel z-score based statistic developed in Ochs et al. (2009). Specifically, the z -score for pattern p and gene set G_{i} containing $\$ \mathrm{G} \$$ total genes is given by

$$
Z_{i, p}=\frac{1}{G} \sum_{g i n \mathcal{G}_{\rangle}} \frac{\mathbf{A}_{\mathbf{g p}}}{A s d_{g p}}
$$

where g indexes the genes in the set and $A s d_{g p}$ is the standard deviation of $\mathbf{A}_{g p}$ obtained from MCMC sampling. CoGAPS then uses the specified nPerm random sample tests to compute a consistent p value estimate from that z score. Note that the data from Ochs et al. (2009) are provided with this package in GIST_TS_20084.RData and TFGSList.RData are also provided with this package for further validation.

Value

A list containing:

meanChi2	Value of $c h i^{2}$ for Amean and Pmean.
D	Data matrix \mathbf{D} input to factorization.
Sigma	uncertainty matrix (std devs for chi-squared of Log Likelihood)
Amean	Sampled mean value of the amplitude matrix A.
Asd	Sampled standard deviation of the amplitude matrix A.
Pmean	Sampled mean value of the amplitude matrix \mathbf{P}.
Psd	Sampled standard deviation of the amplitude matrix \mathbf{P}.
GSUpreg	p-values for upregulation of each gene set in each pattern.
GSDownreg	p-values for downregulation of each gene set in each pattern.
GSActEst	p-values for activity of each gene set in each pattern.

See Also

```
gapsRun,calcCoGAPSStat
```


Examples

```
## Not run:
## Load data
nIter <- 5000
## Run GAPS matrix decomposition with gene set statistic
results <- CoGAPS(data=SimpSim.D, unc=SimpSim.S,
    GStoGenes=GSets,
    nFactor=3,
    nEquil=nIter, nSample=nIter,
    plot=FALSE)
## Plot the results
plotGAPS(results$Amean, results$Pmean, 'GSFigs')
## End(Not run)
```

computeGeneGSProb CoGAPS gene membership statistic

Description

Computes the p-value for gene set membership using the CoGAPS-based statistics developed in Fertig et al. (2012). This statistic refines set membership for each candidate gene in a set specified in GSGenes by comparing the inferred activity of that gene to the average activity of the set. Specifically, we compute the following summary statistic for each gene g that is a candidate member of gene set G :

$$
S_{g, G}=\left(\sum_{p}-\log \left(\operatorname{Pr}_{G, p}\right) P w[p]\left(A_{g p} / \sigma_{g p}\right)\right) / \sum_{p}-\log \left(\operatorname{Pr}_{G, p}\right) P w[p]
$$

where p indexes each of the patterns, $P r_{G, p}$ is the probability that gene set G is upregulated computed with calcCoGAPSStat, $A_{g p}$ is the mean amplitude matrix from the GAPS matrix factorization, $\mathrm{Pw}[\mathrm{p}]$ is a prior weighting for each pattern based upon the context to which that pattern relates, and $\sigma_{g p}$ is the standard deviation of the amplitude matrix. P-values are formulated from a permutation test comparing the value of $S_{g, G}$ for genes in GSGenes relative to the value of $S_{g, G}$ numPerm random gene sets with the same number of targets.

Usage

computeGeneGSProb(Amean, Asd, GSGenes, Pw=rep(1,ncol(Amean)), numPerm=500, PwNull=F)

Arguments

$$
\begin{array}{ll}
\text { Amean } & \begin{array}{l}
\text { Sampled mean value of the amplitude matrix A. row. names(Amean) must cor- } \\
\text { respond to the gene names contained in GSGenes. }
\end{array} \\
\text { Asd } & \begin{array}{l}
\text { Sampled standard deviation of the amplitude matrix A. }
\end{array} \\
\text { GSGenes } & \begin{array}{l}
\text { Vector containing the prior estimate of members of the gene set of interest. } \\
\text { Vector containing the weight to assign each pattern in the gene statistic assumed } \\
\text { to be computed from the association of the pattern with samples in a given con- } \\
\text { text (optional: default=1 giving all patterns equal weight). }
\end{array} \\
\text { numPerm } & \begin{array}{l}
\text { Number of permuations used for the null distribution in the gene set statistic. } \\
\text { (optional; default=500) }
\end{array} \\
\text { PwNull } & \begin{array}{l}
\text { Logical value. If TRUE, use pattern weighting in Pw when computing the null } \\
\text { distribution for the statistic. If FALSE, do not use the pattern weighting so that } \\
\text { the null is context independent. (optional; default=F) }
\end{array}
\end{array}
$$

Value

A vector of length GSGenes containing the p-values of set membership for each gene containined in the set specified in GSGenes.

Author(s)

Elana J. Fertig ejfertig@jhmi.edu

References

E.J. Fertig, A.V. Favorov, and M.F. Ochs (2013) Identifying context-specific transcription factor targets from prior knowledge and gene expression data. 2012 IEEE Nanobiosciences.

See Also

```
calcCoGAPSStat
```


Examples

```
## Not run:
##################################################
# Results for GIST data in Fertig et al. (2012) #
######################################################
# load the data
data('GIST_TS_20084')
data('TFGSList')
# define transcription factors of interest based on Ochs et al. (2009)
TFs <- c("c.Jun", 'NF.kappaB', 'Smad4', "STAT3", "Elk.1", "c.Myc", "E2F.1",
        "AP.1", "CREB", "FOXO", "p53", "Sp1")
# run the GAPS matrix factorization
```

```
nIter <- 10000
results <- CoGAPS(GIST.D, GIST.S, tf2ugFC,
    nFactor=5,
    nEquil=nIter, nSample=nIter,
    plot=FALSE)
# set membership statistics
permTFStats <- list()
for (tf in TFs) {
    genes <- levels(tf2ugFC[,tf])
    genes <- genes[2:length(genes)]
    permTFStats[[tf]] <- computeGeneTFProb(Amean = GISTResults$Amean,
                                    Asd = GistResults$Asd, genes)
}
## End(Not run)
```


Description

gapsInterPattern calculates the overlap in significant genes between patterns according to the set standard deviation threshold from the mean. Returns the names of significant genes, a matrix of overlap fractions, and the mean of this matrix. A warning is issued if a column of A does not have significant genes at a given threshold.

Usage

gapsInterPattern(Amean, Asd, sdThreshold = 3)

Arguments

$$
\begin{array}{ll}
\text { Amean } & \text { Sampled mean value of the amplitude matrix } \mathbf{A} \text { from a run of CoGAPS. } \\
\text { Asd } & \text { Sampled standard deviation of the amplitude matrix } \mathbf{A} \text { from a run of CoGAPS. } \\
\text { sdThreshold } & \begin{array}{l}
\text { How many standard deviations a gene's sampled mean needs to be above } 0 \text { to } \\
\text { be considered significantly expressed in a pattern. }
\end{array}
\end{array}
$$

Details

This calculates a statistic for comparing different patterns based on the genes associated with them.

Value

A list containing:

SignificantGeneNames

A list in which each element holds a vector of the name of the significant genes in each column of \mathbf{A}.
SignificantGeneTotals
A vector of significant genes in each respective column.
SeparationMatrix
The matrix containing the overlap fractions for the significant genes in each column of \mathbf{A}.
InterPatternValue
The final value of the Interpattern measure.

See Also

CoGAPS

Examples

```
## Not run:
## Load data
data('SimpSim')
## Run GAPS matrix decomposition
nIter <- 10
results <- gapsTestRun(SimpSim.D, SimpSim.S, nFactor=3,
    nEquil=nIter, nSample=nIter)
## Execute the InterPattern function
InterPatternStats <- gapsInterPattern(results$Amean, results$Asd, sdThreshold = 3)
## End(Not run)
```

gapsIntraPattern gapsIntraPattern generates statistics for the similarity of gene ex-
pression vectors within a pattern

Description

gapsIntraPatternObtains correlation matrices for significantly expressed genes in each column of \mathbf{A}. Obtains the means of these matrices, then averages those to get a sense of how closely correlated genes in the patterns of CoGAPS are.

Usage

gapsIntraPattern(Amean, Asd, DMatrix, sdThreshold = 3)

Arguments

Amean	Sampled mean value of the amplitude matrix A from a run of CoGAPS.
Asd	Sampled standard deviation of the amplitude matrix A from a run of CoGAPS.
DMatrix	data matrix
sdThreshold	How many standard deviations a gene's sampled mean needs to be above 0 to be considered significantly expressed in a pattern.

Details

This calculates a statistic for determining how tight a pattern is based on the genes associated with it and their distribution in the data.

Value

A list containing:

CorrelationMatrices

A list containing the correlation matrices between the significant genes in each column of \mathbf{A}.
CorrelationMatrixMeans
A list containing the means of the Correlation Matrices.
IntraPatternValue
The final value of the Intrapattern measure.

See Also

CoGAPS

Examples

```
## Not run:
## Load data
data('SimpSim')
## Run GAPS matrix decomposition
nIter <- 10
results <- gapsTestRun(SimpSim.D, SimpSim.S, nFactor=3,
    nEquil=nIter, nSample=nIter)
## Execute the IntraPattern function
IntraPatternStats <- gapsInterPattern(results$Amean, results$Asd, SimpSim.D, sdThreshold = 3)
## End(Not run)
```

```
gapsMapRun
```

gapsMapRun calls the $C++$ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix

Description

gapsMapRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix

Usage

gapsMapRun(D, S, FP, ABins = data.frame(), PBins = data.frame(), nFactor = 5, simulation_id = "simulation", nEquil = 1000, nSample = 1000, nOutR = 1000, output_atomic = "FALSE", fixedMatrix = "P", fixedBinProbs = "FALSE", fixedDomain = "N", sampleSnapshots = "TRUE", numSnapshots = 100, alphaA = 0.01, nMaxA $=1 \mathrm{e}+05$, max_gibbmass_paraA $=100$, alphaP $=0.01$, nMaxP $=1 \mathrm{e}+05$, max_gibbmass_paraP = 100)

Arguments

D data matrix
S uncertainty matrix (std devs for chi-squared of Log Likelihood)
FP data.frame with rows giving fixed patterns for P
ABins a matrix of same size as A which gives relative probability of that element being non-zero
PBins a matrix of same size as P which gives relative probability of that element being non-zero
nFactor number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP
simulation_id name to attach to atoms files if created
nEquil number of iterations for burn-in
nSample number of iterations for sampling
nOutR how often to print status into R by iterations
output_atomic whether to write atom files (large)
fixedMatrix character indicating whether A or P matrix has fixed columns or rows respectively
fixedBinProbs Boolean for using relative probabilities given in Abins and Pbins
fixedDomain character to indicate whether A or P is domain for relative probabilities

```
sampleSnapshots
                    Boolean to indicate whether to capture individual samples from Markov chain
                    during sampling
numSnapshots the number of individual samples to capture
alphaA sparsity parameter for A domain
nMaxA PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraA
                            limit truncated normal to max size
alphaP sparsity parameter for P domain
nMaxP PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraP
            limit truncated normal to max size
```


Details

The decomposition in GAPS is achieved by finding amplitude and pattern matrices (A and \mathbf{P}, respectively) for which

$$
\mathbf{D}=\mathbf{A} \mathbf{P}+\Sigma
$$

, where Σ is the matrix of uncertainties given by S. The matrices \mathbf{A} and \mathbf{P} are assumed to have the atomic prior described in Sibisi and Skilling (1997) and are found with MCMC sampling. However, some rows of \mathbf{P} are fixed to be the values specified in the input argument FP after rescaling to have norm 1.

Value

A list containing:

Amean	Sampled mean value of the amplitude matrix \mathbf{A}.
Asd	Sampled standard deviation of the amplitude matrix \mathbf{A}.
Pmean	Sampled mean value of the amplitude matrix \mathbf{P}.
Psd	Sampled standard deviation of the amplitude matrix \mathbf{P}.
atomsAEquil	Number of atoms in \mathbf{A} during each iteration of the equilibration phase.
atomsASamp	Number of atoms in \mathbf{A} during each iteration of the sampling phase.
atomsPEquil	Number of atoms in \mathbf{P} during each iteration of the equilibration phase.
atomsPSamp	Number of atoms in \mathbf{P} during each iteration of the sampling phase.
chiSqValues	Value of $c h i^{2}$ at each step during equilibration and sampling.
meanChi2	Value of $c h i^{2}$ for Amean and Pmean.
ASnapshots	Samples of A matrices taken during sampling.
PSnapshots	Samples of P matrices taken during sampling.

See Also

CoGAPS,gapsRun

Examples

```
## Not run:
## Load data
data('SimpSim')
## Specify the fixed pattern
mapP <- matrix(0,nrow=2,ncol=20)
mapP[1,1:10]<- 1
mapP[2,11:20] <- 1
## Run the GAPS matrix decomposition
testmap <- gapsMapRun(SimpSim.D, SimpSim.S, FP=mapP,
                                    nFactor=3,nEquil = 1000,nSample = 1000)
## Compare fixed patterns to input patterns (after scaling)
summary(t(testmap$Pmean[2:3,] - sweep(mapP,1,apply(mapP,1, sum),FUN="/")))
## End(Not run)
```

gapsMapTestRun
gapsMapTestRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix. Test procedures allow for the returning of the matrix and atomic information for A and P during each step of the equilibration and sampling.

Description

gapsMapTestRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix; as opposed to gapsRun, this method takes an additional input specifying set patterns in the P matrix. Test procedures allow for the returning of the matrix and atomic information for A and P during each step of the equilibration and sampling. .

Usage

gapsMapTestRun(D, S, FP, ABins = data.frame(), PBins = data.frame(), nFactor = 7, simulation_id = "simulation", nEquil = 1000, nSample = 1000, nOutR = 1000, output_atomic = FALSE, fixedMatrix="P", fixedBinProbs = FALSE, fixedDomain = "N", alphaA = 0.01, nMaxA $=1 \mathrm{e}+05$, max_gibbmass_paraA $=100$, alphaP $=0.01$, nMaxP $=1 \mathrm{e}+05$, max_gibbmass_paraP $=100$)

Arguments

D
data matrix
S
uncertainty matrix (std devs for chi-squared of Log Likelihood)
FP data.frame with rows giving fixed patterns for P

ABins	a matrix of same size as A which gives relative probability of that element being non-zero
PBins	a matrix of same size as P which gives relative probability of that element being non-zero
nFactor	number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP
simulation_id	name to attach to atoms files if created
nEquil	number of iterations for burn-in
nSample	number of iterations for sampling
nOutR	how often to print status into R by iterations
output_atomic	whether to write atom files (large)
fixedMatrix	character indicating whether A or P matrix has fixed columns or rows respectively
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins
fixedDomain	character to indicate whether A or P is domain for relative probabilities
alphaA	sparsity parameter for A domain
nMaxA	PRESENTLY UNUSED, future $=$ limit number of atoms
max_gibbmass_paraA	
	limit truncated normal to max size
alphaP	sparsity parameter for P domain
nMaxP	PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_p	

limit truncated normal to max size

Details

The decomposition in GAPS is achieved by finding amplitude and pattern matrices (A and \mathbf{P}, respectively) for which

$$
\mathbf{D}=\mathbf{A} \mathbf{P}+\Sigma
$$

, where Σ is the matrix of uncertainties given by S. The matrices \mathbf{A} and \mathbf{P} are assumed to have the atomic prior described in Sibisi and Skilling (1997) and are found with MCMC sampling.

Value

A list containing:

Amean	Sampled mean value of the amplitude matrix \mathbf{A}.
Asd	Sampled standard deviation of the amplitude matrix \mathbf{A}.
Pmean	Sampled mean value of the amplitude matrix \mathbf{P}.
Psd	Sampled standard deviation of the amplitude matrix \mathbf{P}.
atomsAEquil	Number of atoms in \mathbf{A} during each iteration of the equilibration phase.
atomsASamp	Number of atoms in \mathbf{A} during each iteration of the sampling phase.

atomsPEquil	Number of atoms in \mathbf{P} during each iteration of the equilibration phase.
atomsPSamp	Number of atoms in \mathbf{P} during each iteration of the sampling phase.
chiSqValues	Value of $c h i^{2}$ at each step during equilibration and sampling.
matricesAEquil	State of the \mathbf{A} matrix during each iteration of the equilibration phase.
matricesASamp	State of the \mathbf{A} matrix during each iteration of the sampling phase.
matricesPEquil	State of the \mathbf{P} matrix during each iteration of the equilibration phase.
matricesPSamp	State of the \mathbf{P} matrix during each iteration of the sampling phase.
domainAEquil	A list containing the locations and magnitudes of the atoms of \mathbf{A} during each iteration of the equilibration phase.
domainASamp	A list containing the locations and magnitudes of the atoms of \mathbf{A} during each iteration of the sampling phase.
domainPEquil	A list containing the locations and magnitudes of the atoms of \mathbf{P} during each iteration of the equilibration phase.
domainPSamp	A list containing the locations and magnitudes of the atoms of \mathbf{P} during each iteration of the sampling phase.
meanChi2	Value of $c h i^{2}$ for Amean and Pmean.

See Also

CoGAPS

Examples

```
## Not run:
## Load data
data('SimpSim')
## Specify the fixed pattern
mapP <- matrix(0,nrow=2,ncol=20)
mapP[1,1:10] <- 1
mapP[2,11:20] <- 1
## Run the GAPS matrix decomposition
nIter <- 10
testmap <- gapsMapTestRun(SimpSim.D, SimpSim.S, FP=mapP,
                                    nFactor=3,nEquil = nIter,nSample = nIter)
## Compare fixed patterns to input patterns (after scaling)
summary(t(testmap$Pmean[2:3,] - sweep(mapP,1,apply(mapP,1,sum),FUN="/")))
## End(Not run)
```

```
gapsRun
```

gapsRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix

Description

gapsRun calls the C++ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix

Usage

gapsRun(D, S, ABins = data.frame(), PBins = data.frame(), nFactor = 7, simulation_id = "simulation", nEquil = 1000, nSample = 1000, nOutR = 1000, output_atomic = "FALSE", fixedBinProbs = "FALSE", fixedDomain = "N", sampleSnapshots = "TRUE", numSnapshots = 100, alphaA $=0.01$, $n \operatorname{MaxA}=1 \mathrm{e}+05$, max_gibbmass_paraA $=100$, alphaP $=0.01$, nMaxP $=1 \mathrm{e}+05$, max_gibbmass_paraP = 100)

Arguments

D	data matrix		
S	uncertainty matrix (std devs for chi-squared of Log Likelihood) a matrix of same size as A which gives relative probability of that element being non-zero (optional)		
PBins	a matrix of same size as P which gives relative probability of that element being non-zero (optional)		
nFactor	number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP (optional, defaults to 7)		
simulation_id	name to attach to atoms files if created		
nEquil	number of iterations for burn-in		
nSample	number of iterations for sampling noutR often to print status into R by iterations		
output_atomic	whether to write atom files (large)		
fixedBinProbs	Boolean for using relative probabilities given in Abins and Pbins character to indicate whether A or P is domain for relative probabilities		
fixedDomain			
sampleSnapshots		\quad	Boolean to indicate whether to capture individual samples from Markov chain
:---			
during sampling			

```
max_gibbmass_paraA
            limit truncated normal to max size
alphaP sparsity parameter for P domain
nMaxP PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraP
```

 limit truncated normal to max size

Details

The decomposition in GAPS is achieved by finding amplitude and pattern matrices (A and \mathbf{P}, respectively) for which

$$
\mathbf{D}=\mathbf{A P}+\Sigma
$$

, where Σ is the matrix of uncertainties given by S. The matrices \mathbf{A} and \mathbf{P} are assumed to have the atomic prior described in Sibisi and Skilling (1997) and are found with MCMC sampling.

Value

A list containing:

Amean	Sampled mean value of the amplitude matrix \mathbf{A}.
Asd	Sampled standard deviation of the amplitude matrix A.
Pmean	Sampled mean value of the amplitude matrix \mathbf{P}.
Psd	Sampled standard deviation of the amplitude matrix \mathbf{P}.
atomsAEquil	Number of atoms in A during each iteration of the equilibration phase.
atomsASamp	Number of atoms in A during each iteration of the sampling phase.
atomsPEquil	Number of atoms in \mathbf{P} during each iteration of the equilibration phase.
atomsPSamp	Number of atoms in \mathbf{P} during each iteration of the sampling phase.
chiSqValues	Value of $c h i^{2}$ at each step during equilibration and sampling.
meanChi2	Value of $c h i^{2}$ for Amean and Pmean.
ASnapshots	Samples of A matrices taken during sampling.
PSnapshots	Samples of P matrices taken during sampling.

See Also

CoGAPS

Examples

```
## Not run:
## Load data
data('SimpSim')
## Run GAPS matrix decomposition
nIter <- 5000
results <- gapsRun(SimpSim.D, SimpSim.S, nFactor=3,
    nEquil=nIter, nSample=nIter)
```

```
## Plot the results
plotGAPS(results$Amean, results$Pmean, 'GSFigs')
## End(Not run)
```

gapsTestRun gapsTestRun calls the $C++$ MCMC code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix. Test procedures allow for the returning of the matrix and atomic information for A and P during each step of the equilibration and sampling. .

Description

gapsTestRun calls the $\mathrm{C}++\mathrm{MCMC}$ code and performs Bayesian matrix factorization returning the two matrices that reconstruct the data matrix. Test procedures allow for the returning of the matrix and atomic information for A and P during each step of the equilibration and sampling.

Usage

```
    gapsTestRun(D, S, ABins = data.frame(), PBins = data.frame(), nFactor = 7,
        simulation_id = "simulation", nEquil = 1000, nSample = 1000,
        nOutR = 1000, output_atomic = "FALSE", fixedBinProbs = "FALSE",
        fixedDomain = "N", alphaA = 0.01, nMaxA = 1e+05, max_gibbmass_paraA = 100,
        alphaP = 0.01, nMaxP = 1e+05, max_gibbmass_paraP = 100)
```


Arguments

D
S
ABins

PBins a matrix of same size as P which gives relative probability of that element being non-zero
nFactor number of patterns (basis vectors, metagenes), which must be greater than or equal to the number of rows of FP
simulation_id name to attach to atoms files if created
nEquil number of iterations for burn-in
nSample number of iterations for sampling
nOutR how often to print status into R by iterations
output_atomic whether to write atom files (large)
fixedBinProbs Boolean for using relative probabilities given in Abins and Pbins
fixedDomain character to indicate whether A or P is domain for relative probabilities

```
alphaA sparsity parameter for A domain
nMaxA PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraA
                            limit truncated normal to max size
alphaP sparsity parameter for P domain
nMaxP PRESENTLY UNUSED, future = limit number of atoms
max_gibbmass_paraP
    limit truncated normal to max size
```


Details

The decomposition in GAPS is achieved by finding amplitude and pattern matrices (A and \mathbf{P}, respectively) for which

$$
\mathbf{D}=\mathbf{A} \mathbf{P}+\Sigma
$$

, where Σ is the matrix of uncertainties given by S. The matrices \mathbf{A} and \mathbf{P} are assumed to have the atomic prior described in Sibisi and Skilling (1997) and are found with MCMC sampling.

Value

A list containing:

Amean	Sampled mean value of the amplitude matrix \mathbf{A}.
Asd	Sampled standard deviation of the amplitude matrix \mathbf{A}.
Pmean	Sampled mean value of the amplitude matrix \mathbf{P}.
Psd	Sampled standard deviation of the amplitude matrix \mathbf{P}.
atomsAEquil	Number of atoms in \mathbf{A} during each iteration of the equilibration phase.
atomsASamp	Number of atoms in \mathbf{A} during each iteration of the sampling phase.
atomsPEquil	Number of atoms in \mathbf{P} during each iteration of the equilibration phase.
atomsPSamp	Number of atoms in \mathbf{P} during each iteration of the sampling phase.
chiSqValues	Value of chí at each step during equilibration and sampling.
matricesAEquil	State of the \mathbf{A} matrix during each iteration of the equilibration phase.
matricesASamp	State of the \mathbf{A} matrix during each iteration of the sampling phase.
matricesPEquil	State of the \mathbf{P} matrix during each iteration of the equilibration phase.
matricesPSamp	State of the \mathbf{P} matrix during each iteration of the sampling phase.
domainAEquil	A list containing the locations and magnitudes of the atoms of \mathbf{A} during each iteration of the equilibration phase.
domainASamp	A list containing the locations and magnitudes of the atoms of \mathbf{A} during each iteration of the sampling phase.
domainPEquil	A list containing the locations and magnitudes of the atoms of \mathbf{P} during each iteration of the equilibration phase.
domainPSamp	A list containing the locations and magnitudes of the atoms of \mathbf{P} during each iteration of the sampling phase.
meanChi2	Value of $c h i^{2}$ for Amean and Pmean.

See Also

CoGAPS

Examples

```
## Not run:
## Load data
data('SimpSim')
## Run GAPS matrix decomposition
nIter <- 10
results <- gapsTestRun(SimpSim.D, SimpSim.S, nFactor=3,
                                    nEquil=nIter, nSample=nIter)
## Plot the results
plotGAPS(results$Amean, results$Pmean, 'GSFigs')
## End(Not run)
```

GIST.D
Sample GIST gene expression data from Ochs et al. (2009).

Description

Gene expression data from gastrointestinal stromal tumor cell lines treated with Gleevec.

Usage

GIST_TS_20084

Format

Matrix with 1363 genes by 9 samples of mean gene expression data.

References

Ochs, M., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., and Godwin, A. (2009). Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res, 69(23), 9125-9132.

Description

Standard deviation of gene expression data from gastrointestinal stromal tumor cell lines treated with Gleevec.

Usage

GIST_TS_20084

Format

Matrix with 1363 genes by 9 samples containing standard deviation (GIST.S) of the gene expression data.

References

Ochs, M., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., and Godwin, A. (2009). Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res, 69(23), 9125-9132.

GSets Simulated dataset to quantify gene set membership.

Description

Simulated gene sets used to generate amplitude matrix in SimpSim. A and corresponding data SimpSim.D.

Usage

GSets

Format

A list containing names of genes in two simulated gene sets used to generate the data in SimpSim.D.
plotAtoms a simple plot of the number of atoms from one of the vectors returned with atom numbers

Description

plotAtoms a simple plot of the number of atoms during the sampling period or equilibration periodfrom one of either A or P as specified in type.

Usage

plotAtoms(gapsRes, type = "sampA")

Arguments

gapsRes the list resulting from applying GAPS
type the atoms to plot, values are sampA, sampP, equilA, or equilP to plot sampling or equilibration teop atome numbers
plotDiag plotDiag plots a series of diagnostic plots

Description

plotDiag plots a series of diagnostic plots

Usage

plotDiag(gapsRes)

Arguments

gapsRes list returned by gapsRun, gapsMapRun, or CoGAPS

Description

Plots the A and P matrices obtained from the GAPS matrix decomposition.

Usage

plotGAPS(A, P, outputPDF="")

Arguments

A The amplitude matrix A obtained from GAPS.
$P \quad$ The pattern matrix \mathbf{P} obtained from GAPS.
outputPDF Name of an pdf file to which the results will be output. (Optional; default="" will output plots to screen).

Note

If the plot option is true in CoGAPS, this function will be called automatically to plot results to the screen.

Author(s)
Elana J. Fertig <efertig@jhmi. edu>

See Also

```
        CoGAPS
```

 plotP plotP plots the P matrix in a line plot with error bars

Description

plotP plots the P matrix in a line plot with error bars

Usage

plotP(PMean_Mat, P_SD)

Arguments

PMean_Mat matrix of mean values of P
P_SD matrix of standard deviation values of P

Description

Plots the sampled mean value of the pattern matrix \mathbf{P} obtained from the CoGAPS matrix factorization vs. a specificed X value for each sample in the columns of \mathbf{P}. Lines plot loess normalized values of \mathbf{P} vs specified X variables.

Usage

plotSmoothPatterns(P, x=NULL, breaks=NULL, breakStyle=T, orderP=!all(is.null(x)), plotPTS=F, pointC

Arguments

P

X
breaks A vector of X values at which breaks in plotting should occur. Loess lines fit to data will start and stop at breaks. (Optional: Default: no breaks). May also be specified as an integer to determine the number of equal groups into which to divide the data.
breakStyle A logical vector. If TRUE, the corresponding break will start a new plot on the row for each pattern. If FALSE, a vertical line will demarcate the break point. (Optional: Defaults to all hard breaks). Note, if one logical value is used, that value will determine the break type at each break point.
orderP A logical value. If TRUE, vertical ordering of patterns will be determined in order of the value of x at which they peak. If FALSE, vertical ordering will be determined by the rows in the P matrix. (Optional: Default: FALSE)
plotPTS A logical value. If TRUE, plot will include points for each value of the P matrix in addition to the loess smoothed curve. If FALSE, only the loess smoothed values of P will be plotted. (Optional: Default: FALSE)
pointCol Color of points of the P matrix plotted when plotPTS=TRUE. (Optional: Default: black)
lineCol Color of loess smoothed values of the P matrix. (Optional: Default: grey)
add A logical value. If TRUE, plot will be added to existing graphics device. If FALSE, will create a new graphics device. (Optional: Default: FALSE)
... Additional arguments to plotting functions.

Author(s)

Genevieve Stein-O'Brien <gsteino1@jhmi. edu>

See Also

CoGAPS

Examples

```
## Not run:
# create simulated data
P <- rbind(1:10 + rnorm(10), seq(from=10,to=1) + rnorm(10))
# saved as PDF since figure margins are often too large for the null device with this function
# and the null device may also have trouble with the overlay
pdf('Test.pdf', width=10)
plotSmoothPatterns(P=P, x=rep(seq(from=1,to=10,by=2),each=2), breaks=3, breakStyle=c(F,T,T), plotPTS=T)
# demonstrating the overlay of the plot
plotSmoothPatterns(P=P, x=rep(seq(from=1,to=10,by=2), each=2), breaks=c(0.992,3.660,6.340,9.010), breakStyle=c
dev.off()
## End(Not run)
```

reorderByPatternMatch Match two sets of patterns found with CoGAPS

Description

Matches two sets of pattern matrices (of the same size) found with CoGAPS. Matches are identified by finding identifying subsequently decreasing correlations between patterns in the respective matrices.

Usage

reorderByPatternMatch (P , matchTo)

Arguments

P
Pattern matrix for which rows will be arranged to match the matrix in matchTo
matchTo
Pattern matrix to which P is matched.

Value

Pattern matrix derived from reordering columns of P

```
    residuals residuals calculate residuals and produce heatmap
```


Description

residuals calculate residuals and produce heatmap

Usage

residuals(AMean_Mat, PMean_Mat, D, S)

Arguments

AMean_Mat	matrix of mean values for A from GAPS
PMean_Mat	matrix of mean values for P from GAPS
D	original data matrix run through GAPS
S	original standard deviation matrix run through GAPS

SimpSim.A Simulated data

Description

True amplitude matrix generated from gene sets in GSets used to generate simulated data in SimpSim.D.

Usage

SimpSim.A

Format

Matrix with 30 genes by 3 patterns of true amplitude used to generate simulated data.
SimpSim.D Simulated data

Description

Simulated gene expression data from true patterns in SimpSim.P and amplitude in SimpSim.A.

Usage

SimpSim.D

Format

Matrix with 30 genes by 20 samples of simulated gene expression data.

| SimpSim. $P \quad$ Simulated data |
| :--- | :--- |

Description

True pattern matrix used to generate simulated data in SimpSim.D.

Usage

SimpSim. P

Format

Matrix with 3 patterns by 20 samples of true patterns used to generate simulated data.

```
SimpSim.S Simulated data
```


Description

Standard deviation of simulated gene expression data from true patterns in SimpSim.P and amplitude in SimpSim.A.

Usage

SimpSim. S

Format

Matrix with 30 genes by 20 samples of containing standard deviation of simulated gene expression data.
tf2ugFC
Gene sets defined by transcription factors defined from TRANSFAC.

Description

List of genes contained in gastrointestinal stromal tumor cell line measurements that are regulated by transcription factors in the TRANSFAC database. Used for the gene set analysis in Ochs et al. (2009).

Usage

TFGSList

Format

Data.frame containing genes (rows) regulated by each transcription factor (columns).

References

Ochs, M., Rink, L., Tarn, C., Mburu, S., Taguchi, T., Eisenberg, B., and Godwin, A. (2009). Detection of treatment-induced changes in signaling pathways in gastrointestinal stromal tumors using transcriptomic data. Cancer Res, 69(23), 9125-9132.

Index

```
*Topic datasets
    GIST.D, 21
    GIST.S, 22
    GSets,22
    SimpSim.A, }2
    SimpSim.D, 27
    SimpSim.P, 28
    SimpSim.S, 28
    tf2ugFC, 28
*Topic misc
    calcCoGAPSStat, 3
    CoGAPS, }
    computeGeneGSProb,7
    gapsInterPattern, }
    gapsIntraPattern,10
    gapsMapRun, 12
    gapsMapTestRun,14
    gapsRun, 17
    gapsTestRun,19
binaryA, 3
calcCoGAPSStat, 3, 7, 8
calcZ,4
CoGAPS, 4, 5, 10, 11, 13, 16, 18, 21, 24, 26
CoGAPS-package, 2
computeGeneGSProb, }
gapsInterPattern, }
gapsIntraPattern,10
gapsMapRun,12
gapsMapTestRun,14
gapsRun, 7, 13, 17
gapsTestRun,19
geneGSProb (computeGeneGSProb), }
GIST.D, 21
GIST.S, 22
GSets, 22, 27
list,22
*Topic datasets
GIST.D, 21
GIST.S, 22
GSets, 22
SimpSim.A, 27
SimpSim.D, 27
SimpSim.P, 28
SimpSim. S, 28
tf2ugFC, 28
*Topic misc
calcCoGAPSStat, 3
CoGAPS, 5
computeGeneGSProb, 7
gapsInterPattern, 9
gapsIntraPattern, 10
gapsMapRun, 12
gapsMapTestRun, 14
gapsRun, 17
gapsTestRun, 19
binaryA, 3
calcCoGAPSStat, \(3,7,8\)
calcZ, 4
CoGAPS, \(4,5,10,11,13,16,18,21,24,26\)
CoGAPS-package, 2
computeGeneGSProb, 7
gapsInterPattern, 9
gapsIntraPattern, 10
gapsMapRun, 12
gapsMapTestRun, 14
gapsRun, 7, 13, 17
gapsTestRun, 19
geneGSProb (computeGeneGSProb), 7
GIST.D, 21
GIST.S, 22
GSets, 22, 27
list, 22
```

plotAtoms, 23
plotDiag, 23
plotGAPS, 24
plotP, 24
plotSmoothPatterns, 25
reorderByPatternMatch, 26
residuals, 27
SimpSim.A, 22, 27, 27, 28
SimpSim.D, 22, 27, 27, 28
SimpSim.P, 27, 28, 28
SimpSim. S, 28
tf2ugFC, 28

