Starting from Version 1.2.0, escheR
package supports additional two data structures as input, including SpatialExperiment
and data.frame
from base
R. In addition, escheR
supports in-situ visualization of image-based spatially resolved data, which will be the focus of future development.
SingleCellExperiment
SpatialExperiment
inherits SingleCellExperiment
Following the same syntax, one can also visualize dimensionality reduced embeddings of a SpatialExperiment
object by providing the argument dimred
with a non-null value. Hence, the first 2 columns of the corresponding reducedDim(spe)
assay will be used as the x-y coordinate of the plot, replacing spatialCoords(spe)
.
library(escheR)
library(STexampleData)
library(scater)
library(scran)
spe <- Visium_humanDLPFC() |>
logNormCounts()
spe <- spe[, spe$in_tissue == 1]
spe <- spe[, !is.na(spe$ground_truth)]
top.gene <- getTopHVGs(spe, n=500)
set.seed(100) # See below.
spe <- runPCA(spe, subset_row = top.gene)
make_escheR(
spe,
dimred = "PCA"
) |>
add_fill(var = "ground_truth") +
theme_minimal()
spe$counts_MOBP <- counts(spe)[which(rowData(spe)$gene_name=="MOBP"),]
spe$ground_truth <- factor(spe$ground_truth)
# Point Binning version
make_escheR(
spe,
dimred = "PCA"
) |>
add_ground_bin(
var = "ground_truth"
) |>
add_fill_bin(
var = "counts_MOBP"
) +
# Customize aesthetics
scale_fill_gradient(low = "white", high = "black", name = "MOBP Count")+
scale_color_discrete(name = "Spatial Domains") +
theme_minimal()
Note 1: The strategy of binning to avoid overplotting is previously proposed in
schex
. While we provide an implementation inescheR
, we would caution our users that the binning strategy could lead to intermixing of cluster memberships. In our implementation, the majority membership of the data points belonging to a bin is selected as the label of the bin. Users should use the binning strategy under their own discretion, and interpret the visualization carefully.
Note 2:
add_fill_bin()
shoudl be applied afteradd_ground_bin()
for the better visualization outcome.
SpatialExperiment
ObjectTo demonstrate the principle that escheR
can be used to visualize image-based spatially-resolved data pending optimization, we include two image-based spatially resolved transcriptomics data generated via seqFish platform and Slide-seq V2 platform respectively. The two datasets have been previously curated in the STexampleData
package
library(STexampleData)
library(escheR)
spe_seqFISH <- seqFISH_mouseEmbryo()
make_escheR(spe_seqFISH) |>
add_fill(var = "embryo")
NOTE: trimming down the
colData(spe)
before piping into make-escheR could reduce the computation time to make the plots, specifically whencolData(spe)
contains extremely large number of irrelavent features/columns.
We aim to provide accessibility to all users regardless of their programming background and preferred single-cell analysis pipelines. Nevertheless , with limited resource, our sustaining efforts will prioritize towards the maintenance of the established functionality and the optimization for image-based spatially resolved data. We regret we are not be able to provide seamless interface to other R pipelines such as Seurat
and Giotto
in foreseeable future.
Instead, we provide a generic function that works with a data.frame
object as input. For example, relevant features in Suerat
can be easily exported as a data.frame
object manually or via tidyseurat
[https://github.com/stemangiola/tidyseurat]. The exported data frame can be pipe into escheR
.
library(escheR)
library(Seurat)
pbmc_small <- SeuratObject::pbmc_small
pbmc_2pc <- pbmc_small@reductions$pca@cell.embeddings[,1:2]
pbmc_meta <- pbmc_small@meta.data
#> Call generic function for make_escheR.data.frame
make_escheR(
object = pbmc_meta,
.x = pbmc_2pc[,1],
.y = pbmc_2pc[,2]) |>
add_fill(var = "groups")
utils::sessionInfo()
#> R version 4.4.0 (2024-04-24)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 22.04.4 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] BumpyMatrix_1.12.0 scran_1.32.0
#> [3] scater_1.32.0 scuttle_1.14.0
#> [5] ggpubr_0.6.0 STexampleData_1.12.0
#> [7] SpatialExperiment_1.14.0 SingleCellExperiment_1.26.0
#> [9] SummarizedExperiment_1.34.0 Biobase_2.64.0
#> [11] GenomicRanges_1.56.0 GenomeInfoDb_1.40.0
#> [13] IRanges_2.38.0 S4Vectors_0.42.0
#> [15] MatrixGenerics_1.16.0 matrixStats_1.3.0
#> [17] ExperimentHub_2.12.0 AnnotationHub_3.12.0
#> [19] BiocFileCache_2.12.0 dbplyr_2.5.0
#> [21] BiocGenerics_0.50.0 escheR_1.4.0
#> [23] ggplot2_3.5.1 BiocStyle_2.32.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_1.8.8
#> [3] magrittr_2.0.3 ggbeeswarm_0.7.2
#> [5] magick_2.8.3 farver_2.1.2
#> [7] rmarkdown_2.26 zlibbioc_1.50.0
#> [9] vctrs_0.6.5 memoise_2.0.1
#> [11] DelayedMatrixStats_1.26.0 rstatix_0.7.2
#> [13] tinytex_0.51 htmltools_0.5.8.1
#> [15] S4Arrays_1.4.0 curl_5.2.1
#> [17] BiocNeighbors_1.22.0 broom_1.0.5
#> [19] SparseArray_1.4.4 sass_0.4.9
#> [21] bslib_0.7.0 cachem_1.1.0
#> [23] igraph_2.0.3 mime_0.12
#> [25] lifecycle_1.0.4 pkgconfig_2.0.3
#> [27] rsvd_1.0.5 Matrix_1.7-0
#> [29] R6_2.5.1 fastmap_1.2.0
#> [31] GenomeInfoDbData_1.2.12 digest_0.6.35
#> [33] colorspace_2.1-0 AnnotationDbi_1.66.0
#> [35] dqrng_0.4.0 irlba_2.3.5.1
#> [37] RSQLite_2.3.6 beachmat_2.20.0
#> [39] filelock_1.0.3 labeling_0.4.3
#> [41] fansi_1.0.6 httr_1.4.7
#> [43] abind_1.4-5 compiler_4.4.0
#> [45] bit64_4.0.5 withr_3.0.0
#> [47] backports_1.4.1 BiocParallel_1.38.0
#> [49] carData_3.0-5 viridis_0.6.5
#> [51] DBI_1.2.2 hexbin_1.28.3
#> [53] highr_0.10 ggsignif_0.6.4
#> [55] rappdirs_0.3.3 DelayedArray_0.30.1
#> [57] rjson_0.2.21 bluster_1.14.0
#> [59] tools_4.4.0 vipor_0.4.7
#> [61] beeswarm_0.4.0 glue_1.7.0
#> [63] grid_4.4.0 cluster_2.1.6
#> [65] generics_0.1.3 gtable_0.3.5
#> [67] tidyr_1.3.1 metapod_1.12.0
#> [69] BiocSingular_1.20.0 ScaledMatrix_1.12.0
#> [71] car_3.1-2 utf8_1.2.4
#> [73] XVector_0.44.0 ggrepel_0.9.5
#> [75] BiocVersion_3.19.1 pillar_1.9.0
#> [77] limma_3.60.0 dplyr_1.1.4
#> [79] lattice_0.22-6 bit_4.0.5
#> [81] tidyselect_1.2.1 locfit_1.5-9.9
#> [83] Biostrings_2.72.0 knitr_1.46
#> [85] gridExtra_2.3 bookdown_0.39
#> [87] edgeR_4.2.0 xfun_0.44
#> [89] statmod_1.5.0 UCSC.utils_1.0.0
#> [91] yaml_2.3.8 evaluate_0.23
#> [93] codetools_0.2-20 tibble_3.2.1
#> [95] BiocManager_1.30.23 cli_3.6.2
#> [97] munsell_0.5.1 jquerylib_0.1.4
#> [99] Rcpp_1.0.12 png_0.1-8
#> [101] parallel_4.4.0 blob_1.2.4
#> [103] sparseMatrixStats_1.16.0 viridisLite_0.4.2
#> [105] scales_1.3.0 purrr_1.0.2
#> [107] crayon_1.5.2 rlang_1.1.3
#> [109] cowplot_1.1.3 KEGGREST_1.44.0