An introduction to the bambu package using NanoporeRNASeq data

Introduction

NanoporeRNASeq contains RNA-Seq data from the K562 and MCF7 cell lines that were generated by the SG-NEx project (https://github.com/GoekeLab/sg-nex-data). Each of these cell line has three replicates, with 1 direct RNA sequencing data and 2 cDNA sequencing data. The files contains reads aligned to the human genome (Grch38) chromosome 22 (1:25500000).

Accessing NanoporeRNASeq data

Load the NanoporeRNASeq package

library("NanoporeRNASeq")

List the samples

data("SGNexSamples")
SGNexSamples
##> DataFrame with 6 rows and 6 columns
##>                sample_id    Platform    cellLine    protocol cancer_type
##>              <character> <character> <character> <character> <character>
##> 1 K562_directcDNA_repl..      MinION        K562  directcDNA   Leukocyte
##> 2 K562_directcDNA_repl..     GridION        K562  directcDNA   Leukocyte
##> 3 K562_directRNA_repli..     GridION        K562   directRNA   Leukocyte
##> 4 MCF7_directcDNA_repl..      MinION        MCF7  directcDNA      Breast
##> 5 MCF7_directcDNA_repl..     GridION        MCF7  directcDNA      Breast
##> 6 MCF7_directRNA_repli..     GridION        MCF7   directRNA      Breast
##>                fileNames
##>              <character>
##> 1 NanoporeRNASeq/versi..
##> 2 NanoporeRNASeq/versi..
##> 3 NanoporeRNASeq/versi..
##> 4 NanoporeRNASeq/versi..
##> 5 NanoporeRNASeq/versi..
##> 6 NanoporeRNASeq/versi..

List the available BamFile

library(ExperimentHub)
NanoporeData <- query(ExperimentHub(), c("NanoporeRNA", "GRCh38", "Bam"))
bamFiles <- Rsamtools::BamFileList(NanoporeData[["EH3808"]], NanoporeData[["EH3809"]],
    NanoporeData[["EH3810"]], NanoporeData[["EH3811"]], NanoporeData[["EH3812"]],
    NanoporeData[["EH3813"]])

Get the annotation GRangesList

data("HsChr22BambuAnnotation")
HsChr22BambuAnnotation
##> GRangesList object of length 1500:
##> $ENST00000043402
##> GRanges object with 2 ranges and 2 metadata columns:
##>       seqnames            ranges strand | exon_rank exon_endRank
##>          <Rle>         <IRanges>  <Rle> | <integer>    <integer>
##>   [1]       22 20241415-20243110      - |         2            1
##>   [2]       22 20268071-20268531      - |         1            2
##>   -------
##>   seqinfo: 1 sequence from an unspecified genome; no seqlengths
##> 
##> $ENST00000086933
##> GRanges object with 3 ranges and 2 metadata columns:
##>       seqnames            ranges strand | exon_rank exon_endRank
##>          <Rle>         <IRanges>  <Rle> | <integer>    <integer>
##>   [1]       22 19148576-19149095      - |         3            1
##>   [2]       22 19149663-19149916      - |         2            2
##>   [3]       22 19150025-19150283      - |         1            3
##>   -------
##>   seqinfo: 1 sequence from an unspecified genome; no seqlengths
##> 
##> $ENST00000155674
##> GRanges object with 8 ranges and 2 metadata columns:
##>       seqnames            ranges strand | exon_rank exon_endRank
##>          <Rle>         <IRanges>  <Rle> | <integer>    <integer>
##>   [1]       22 17137511-17138357      - |         8            1
##>   [2]       22 17138550-17138738      - |         7            2
##>   [3]       22 17141059-17141233      - |         6            3
##>   [4]       22 17143098-17143131      - |         5            4
##>   [5]       22 17145024-17145117      - |         4            5
##>   [6]       22 17148448-17148560      - |         3            6
##>   [7]       22 17149542-17149745      - |         2            7
##>   [8]       22 17165209-17165287      - |         1            8
##>   -------
##>   seqinfo: 1 sequence from an unspecified genome; no seqlengths
##> 
##> ...
##> <1497 more elements>

Visualizing gene of interest from a single bam file

We can visualize the one sample for a single gene ENST00000215832 (MAPK1)

library(ggbio)
range <- HsChr22BambuAnnotation$ENST00000215832
# plot mismatch track
library(BSgenome.Hsapiens.NCBI.GRCh38)
# plot annotation track
tx <- autoplot(range, aes(col = strand), group.selfish = TRUE)
# plot coverage track
coverage <- autoplot(bamFiles[[1]], aes(col = coverage), which = range)

# merge the tracks into one plot
tracks(annotation = tx, coverage = coverage, heights = c(1, 3)) + theme_minimal()

Running Bambu with NanoporeRNASeq data

Load the bambu package

library(bambu)
genomeSequenceData <- query(ExperimentHub(), c("NanoporeRNA", "GRCh38", "FASTA"))
genomeSequence <- genomeSequenceData[["EH7260"]]

Run bambu

Applying bambu to bamFiles

se <- bambu(reads = bamFiles, annotations = HsChr22BambuAnnotation, genome = genomeSequence)

bambu returns a SummarizedExperiment object

se
##> class: RangedSummarizedExperiment 
##> dim: 1542 6 
##> metadata(2): incompatibleCounts warnings
##> assays(4): counts CPM fullLengthCounts uniqueCounts
##> rownames(1542): BambuTx1 BambuTx2 ... ENST00000641933 ENST00000641967
##> rowData names(11): TXNAME GENEID ... txid eqClassById
##> colnames(6): 96f922b312965_3844 96f9262bf7c1a_3846 ...
##>   96f921d913cf8_3852 96f923b8683e8_3854
##> colData names(1): name

Visualizing gene examples

We can visualize the annotated and novel isoforms identified in this gene example using plot functions from bambu

plotBambu(se, type = "annotation", gene_id = "ENSG00000099968")

##> [[1]]
##> TableGrob (3 x 1) "arrange": 3 grobs
##>   z     cells    name                grob
##> 1 1 (2-2,1-1) arrange      gtable[layout]
##> 2 2 (3-3,1-1) arrange      gtable[layout]
##> 3 3 (1-1,1-1) arrange text[GRID.text.248]
sessionInfo()
##> R version 4.3.1 (2023-06-16)
##> Platform: x86_64-pc-linux-gnu (64-bit)
##> Running under: Ubuntu 22.04.3 LTS
##> 
##> Matrix products: default
##> BLAS:   /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so 
##> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##> 
##> locale:
##>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##>  [3] LC_TIME=en_GB              LC_COLLATE=C              
##>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
##> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
##> 
##> time zone: America/New_York
##> tzcode source: system (glibc)
##> 
##> attached base packages:
##> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
##> [8] base     
##> 
##> other attached packages:
##>  [1] bambu_3.4.0                           
##>  [2] SummarizedExperiment_1.32.0           
##>  [3] Biobase_2.62.0                        
##>  [4] MatrixGenerics_1.14.0                 
##>  [5] matrixStats_1.0.0                     
##>  [6] BSgenome.Hsapiens.NCBI.GRCh38_1.3.1000
##>  [7] BSgenome_1.70.0                       
##>  [8] rtracklayer_1.62.0                    
##>  [9] BiocIO_1.12.0                         
##> [10] ggbio_1.50.0                          
##> [11] ggplot2_3.4.4                         
##> [12] Rsamtools_2.18.0                      
##> [13] Biostrings_2.70.1                     
##> [14] XVector_0.42.0                        
##> [15] GenomicRanges_1.54.0                  
##> [16] GenomeInfoDb_1.38.0                   
##> [17] IRanges_2.36.0                        
##> [18] S4Vectors_0.40.0                      
##> [19] NanoporeRNASeq_1.12.0                 
##> [20] ExperimentHub_2.10.0                  
##> [21] AnnotationHub_3.10.0                  
##> [22] BiocFileCache_2.10.0                  
##> [23] dbplyr_2.3.4                          
##> [24] BiocGenerics_0.48.0                   
##> 
##> loaded via a namespace (and not attached):
##>   [1] RColorBrewer_1.1-3            rstudioapi_0.15.0            
##>   [3] jsonlite_1.8.7                magrittr_2.0.3               
##>   [5] GenomicFeatures_1.54.0        farver_2.1.1                 
##>   [7] rmarkdown_2.25                zlibbioc_1.48.0              
##>   [9] vctrs_0.6.4                   memoise_2.0.1                
##>  [11] RCurl_1.98-1.12               base64enc_0.1-3              
##>  [13] htmltools_0.5.6.1             S4Arrays_1.2.0               
##>  [15] progress_1.2.2                curl_5.1.0                   
##>  [17] xgboost_1.7.5.1               SparseArray_1.2.0            
##>  [19] Formula_1.2-5                 sass_0.4.7                   
##>  [21] bslib_0.5.1                   htmlwidgets_1.6.2            
##>  [23] plyr_1.8.9                    cachem_1.0.8                 
##>  [25] GenomicAlignments_1.38.0      mime_0.12                    
##>  [27] lifecycle_1.0.3               pkgconfig_2.0.3              
##>  [29] Matrix_1.6-1.1                R6_2.5.1                     
##>  [31] fastmap_1.1.1                 GenomeInfoDbData_1.2.11      
##>  [33] shiny_1.7.5.1                 digest_0.6.33                
##>  [35] colorspace_2.1-0              GGally_2.1.2                 
##>  [37] reshape_0.8.9                 OrganismDbi_1.44.0           
##>  [39] AnnotationDbi_1.64.0          Hmisc_5.1-1                  
##>  [41] RSQLite_2.3.1                 labeling_0.4.3               
##>  [43] filelock_1.0.2                fansi_1.0.5                  
##>  [45] httr_1.4.7                    abind_1.4-5                  
##>  [47] compiler_4.3.1                bit64_4.0.5                  
##>  [49] withr_2.5.1                   htmlTable_2.4.1              
##>  [51] backports_1.4.1               BiocParallel_1.36.0          
##>  [53] DBI_1.1.3                     biomaRt_2.58.0               
##>  [55] rappdirs_0.3.3                DelayedArray_0.28.0          
##>  [57] rjson_0.2.21                  tools_4.3.1                  
##>  [59] foreign_0.8-85                interactiveDisplayBase_1.40.0
##>  [61] httpuv_1.6.12                 nnet_7.3-19                  
##>  [63] glue_1.6.2                    restfulr_0.0.15              
##>  [65] promises_1.2.1                grid_4.3.1                   
##>  [67] checkmate_2.3.0               cluster_2.1.4                
##>  [69] reshape2_1.4.4                generics_0.1.3               
##>  [71] gtable_0.3.4                  tidyr_1.3.0                  
##>  [73] ensembldb_2.26.0              data.table_1.14.8            
##>  [75] hms_1.1.3                     xml2_1.3.5                   
##>  [77] utf8_1.2.4                    BiocVersion_3.18.0           
##>  [79] pillar_1.9.0                  stringr_1.5.0                
##>  [81] later_1.3.1                   dplyr_1.1.3                  
##>  [83] lattice_0.22-5                bit_4.0.5                    
##>  [85] biovizBase_1.50.0             RBGL_1.78.0                  
##>  [87] tidyselect_1.2.0              knitr_1.44                   
##>  [89] gridExtra_2.3                 ProtGenerics_1.34.0          
##>  [91] xfun_0.40                     stringi_1.7.12               
##>  [93] lazyeval_0.2.2                yaml_2.3.7                   
##>  [95] evaluate_0.22                 codetools_0.2-19             
##>  [97] tibble_3.2.1                  graph_1.80.0                 
##>  [99] BiocManager_1.30.22           cli_3.6.1                    
##> [101] rpart_4.1.21                  xtable_1.8-4                 
##> [103] munsell_0.5.0                 jquerylib_0.1.4              
##> [105] dichromat_2.0-0.1             Rcpp_1.0.11                  
##> [107] png_0.1-8                     XML_3.99-0.14                
##> [109] parallel_4.3.1                ellipsis_0.3.2               
##> [111] blob_1.2.4                    prettyunits_1.2.0            
##> [113] AnnotationFilter_1.26.0       bitops_1.0-7                 
##> [115] VariantAnnotation_1.48.0      scales_1.2.1                 
##> [117] purrr_1.0.2                   crayon_1.5.2                 
##> [119] rlang_1.1.1                   KEGGREST_1.42.0              
##> [121] formatR_1.14