The HiBED package contains reference libraries derived from Illumina HumanMethylation450K and Illumina HumanMethylationEPIC DNA methylation microarrays (Zhang Z, Salas LA et al. 2023), consisting of 6 astrocyte, 12 endothelial, 5 GABAergic neuron, 5 glutamatergic neuron, 18 microglial, 20 oligodendrocyte, and 5 stromal samples from public resources.
The reference libraries were used to estimate proportions of 7 major brain cell types in 450K and EPIC bulk brain samples using a modified version of the algorithm constrained projection/quadratic programming described in Houseman et al. 2012.
Loading package:
Objects included:
1. HiBED_Libraries contains 4 libraries for deconvolution
We offer the function HiBED_deconvolution to estimate proportions for 7 major brain cell types, including GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. The estimates are calculated using modified CP/QP method described in Houseman et al. 2012.
see ?HiBED_deconvolution for details
# Step 1 load and process example
library(FlowSorted.Blood.EPIC)
library(FlowSorted.DLPFC.450k)
library(minfi)
Mset<-preprocessRaw(FlowSorted.DLPFC.450k)
Examples_Betas<-getBeta(Mset)
# Step 2: use the HiBED_deconvolution function in combinatation with the
# reference libraries for brain cell deconvolution.
HiBED_result<-HiBED_deconvolution(Examples_Betas, h=2)
head(HiBED_result)
#> Endothelial Stromal Astrocyte Microglial Oligodendrocyte GABA
#> 813_N NaN NaN 0.8548534 0.7915309 5.643616 14.867764
#> 1740_N NaN NaN 0.8524800 1.1596800 3.747840 17.805161
#> 1740_G 4.2758290 2.0241710 6.3462006 19.9935161 60.030283 3.336364
#> 1228_G 2.6479470 2.1120530 4.2803944 7.2064838 78.253122 2.508475
#> 813_G 2.5763484 1.9536516 5.4130230 14.4480688 69.668908 2.738889
#> 1228_N 0.5389908 0.7110092 1.5104187 1.6272037 7.832378 14.880146
#> GLU
#> 813_N 70.812236
#> 1740_N 70.134839
#> 1740_G 4.003636
#> 1228_G 2.991525
#> 813_G 3.211111
#> 1228_N 69.869854
sessionInfo()
#> R version 4.3.1 (2023-06-16)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] parallel stats4 stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] IlluminaHumanMethylation450kmanifest_0.4.0
#> [2] FlowSorted.DLPFC.450k_1.38.0
#> [3] FlowSorted.Blood.EPIC_2.6.0
#> [4] ExperimentHub_2.10.0
#> [5] AnnotationHub_3.10.0
#> [6] BiocFileCache_2.10.0
#> [7] dbplyr_2.3.4
#> [8] minfi_1.48.0
#> [9] bumphunter_1.44.0
#> [10] locfit_1.5-9.8
#> [11] iterators_1.0.14
#> [12] foreach_1.5.2
#> [13] Biostrings_2.70.1
#> [14] XVector_0.42.0
#> [15] SummarizedExperiment_1.32.0
#> [16] Biobase_2.62.0
#> [17] MatrixGenerics_1.14.0
#> [18] matrixStats_1.0.0
#> [19] GenomicRanges_1.54.0
#> [20] GenomeInfoDb_1.38.0
#> [21] IRanges_2.36.0
#> [22] S4Vectors_0.40.0
#> [23] BiocGenerics_0.48.0
#> [24] HiBED_1.0.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_1.8.7
#> [3] magrittr_2.0.3 GenomicFeatures_1.54.0
#> [5] rmarkdown_2.25 BiocIO_1.12.0
#> [7] zlibbioc_1.48.0 vctrs_0.6.4
#> [9] multtest_2.58.0 Rsamtools_2.18.0
#> [11] memoise_2.0.1 DelayedMatrixStats_1.24.0
#> [13] RCurl_1.98-1.12 askpass_1.2.0
#> [15] htmltools_0.5.6.1 S4Arrays_1.2.0
#> [17] progress_1.2.2 curl_5.1.0
#> [19] Rhdf5lib_1.24.0 SparseArray_1.2.0
#> [21] rhdf5_2.46.0 sass_0.4.7
#> [23] nor1mix_1.3-0 bslib_0.5.1
#> [25] plyr_1.8.9 cachem_1.0.8
#> [27] GenomicAlignments_1.38.0 mime_0.12
#> [29] lifecycle_1.0.3 pkgconfig_2.0.3
#> [31] Matrix_1.6-1.1 R6_2.5.1
#> [33] fastmap_1.1.1 GenomeInfoDbData_1.2.11
#> [35] shiny_1.7.5.1 digest_0.6.33
#> [37] siggenes_1.76.0 reshape_0.8.9
#> [39] AnnotationDbi_1.64.0 RSQLite_2.3.1
#> [41] base64_2.0.1 filelock_1.0.2
#> [43] fansi_1.0.5 httr_1.4.7
#> [45] abind_1.4-5 compiler_4.3.1
#> [47] beanplot_1.3.1 rngtools_1.5.2
#> [49] bit64_4.0.5 BiocParallel_1.36.0
#> [51] DBI_1.1.3 HDF5Array_1.30.0
#> [53] biomaRt_2.58.0 MASS_7.3-60
#> [55] openssl_2.1.1 rappdirs_0.3.3
#> [57] DelayedArray_0.28.0 rjson_0.2.21
#> [59] tools_4.3.1 interactiveDisplayBase_1.40.0
#> [61] httpuv_1.6.12 quadprog_1.5-8
#> [63] glue_1.6.2 restfulr_0.0.15
#> [65] nlme_3.1-163 rhdf5filters_1.14.0
#> [67] promises_1.2.1 grid_4.3.1
#> [69] generics_0.1.3 tzdb_0.4.0
#> [71] preprocessCore_1.64.0 tidyr_1.3.0
#> [73] data.table_1.14.8 hms_1.1.3
#> [75] xml2_1.3.5 utf8_1.2.4
#> [77] BiocVersion_3.18.0 pillar_1.9.0
#> [79] stringr_1.5.0 limma_3.58.0
#> [81] genefilter_1.84.0 later_1.3.1
#> [83] splines_4.3.1 dplyr_1.1.3
#> [85] lattice_0.22-5 rtracklayer_1.62.0
#> [87] survival_3.5-7 bit_4.0.5
#> [89] GEOquery_2.70.0 annotate_1.80.0
#> [91] tidyselect_1.2.0 knitr_1.44
#> [93] xfun_0.40 scrime_1.3.5
#> [95] statmod_1.5.0 stringi_1.7.12
#> [97] yaml_2.3.7 evaluate_0.22
#> [99] codetools_0.2-19 tibble_3.2.1
#> [101] BiocManager_1.30.22 cli_3.6.1
#> [103] xtable_1.8-4 jquerylib_0.1.4
#> [105] Rcpp_1.0.11 png_0.1-8
#> [107] XML_3.99-0.14 ellipsis_0.3.2
#> [109] readr_2.1.4 blob_1.2.4
#> [111] prettyunits_1.2.0 mclust_6.0.0
#> [113] doRNG_1.8.6 sparseMatrixStats_1.14.0
#> [115] bitops_1.0-7 illuminaio_0.44.0
#> [117] purrr_1.0.2 crayon_1.5.2
#> [119] rlang_1.1.1 KEGGREST_1.42.0
References
Z Zhang, LA Salas et al. (2023) SHierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Under Review
J. Guintivano, et al. (2013). A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics, 8(3):290–302, 2013. doi: [10.4161/epi.23924] (https://dx.doi.org/10.4161/epi.23924).
Weightman Potter PG, et al. (2021) Attenuated Induction of the Unfolded Protein Response in Adult Human Primary Astrocytes in Response to Recurrent Low Glucose. Front Endocrinol (Lausanne) 2021;12:671724. doi: [10.3389/fendo.2021.671724] (https://dx.doi.org/10.3389/fendo.2021.671724).
Kozlenkov, et al. (2018) A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Sci. Adv. 2018;4:eaau6190. doi: [10.1126/sciadv.aau6190] (https://dx.doi.org/10.1126/sciadv.aau6190).
de Whitte, et al. (2022) Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biological Psychiatry March 15, 2022; 91:572–581. doi: [10.1016/j.biopsych.2021.10.020] (https://doi.org/10.1016/j.biopsych.2021.10.020).
X Lin, et al. (2018) Cell type-specific DNA methylation in neonatal cord tissue and cord blood: A 850K-reference panel and comparison of cell-types. Epigenetics. 13:941–58. doi: [10.1080/15592294.2018.1522929] (https://dx.doi.org/10.1080/15592294.2018.1522929).
LA Salas et al. (2022). Enhanced cell deconvolution of peripheral blood using DNA methylation for high-resolution immune profiling. Nature Communications 13(1):761. doi:[10.1038/s41467-021-27864-7](https://dx.doi.org/10.1038/s41467-021-27864-7).
EA Houseman et al. (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86. doi: 10.1186/1471-2105-13-86.
minfi Tools to analyze & visualize Illumina Infinium methylation arrays.