A common application of single-cell RNA sequencing (RNA-seq) data is
to identify discrete cell types. To take advantage of the large collection
of well-annotated scRNA-seq datasets, scClassify
package implements
a set of methods to perform accurate cell type classification based on
ensemble learning and sample size calculation.
This vignette will provide an example showing how users can use a pretrained
model of scClassify to predict cell types. A pretrained model is a
scClassifyTrainModel
object returned by train_scClassify()
.
A list of pretrained model can be found in
https://sydneybiox.github.io/scClassify/index.html.
First, install scClassify
, install BiocManager
and use
BiocManager::install
to install scClassify
package.
# installation of scClassify
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("scClassify")
We assume that you have log-transformed (size-factor normalized) matrices as query datasets, where each row refers to a gene and each column a cell. For demonstration purposes, we will take a subset of single-cell pancreas datasets from one independent study (Wang et al.).
library(scClassify)
data("scClassify_example")
wang_cellTypes <- scClassify_example$wang_cellTypes
exprsMat_wang_subset <- scClassify_example$exprsMat_wang_subset
exprsMat_wang_subset <- as(exprsMat_wang_subset, "dgCMatrix")
Here, we load our pretrained model using a subset of the Xin et al. human pancreas dataset as our reference data.
First, let us check basic information relating to our pretrained model.
data("trainClassExample_xin")
trainClassExample_xin
#> Class: scClassifyTrainModel
#> Model name: training
#> Feature selection methods: limma
#> Number of cells in the training data: 674
#> Number of cell types in the training data: 4
In this pretrained model, we have selected the genes based on Differential Expression using limma. To check the genes that are available in the pretrained model:
features(trainClassExample_xin)
#> [1] "limma"
We can also visualise the cell type tree of the reference data.
plotCellTypeTree(cellTypeTree(trainClassExample_xin))
Next, we perform predict_scClassify
with our pretrained model
trainRes = trainClassExample
to predict the cell types of our
query data matrix exprsMat_wang_subset_sparse
. Here,
we used pearson
and spearman
as similarity metrics.
pred_res <- predict_scClassify(exprsMat_test = exprsMat_wang_subset,
trainRes = trainClassExample_xin,
cellTypes_test = wang_cellTypes,
algorithm = "WKNN",
features = c("limma"),
similarity = c("pearson", "spearman"),
prob_threshold = 0.7,
verbose = TRUE)
#> Performing unweighted ensemble learning...
#> Using parameters:
#> similarity algorithm features
#> "pearson" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.704590818 0.239520958 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.000000000 0.051896208 0.003992016
#> Using parameters:
#> similarity algorithm features
#> "spearman" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.702594810 0.013972056 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.001996008 0.277445110 0.003992016
#> weights for each base method:
#> [1] NA NA
Noted that the cellType_test
is not a required input.
For datasets with unknown labels, users can simply leave it
as cellType_test = NULL
.
Prediction results for pearson as the similarity metric:
table(pred_res$pearson_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 0
#> beta 0 0 118 0 1 0 0
#> beta_delta_gamma 0 0 0 0 25 0 0
#> delta 0 0 0 10 0 0 0
#> gamma 0 0 0 0 0 19 0
#> unassigned 5 0 0 0 70 0 45
Prediction results for spearman as the similarity metric:
table(pred_res$spearman_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 2
#> beta 2 0 118 0 29 0 6
#> beta_delta_gamma 1 0 0 0 66 0 31
#> delta 0 0 0 10 0 0 2
#> gamma 0 0 0 0 0 18 0
#> unassigned 2 0 0 0 1 1 4
sessionInfo()
#> R version 4.3.1 (2023-06-16)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] scClassify_1.14.0 BiocStyle_2.30.0
#>
#> loaded via a namespace (and not attached):
#> [1] bitops_1.0-7 gridExtra_2.3
#> [3] rlang_1.1.1 magrittr_2.0.3
#> [5] matrixStats_1.0.0 compiler_4.3.1
#> [7] mgcv_1.9-0 DelayedMatrixStats_1.24.0
#> [9] vctrs_0.6.4 reshape2_1.4.4
#> [11] stringr_1.5.0 pkgconfig_2.0.3
#> [13] crayon_1.5.2 fastmap_1.1.1
#> [15] magick_2.8.1 XVector_0.42.0
#> [17] labeling_0.4.3 ggraph_2.1.0
#> [19] utf8_1.2.4 rmarkdown_2.25
#> [21] purrr_1.0.2 xfun_0.40
#> [23] zlibbioc_1.48.0 cachem_1.0.8
#> [25] GenomeInfoDb_1.38.0 jsonlite_1.8.7
#> [27] rhdf5filters_1.14.0 DelayedArray_0.28.0
#> [29] Rhdf5lib_1.24.0 BiocParallel_1.36.0
#> [31] tweenr_2.0.2 parallel_4.3.1
#> [33] cluster_2.1.4 R6_2.5.1
#> [35] bslib_0.5.1 stringi_1.7.12
#> [37] limma_3.58.0 diptest_0.76-0
#> [39] GenomicRanges_1.54.0 jquerylib_0.1.4
#> [41] Rcpp_1.0.11 bookdown_0.36
#> [43] SummarizedExperiment_1.32.0 knitr_1.44
#> [45] mixtools_2.0.0 IRanges_2.36.0
#> [47] Matrix_1.6-1.1 splines_4.3.1
#> [49] igraph_1.5.1 tidyselect_1.2.0
#> [51] abind_1.4-5 yaml_2.3.7
#> [53] hopach_2.62.0 viridis_0.6.4
#> [55] codetools_0.2-19 minpack.lm_1.2-4
#> [57] Cepo_1.8.0 lattice_0.22-5
#> [59] tibble_3.2.1 plyr_1.8.9
#> [61] Biobase_2.62.0 withr_2.5.1
#> [63] evaluate_0.22 survival_3.5-7
#> [65] RcppParallel_5.1.7 proxy_0.4-27
#> [67] polyclip_1.10-6 kernlab_0.9-32
#> [69] pillar_1.9.0 BiocManager_1.30.22
#> [71] MatrixGenerics_1.14.0 stats4_4.3.1
#> [73] plotly_4.10.3 generics_0.1.3
#> [75] RCurl_1.98-1.12 S4Vectors_0.40.0
#> [77] ggplot2_3.4.4 sparseMatrixStats_1.14.0
#> [79] munsell_0.5.0 scales_1.2.1
#> [81] glue_1.6.2 lazyeval_0.2.2
#> [83] proxyC_0.3.3 tools_4.3.1
#> [85] data.table_1.14.8 graphlayouts_1.0.1
#> [87] tidygraph_1.2.3 rhdf5_2.46.0
#> [89] grid_4.3.1 tidyr_1.3.0
#> [91] colorspace_2.1-0 SingleCellExperiment_1.24.0
#> [93] nlme_3.1-163 GenomeInfoDbData_1.2.11
#> [95] patchwork_1.1.3 ggforce_0.4.1
#> [97] HDF5Array_1.30.0 cli_3.6.1
#> [99] fansi_1.0.5 segmented_1.6-4
#> [101] S4Arrays_1.2.0 viridisLite_0.4.2
#> [103] dplyr_1.1.3 gtable_0.3.4
#> [105] sass_0.4.7 digest_0.6.33
#> [107] BiocGenerics_0.48.0 SparseArray_1.2.0
#> [109] ggrepel_0.9.4 htmlwidgets_1.6.2
#> [111] farver_2.1.1 htmltools_0.5.6.1
#> [113] lifecycle_1.0.3 httr_1.4.7
#> [115] statmod_1.5.0 MASS_7.3-60